Etudes numériques et expérimentales des phénomènes d'auto-échauffement dans les technologies d'imagerie 3D par collage hybride
Auteur / Autrice : | Axel Pic |
Direction : | Pierre-Olivier Chapuis, Rodolphe Vaillon |
Type : | Thèse de doctorat |
Discipline(s) : | Energétique/Thermique |
Date : | Soutenance le 04/09/2019 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....) |
Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) - Centre de Thermique de Lyon / CETHIL | |
Jury : | Président / Présidente : Sarah Thompson |
Examinateurs / Examinatrices : Pierre-Olivier Chapuis, Rodolphe Vaillon, Sarah Thompson, Stefan Dilhaire, Jonathan Weaver, Jean-Philippe Colonna, Sébastien Gallois-Garreignot, Séverine Gomes | |
Rapporteur / Rapporteuse : Stefan Dilhaire, Jonathan Weaver |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Dans cette thèse, les phénomènes d’auto-échauffement ont été étudié pour guider la conception de circuits intégrés 3D de nouvelle génération. Grâce à des études expérimentales et numériques, la dissipation thermique dans des imageurs 3D par collage hybride a été analysée et l’impact de l’augmentation de température résultante a été évalué. Premièrement, afin de développer des modèles précis, les propriétés thermiques des matériaux utilisés dans les circuits intégrés ont dû être déterminées. Différents films minces diélectriques impliquant des oxydes, des nitrures et des composés low-k ont été étudiés. Pour ce faire, la microscopie thermique à sonde locale (SThM) et la méthode électrothermique 3ω, sensibles à la conductivité thermique effective faible et élevée, ont été mises en œuvre. Dans un deuxième temps, des modèles éléments finis de circuits intégrés 3D ont été développés. Une méthode numérique nécessitant homogénéisations et approches multi-échelles a été proposée pour surmonter des grands rapports de forme inhérents à la microélectronique. La procédure numérique a été validée en comparant les calculs et les mesures expérimentales effectuées par SThM, la thermométrie résistive et la microscopie infrarouge sur une puce de test par collage hybride simplifiée. Il a été montré que la dissipation de chaleur est principalement limitée par la conductance du puit thermique ainsi que les pertes par l'air. Enfin, des études numériques et expérimentales ont été réalisées sur des imageurs 3D par collage hybride fonctionnels. Le champ de température a été mesuré par SThM et comparé aux calculs par éléments finis à la surface de la matrice. Les résultats numériques ont montré que la température de la surface des pixels est égale à celle du Front-End-Of-Line de l’imageur. L'influence de l'échauffement sur les performances optiques de l'imageur a été déduite de cette analyse. Cette étude a permis également d'évaluer les différentes méthodes numériques et expérimentales pour la caractérisation de la dissipation de chaleur en microélectronique.