

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

THÈSE

en vue de l’obtention du titre de

DOCTEUR DE L’UNIVERSITÉ DE LORRAINE
(arrêté ministériel du 7 Août 2006)

Spécialité Informatique

présentée par

TRAN Bach

Titre de la thèse :

Algorithmes avancés de DCA pour certaines

classes de problèmes en apprentissage

automatique du Big Data

—
Advanced Difference of Convex functions

Algorithms for some topics of Machine Learning
with Big Data

soutenue le 26 novembre 2019

Composition du Jury :

Rapporteurs Gilles GASSO Professeur, INSA de Rouen
Mau Nam NGUYEN Professeur, Université Portland State

Examinateurs Clarisse DHAENENS Professeur, Université de Lille
Yann GUERMEUR Directeur de Recherche, LORIA
Tao PHAM DINH Professeur émérite, INSA de Rouen

Directrice de thèse Hoai An LE THI Professeur, Université de Lorraine
Invité Hoai Minh LE MCF, Université de Lorraine

Vincent LEFIEUX Chef du pôle Data science - Intelligence artificielle de RTE

Thèse préparée au sein du Laboratoire d’Informatique Théorique et
Appliquée (LITA) et du département Informatique & Applications,

LGIPM, Université de Lorraine, Metz, France

Remerciements

Cette thèse a été réalisée au sein du Laboratoire d’Informatique Théorique et
Appliquée (LITA) et du département Informatique & Applications (IA), LGIPM,
l’Université de Lorraine.

Tout d’abord, je souhaite exprimer ma sincère gratitude à ma directrice de thèse,
Mme. LE THI Hoai An, Professeur des Universités à l’Université de Lorraine. Elle
m’a offert une grande opportunité pour commencer ma carrière scientifique, tout en
mettant à ma disponibilité des conditions excellentes de travail et de recherche durant
ces années. Sous sa direction avec une grande patience, rigueur et enthousiasme,
j’ai reçu des soutiens et encouragements pour étudier, effectuer des recherches sur
l’optimisation et l’apprentissage automatique, et pour finir cette thèse. Je la remercie
très sincèrement pour ses précieux conseils pour la recherche scientifique et également
pour ma vie personnelle. J’ai eu beaucoup de chance d’avoir bénéficié de cette grande
expérience pour devenir un bon chercheur scientifique dans le futur.

J’adresse respectueusement mes sincères remerciements à M. PHAM DINH Tao,
professeur à l’INSA de Rouen pour ses conseils, et son suivi dans mes travaux de
recherche. Je voudrais lui exprimer toute ma reconnaissance pour les discussions ap-
profondies très intéressantes que nous avons eues et pour m’avoir suggéré de nouvelles
voies de recherche.

Je remercie particulièrement le Dr. LE Hoai Minh et Dr. PHAN Duy Nhat pour
leur aide et les discussions intéressantes que nous avons eues lors de notre collaboration.

Je remercie mes collègues du LITA et mes amis (dans l’ordre alphabétique) :
Phuong Anh, Viet Anh, Aurélie Lallemand, Dinh Chien, Manh Cuong, Sara Samir,
Van Ngai, Minh Tam, Xuan Thanh, Vinh Thanh, Tran Thuy, ... pour leur soutien,
et leurs encouragements, ainsi que pour les agréables moments passés ensemble lors
de mon séjour en France. Je remercie également Mme. Annie HETET, Secrétaire du
LITA/IA, pour sa grande disponibilité et son aide très spontanée.

Je voudrais exprimer mes remerciements particuliers à ma fiancée, NGUYEN Thi
Minh Phu, pour son soutien et patience. J’adresse toute mon affection à mes parents
et à tous les membres de ma famille.

Enfin à tous ceux qui m’ont soutenu de près ou de loin, et à tous ceux qui m’ont
incité même involontairement, à faire mieux, veuillez trouver ici le témoignage de ma

1

2

profonde gratitude.

TRAN Bach

Né le 23 novembre, 1993 (Viet Nam)

E-mail: bach.tran@univ-lorraine.fr

Adresse professionnelle: Bureau UM-AN1-040, LGIPM – Université de Lor-
raine, 3 rue Augustin Fresnel, BP 45112, 57073 Metz, France

Situation Actuelle

Depuis
10/2016

Doctorant au LGIPM (Laboratoire de Génie Informatique, de Pro-
duction et de Maintenance - EA 3096), l’Université de Lorraine.
Encadré par Prof. Hoai An Le Thi.

Sujet de thèse : Advanced Difference of Convex functions Al-
gorithms for some topics of Machine Learning with Big Data.

Experience Professionnelle

10/2015 –
09/2016

Ingénieur d’étude, laboratoire LITA, UFR MIM, Université de Lor-
raine, Metz, France.

04/2015 –
09/2015

Stagiaire au laboratoire LITA, UFR MIM, Université de Lorraine,
Metz, France.
Responsable de stage: Prof. Hoai An Le Thi.
Mémoire: Some unsupervised / semi-supervised machine
learning technique and applications to anomaly detections.

Diplôme et Formation

2016 -
present

Doctorant en Informatique, LITA (laboratoire d’Informatique
Théorique et Appliquée) - LGIPM (Laboratoire de Génie Informa-
tique, de Production et de Maintenance) depuis 01/01/2018, Univer-
sité de Lorraine, Metz, France.

2013–2015 Master en sciences et technologies de l’information et de la commu-
nication, L’institut national polytechnique de Toulouse.

2012–2013 Licence en Informatique, University of Greenwich (campus à
l’Université FPT, Hanoi).

2009–2012 Higher Diploma en Génie logiciel (HDSE) FPT - Aptech, Hanoi.

Publications

Refereed international journal papers

[1] H.A. Le Thi, B. Tran. A DCA-based approach for Joint Clustering and Dimen-
sional Reduction by t-SNE. Submitted.

[2] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Novel DCA Based Algorithms for
Minimizing the Sum of a Nonconvex Function and Composite Functions with Applica-
tions in Machine learning. Submitted & Available on arvXiv [arXiv:1806.09620].

[3] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for minimizing
a large sum of DC functions and its application in Multi-class Logistic Regression.
Submitted & Available on arvXiv [arXiv:1911.03992].

Refereed papers in books / Refereed international conference papers

[1] B. Tran, H.A. Le Thi. Deep Clustering with Spherical Distance in Latent Space.
In: Advanced Computational Methods for Knowledge Engineering. ICCSAMA 2019.
Advances in Intelligent Systems and Computing, Springer, Cham. Accepted.

[2] G. Da Silva, H.M. Le, H.A. Le Thi, V. Lefieux, B. Tran. Customer Clustering of
French Transmission System Operator (RTE) Based on Their Electricity Consumption.
In: Le Thi H., Le H., Pham Dinh T. (eds) Optimization of Complex Systems: Theory,
Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems
and Computing, vol 991, pp. 893–905. Springer, Cham.

[3] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for the large-sum
of non-convex functions problem. Application to group variables selection in multiclass
logistic regression. International Conference on Machine Learning ICML, pp. 3394–
3403, 2017.

[4] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for Sparse Multi-
class Logistic Regression. In: Le NT., van Do T., Nguyen N., Thi H. (eds) Advanced
Computational Methods for Knowledge Engineering. ICCSAMA 2017. Advances in
Intelligent Systems and Computing, vol 629, pp. 1–12. Springer, Cham.

[5] X.T. Vo, B. Tran, H.A. Le Thi, T.P Dinh. Ramp Loss Support Vector Data
Description. In: Nguyen N., Tojo S., Nguyen L., Trawiński B. (eds) Intelligent Infor-

5

6 Publications

mation and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science,
vol 10191, pp. 421–431. Springer, Cham.

Communications in national / International conferences

[1] B. Tran, H.A. Le Thi, H.M. Le, D.N. Phan. Stochastic DCA for Group Feature
Selection in Multiclass Classification. The 29th European Conference on Operational
Research (EURO2018), Valencia, Spain, July 09 - 11, 2018.

Contents

Résumé 17

Introduction générale 21

1 Methodology 25

1.1 DC programming and DCA . 25

1.1.1 Fundamental convex analysis 25

1.1.2 DC optimization . 27

1.1.3 DC Algorithm (DCA) . 29

1.2 Stochastic DCA . 31

1.3 DCA-Like and Accelerated DCA-Like 33

1.3.1 DCA for the problem (1.10) . 33

1.3.2 DCA-Like for solving the problem (1.11) 35

1.3.3 Accelerated DCA-Like Algorithm for problem (1.11) 36

2 Group Variable Selection in Multi-class Logistic Regression1 39

2.1 Introduction . 40

2.2 Standard DCA for the group variable selection in multi-class logistic
regression . 42

2.3 SDCA for the group variable selection in multi-class logistic regression . 44

2.3.1 Numerical experiment . 45

2.3.1.1 Datasets . 45

2.3.1.2 Comparative algorithms 46

7

8 Contents

2.3.1.3 Experiment setting . 47

2.3.1.4 Experiment 1 . 48

2.3.1.5 Experiment 2 . 50

2.3.1.6 Experiment 3 . 51

2.4 DCA-Like and ADCA-Like for the group variable selection in multi-class
logistic regression . 57

2.4.1 Numerical experiment . 57

2.4.1.1 Experiment setting . 57

2.4.1.2 Comments on numerical results 59

2.5 Comparison between proposed algorithms 60

2.6 Conclusion . 61

3 t-distributed Stochastic Neighbor Embedding 1 65

3.1 Introduction . 66

3.2 Standard DCA for t-SNE problem . 67

3.3 DCA-Like and ADCA-Like for t-SNE problem 68

3.4 Numerical experiment . 69

3.5 Conclusion . 74

4 Deep Clustering1 79

4.1 Introduction and related works . 80

4.2 Two-step and joint-clustering by t-SNE and MSSC 83

4.2.1 Our contributions . 83

4.2.2 Two-step clustering by t-SNE and MSSC 83

4.2.3 Joint-clustering by t-SNE and MSSC 87

4.2.3.1 Problem formulation and solution methods 87

4.2.3.2 DC Decomposition for the Problem (4.7) 88

4.2.3.3 Optimization algorithm for (4.7) 88

4.2.4 Numerical experiment . 92

Contents 9

4.2.4.1 Experiment settings and Datasets 92

4.2.4.2 Experiment 1: Hyper-parameters of MSSC-JDR and
MSSC-2S . 93

4.2.4.3 Experiment 2: Comparasion between MSSC-2S,
MSSC-JDR and standard MSSC 93

4.2.4.4 Experiment 3: Comparison with NMF and VolMin-
based factorization joint-clustering algorithms 95

4.2.4.5 Experiment 4: Compare with joint-clustering algo-
rithms using auto-encoder 98

4.3 An approach for the scaling problem in a class of joint-clustering algo-
rithms by auto-encoder . 101

4.3.1 Auto-encoder . 101

4.3.2 Scaling problem of joint-clustering by auto-encoder 102

4.3.3 Proposed solution . 102

4.3.3.1 Spherical distance . 102

4.3.3.2 Application for deep joint-clustering with MSSC 104

4.3.4 Numerical experiment . 105

4.3.4.1 Datasets . 105

4.3.4.2 Comparative algorithms 105

4.3.4.3 Experiment setting . 107

4.3.4.4 Experiment results . 107

4.4 Conclusion . 109

5 Conclusion 111

Conclusion 111

A Appendix 115

Appendix 115

A.1 Computation of prox(−zlj)/ρ‖.‖q
(ν/ρ) 115

10 Contents

A.2 Solving problem (4.13) by first order optimality condition 116

A.3 Solving convex sub-problem (4.17) . 117

List of Figures

2.1 Comparative results between SDCA-`2,0-exp, DCA-`2,0-exp, SPGD-`2,1

and msgl (running time is plotted on a logarithmic scale). 49

2.2 Comparative results between SDCA-`1,0-exp, SDCA-`2,0-exp and
SDCA-`∞,0-exp (running time is plotted on a logarithmic scale). 55

2.3 Comparative results between SDCA-`2,0-exp and SDCA-`2,0-cap`1 (run-
ning time is plotted on a logarithmic scale). 56

2.4 Objective value versus running time (average of ten runs) 60

3.1 Objective value versus running time (average of ten runs) 76

3.2 Visualization of embedding space on mnist dataset. Colors represent
classes of data (0 – 9). 77

4.1 Clustering accuracy of MSSC-2S and MSSC-JDR as λ varies. 94

4.2 Clustering accuracy of all algorithms. For the last dataset (emnist-
digits), JNKM and JVKM encounter the Out Of Memory error. 96

4.3 Running time (in seconds) of all algorithms. For the last dataset
(emnist-digits), JNKM and JVKM encounter the Out Of Memory error. . . 99

4.4 Clustering accuracy of MSSC-JDR and AE-based joint-clustering algo-
rithms. For the last dataset (emnist-digits), DC-Kmeans failed to give
result due to the time limitation of 24 hours. 100

4.5 Illustration of an auto-encoder. 101

4.6 Illustration of the spherical distance. The solid blue line segment (reps.
dashed orange arc) represents the Euclidean distance between x̄i and x̄i
(reps. spherical distance), which are the projection of xi and xj onto
the hypersphere (i.e. x̄ = x

‖x‖2). 103

11

--

12 List of Figures

List of Tables

2.1 Computation of W l+1
j,: = prox(−zlj)/ρ‖.‖q

(
U l
j,:/ρ

)
corresponding to q ∈

{1, 2,∞}. 44

2.2 Comparative results on both synthetic and real datasets.
Bold values correspond to best results for each dataset. n, d and Q is
the number of instances, the number of variables and the number of
classes respectively. 51

2.3 Comparative results on group variable selection for multi-class logistic
regression. Bold values correspond to best results for each dataset. NA
means that the algorithm fails to furnish a result. n, d and Q are the
number of instances, dimensions and classes respectively. Unit of time
is second. 63

2.4 Comparative results on group variable selection for multi-class logistic
regression. Bold values correspond to best results for each dataset. NA
means that the algorithm fails to furnish a result. n, d and Q are the
number of instances, dimensions and classes respectively. Unit of time
is second. 64

3.1 Comparative results on datasets. Bold values correspond to best results
for each dataset, n and d are the number of instances and dimensions
respectively. Unit of time is second. 71

4.1 Comparative result between algorithms over all datasets. Bold values
correspond to best results for each dataset. NA means the algorithm
failed to procedure the result (i.e. Out of Memory). 96

4.2 Comparative result between MSSC-JDR and Auto-encoder-based joint-
clustering algorithms. Bold values correspond to best results for each
dataset. NA means the algorithm failed to produced a result under 12
hours. 100

13

14 List of Tables

4.3 Comparative result between Auto-encoder-based joint-clustering algo-
rithms. Bold values correspond to best results for each dataset. NA
means that the algorithm fails to furnish a result. 108

Abbreviations and Notations

Throughout the dissertation, we use uppercase letters to denote matrices, and
lowercase letters for vectors or scalars. Vectors are also regarded as matrices with
one column. Some of the abbreviations and notations used in the dissertation are
summarized as follows.

DC Difference of Convex functions
DCA DC Algorithm

R set of real numbers
Rn set of real column vectors of size n

R the set of extended real numbers, R = R ∪ {±∞}
‖ · ‖p `p-norm (0 < p <∞), ‖x‖p = (

∑n
i=1 |xi|p)1/p, x ∈ Rn

‖ · ‖ Euclidean norm (or `2-norm), ‖x‖ = (
∑n

i=1 |xi|2)1/2, x ∈ Rn

‖ · ‖∞ `∞-norm, ‖x‖∞ = maxi=1,...,n |xi|, x ∈ Rn

〈·, ·〉 scalar product, 〈x, y〉 =
∑n

i=1 xi.yi, x, y ∈ Rn

χC(·) indicator function of a set C, χC(x) = 0 if x ∈ C, +∞ otherwise
co{C} convex hull of a set of points C
ProjC(x) projection of a vector x onto a set C
dom f effective domain of a function f
∇f(x) gradient of a function f at x
∂f(x) subdifferential of a function f at x
Wi,: the i-th row of the matrix W
W:,i the i-th column of the matrix W
◦ the elementwise product
Ia a-by-a identity matrix
1a×b a-by-b matrix of ones
|S| cardinality of set S

15

Résumé

De nos jours, le Big Data est devenu essentiel et omniprésent dans tous les domaines.
Par conséquence, il est nécessaire de développer des techniques innovantes et efficaces
pour traiter la croissance rapide du volume des masses de données. Nous considérons
les problèmes suivants dans le contexte de Big Data : la sélection de groupes de
variables pour la régression logistique multi-classes, la réduction de dimension par t-
SNE (� t-distributed Stochastic Neighbor Embedding � en anglais) et l’apprentissage
en profondeur pour la classification non-supervisée (� Deep Clustering � en anglais).
Nous développons des algorithmes DC (Difference of Convex functions) avancés pour
ces problèmes, qui sont basés sur la programmation DC et DCA (DC Algorithm) – des
outils puissants pour les problèmes d’optimisation non-convexes non-différentiables.

Dans la première partie, nous étudions le problème de la sélection de groupes de
variables pour la régression logistique multi-classes. Nous résolvons ce problème en util-
isant des DCAs avancés – Stochastic DCA et DCA-Like. Plus précisément, Stochastic
DCA se spécialise dans le problème de la minimisation de la grande somme des fonc-
tions DC, et ne nécessite qu’un sous-ensemble de fonctions DC à chaque itération.
DCA-Like relaxe la condition de convexité de la deuxième composante DC en as-
surant la convergence. Accelerated DCA-Like intègre la technique d’accélération de
Nesterov dans DCA-Like pour améliorer sa performance. Les expériences numériques
sur plusieurs jeux de données benchmark de grande taille montrent l’efficacité de tous
les algorithmes proposés en termes de temps d’exécution et de qualité de la solution.

La deuxième partie concerne t-SNE, une technique efficace de réduction de di-
mension non linéaire. t-SNE est modélisé sous forme d’un problème d’optimisation
non-convexe. Motivés par le caractère novateur de DCA-Like et Accelerated DCA-
Like, nous développons ces deux algorithmes pour résoudre le problème t-SNE. La
supériorité de nos algorithmes, appliqués à la visualisation de données, par rapport
aux méthodes existantes est illustrée via des expériences numériques réalisées sur les
jeux de données de très grande taille.

La troisième partie est consacrée à la classification non-supervisée par
l’apprentissage en profondeur. Dans la première application, nous proposons deux algo-
rithmes basés sur DCA pour combiner t-SNE avec MSSC (Minimum Sum-of-Squares
Clustering) par ces deux approches : � tandem analysis � et joint-clustering. La
deuxième application considère le clustering en utilisant l’auto-encodeur. Nous avons
proposé une extension d’une classe d’algorithmes de joint-clustering pour résoudre le

17

18 Résumé

problème de mise à l’échelle de données (� scaling problem � en anglais), et appliqué
pour un cas spécifique de joint-clustering avec MSSC. Les résultats numériques sur
plusieurs jeux de données benchmark montre l’efficacité de notre algorithme comparé
aux méthodes existantes.

Résumé 19

Abstract

Big Data has become gradually essential and ubiquitous in all aspects nowadays.
Therefore, there is an urge to develop innovative and efficient techniques to deal with
the rapid growth in the volume of data. This dissertation considers the following prob-
lems in Big Data: group variable selection in multi-class logistic regression, dimension
reduction by t-SNE (t-distributed Stochastic Neighbor Embedding), and deep clus-
tering. We develop advanced DCAs (Difference of Convex functions Algorithms) for
these problems, which are based on DC Programming and DCA – the powerful tools
for non-smooth non-convex optimization problems.

Firstly, we consider the problem of group variable selection in multi-class logistic
regression. We tackle this problem by using recently advanced DCAs – Stochastic
DCA and DCA-Like. Specifically, Stochastic DCA specializes in the large sum of
DC functions minimization problem, which only requires a subset of DC functions
at each iteration. DCA-Like relaxes the convexity condition of the second DC com-
ponent while guaranteeing the convergence. Accelerated DCA-Like incorporates the
Nesterov’s acceleration technique into DCA-Like to improve its performance. The nu-
merical experiments in benchmark high-dimensional datasets show the effectiveness of
proposed algorithms in terms of running time and solution quality.

The second part studies the t-SNE problem, an effective non-linear dimensional
reduction technique. Motivated by the novelty of DCA-Like and Accelerated DCA-
Like, we develop two algorithms for the t-SNE problem. The superiority of proposed
algorithms in comparison with existing methods is illustrated through numerical ex-
periments for visualization application.

Finally, the third part considers the problem of deep clustering. In the first appli-
cation, we propose two algorithms based on DCA to combine t-SNE with MSSC (Min-
imum Sum-of-Squares Clustering) by following two approaches: “tandem analysis”
and joint-clustering. The second application considers clustering with auto-encoder
(a well-known type of neural network). We propose an extension to a class of joint-
clustering algorithms to overcome the scaling problem and applied for a specific case
of joint-clustering with MSSC. Numerical experiments on several real-world datasets
show the effectiveness of our methods in rapidity and clustering quality, compared to
the state-of-the-art methods.

Introduction générale

Cadre général et motivations

De nos jours, le Big Data est devenu essentiel et omniprésent dans tous les do-
maines. Dans la nouvelle ère de l’Internet où les données peuvent être facilement
collectées (comme les documents, les textes et les vidéos de l’Internet, les données
sensorielles obtenues à partir de machines), les données obtenues ont souvent de nom-
breuses variables (c’est-à-dire des données de grande dimension) qui posent de nom-
breuses difficultés aux techniques classiques d’apprentissage automatique. L’une des
façons les plus naturelles et les plus populaires de traiter les données de grande di-
mension est d’utiliser des méthodes de réduction dimensionnelle. Dans cette thèse,
nous sommes intéressés par le développement de techniques innovantes et efficaces,
bien adaptées au Big Data en utilisant des techniques de réduction dimensionnelle :
sélection de groupes de variables et réduction non linéaire de la dimension.

La sélection des variables est une approche simple mais efficace, qui a été bien
étudiée dans la littérature. Cependant, les travaux existants montrent qu’il y a un
chevauchement dans les variables sélectionnées. De plus, dans de nombreuses ap-
plications, nous pouvons avoir des connaissances préalables sur des groupes de vari-
ables, il est donc scientifiquement significatif d’incorporer la sélection des variables de
groupe dans les modèles. La sélection de groupes de variables basée sur la norme
zéro-mixte (“mixed-norm”-`q,0 en anglais) est une façon naturelle de modéliser ce
problème. Cependant, cette dernière n’est pas souvent utilisée en raison de la non-
convexité de la `0-norme. Dans ce travail, nous considérons une application de la
`q,0-norme pour les données de grande dimension en apprentissage automatique. La
difficulté mentionnée est surmontée en utilisant une fonction DC pour approximer
la `0-norme, et le problème résultant est aussi un problème d’optimisation DC. Une
autre façon préférée de représenter des données de grande dimension est d’utiliser
des méthodes de réduction non linéaire de la dimension. Cependant, la plupart des
problèmes d’optimisation issus de cette direction sont non convexes. Motivés par le
succès de la programmation DC et DCA pour plusieurs problèmes de réduction non
linéaires de la dimension, tels que la carte auto-organisatrice (“Self-Organizing Map”
en anglais) et le positionnement multidimensionnel (“Multidimensional Scaling” en
anglais), nous choisissons volontairement la programmation DC et DCA comme la
base de méthodologie dans cette thèse.

21

22 Introduction générale

Sur le plan algorithmique, la thèse a proposé une approche unifiée, fondée sur
la nouvelle génération de la programmation DC et DCA. La programmation DC et
DCA (voir [62]) sonts des outils puissants d’optimisation non convexe qui connais-
sent un grand succès, au cours de trois dernières décennies, dans la modélisation et
la résolution de nombreux problèmes d’application dans divers domaines de sciences
appliquées, en particulier en apprentissage automatique et fouille de données (MLDM
– “Machine Learning and Data Mining” en anglais) (voir par example [18, 42, 45,
47, 48, 49, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 71, 84, 85, 86, 87, 125, 111, 50, 52]
et la liste des références dans [4]). Récemment, la croissance rapide du Big Data a
provoqué plusieurs nouveaux challenges d’optimisation, d’où une nouvelle génération
de DCA voit le jour pour leur confronter d’une façon efficace. Cette thèse est dédiée
au développement de nouveaux algorithmes basés sur cette nouvelle génération de
DCA. De nombreuses expérimentations numériques sur différents types de données
dans divers domaines réalisées dans cette thèse ont prouvé l’efficacité, la scalabilité, la
rapidité des algorithmes proposés et leur supériorité par rapport aux méthodes stan-
dards.

La programmation DC et DCA considèrent le problème DC de la forme

α = inf{f(x) = g(x)− h(x) : x ∈ Rn} (Pdc)

òu g et h sont des fonctions convexes définies sur Rn et à valeurs dans R ∪ {+∞},
semi-continues inférieurement et propres. La fonction f est appelée fonction DC avec
les composantes DC g et h, et g−h est une décomposition DC de f . DCA est basé sur
la dualité DC et des conditions d’optimalité locale. La construction de DCA implique
les composantes DC g et h et non la fonction DC f elle-même. Chaque fonction
DC admet une infinité des décompositions DC qui influencent considérablement sur
la qualité (la rapidité, l’efficacité, la globalité de la solution obtenue . . .) de DCA.
Ainsi, au point de vue algorithmique, la recherche d’une “bonne” décomposition DC
et d’un “bon” point initial est très importante dans le développement de DCA pour
la résolution d’un programme DC.

L’utilisation de la programmation DC et DCA dans cette thèse est justifiée par de
multiple arguments [97]:

— La programmation DC et DCA fournissent un cadre très riche pour les
problèmes MLDM: MLDM constituent une mine des programmes DC dont la
résolution appropriée devrait recourir à la programmation DC et DCA. En ef-
fet la liste indicative (non exhaustive) des références dans [4] témoigne de la
vitalité, la puissance et la percée de cette approche dans la communauté de
MLDM.

— DCA est une philosophie plutôt qu’un algorithme. Pour chaque problème, nous
pouvons concevoir une famille d’algorithmes basés sur DCA. La flexibilité de
DCA sur le choix des décomposition DC peut offrir des schémas DCA plus
performants que des méthodes standards.

— L’analyse convexe fournit des outils puissants pour prouver la convergence
de DCA dans un cadre général. Ainsi tous les algorithmes basés sur DCA
bénéficient (au moins) des propriétés de convergence générales du schéma DCA
générique qui ont été démontrées.

Introduction générale 23

— DCA est une méthode efficace, rapide et scalable pour la programmation non
convexe. A notre connaissance, DCA est l’un des rares algorithmes de la pro-
grammation non convexe, non différentiable qui peut résoudre des programmes
DC de très grande dimension.

Il est important de noter qu’avec les techniques de reformulation en programmation
DC et les décompositions DC appropriées, on peut retrouver la plupart des algorithmes
existants en programmation convexe/non convexe comme cas particuliers de DCA. En
particulier, pour la communauté d’apprentissage automatique et fouille de données,
les méthodes très connus comme Expectation–Maximisation (EM) [23], Succesive Lin-
ear Approximation (SLA) [10], ConCave–Convex Procedure (CCCP) [126], Iterative
Shrinkage–Thresholding Algorithms (ISTA) [15] sont des versions spéciales de DCA.

Nos contributions

L’objectif principal de cette thèse est de développer de nouveaux modèles et
méthodes d’apprentissage automatique dans le Big Data, en particulier pour les trois
classes de problèmes suivantes : la sélection de groupes de variables pour la régression
logistique multi-classes, la réduction de dimension par t-SNE, et l’apprentissage en
profondeur pour la classification non-supervisée. Les principales réalisations de cette
thèse seront décrites en détail ci-dessous.

La premier partie concerne le problème de la sélection de groupes de variables en
régression logistique multi-classe. Dans la littérature, la norme `q,0 a été développée
pour formuler le problème de la sélection de groupes de variables. Cependant, le
problème qui en résulte est difficile à cause de la non-convexité du `q,0. Nous étudions
le DCA pour ce problème par deux approches. La première approche considère le
Stochastic DCA. Ce dernier est spécifiquement développé pour le problème “large sum
of DC functions”. L’avantage principal de cette méthode par rapport à la méthode
DCA standard est qu’elle ne nécessite que le calcul du sous-gradient d’un sous-ensemble
de la deuxième composante DC. Dans la deuxième approche, nous avons considéré
DCA-Like et Accelerated DCA-Like. Contrairement à DCA standard, le DCA-Like
relaxe la condition de convexité de la deuxième composante DC tout en assurant
la convergence. DCA-Like accéléré intègre la technique d’accélération de Nesterov
dans DCA-Like pour améliorer sa performance tout en bénéficiant de propriétés de
convergence similaires à celles de DCA-Like. Les expériences numériques sur les jeux
de données de très grande taille (synthétiques et réelles) montrent que nos méthodes
sont efficaces en terms de qualité et de temps de calcul.

La deuxième partie étudie le problème de la réduction dimensionnelle par t-SNE.
Cette dernière est une méthode populaire, en particulier pour la visualisation. Elle a été
utilisée dans de nombreuses applications telles que la bioinformatique, la recherche sur
le cancer, la visualisation de “features” dans les réseaux neuronaux, etc. Cependant, il
s’agit d’un problème difficile d’optimisation non convexe. Nous étudions le DCA pour
ce problème et nous proposons deux algorithmes efficaces basés sur deux DCA avancés
– DCA-like et Accelerated DCA-Like. Nous montrons également que la minimisation
de la majorisation [123], le meilleur algorithme pour t-SNE, n’est rien d’autre que DCA-
Like appliqué au t-SNE. Nous effectuons soigneusement les expériences numériques et

24 Introduction générale

fournissons une comparaison des algorithmes proposés sur plusieurs jeux de données
benchmarks pour l’application de visualisation.

La troisième partie concerne l’apprentissage en profondeur (“Deep Clustering” en
anglais) pour la classification non-supervisée (clustering) pour les données de grande
dimension. Dans la littérature, les problèmes “deep clustering” sont souvent abordés
en utilisant des techniques de réduction dimensionnelle, qui ont donné les meilleurs
résultats dans de nombreuses applications de clustering, en particulier pour les données
complexes de grande dimension comme les images et les documents. Nous considérons
deux directions basées sur deux méthodes de réduction de la dimension – t-SNE et
auto-encodeur. Dans la première direction, le t-SNE est considéré par deux approches :
“tandem analysis” et joint-clustering. Nous avons développé deux algorithmes basés
sur la programmation DC et DCA. Le premier algorithme, appelé MSSC-2S, suit
l’approche de “tandem analysis”, qui utilise t-SNE pour la réduction de la dimen-
sionnalité avant le clustering. Puisque chaque étape du MSSC-2S est effectuée par un
DCA bien adapté aux jeux de données de grande dimension, le MSSC-2S est applica-
ble aux contextes de grande dimension. La deuxième direction considère le problème
de l’optimisation non-convexe pour les tâches de clustering et de réduction de la di-
mension. Nous développons une méthode efficace, MSSC-JDR, par la programmation
DC et DCA. Nous effectuons des expériences extensives pour des jeux de données
de grande dimension et à grande dimension avec plusieurs méthodes récentes pour
démontrer l’efficacité de nos algorithmes. Dans la deuxième direction, nous considérons
l’auto-encodeur sur l’approche de joint-clustering. Nous montrons d’abord qu’il existe
une classe d’algorithmes qui sont affectés par le problème d’échelle dans l’espace la-
tent. Ensuite, nous proposons des extensions en utilisant deux fonctions de distance
d’invariance d’échelle. En tant qu’application, les extensions proposées sont appliquées
au problème de joint-clustering avec MSSC (Minimum Sum-of-Square Clustering). Les
expérimentations numériques sont effectuées sur des ensembles de données de grande
dimension démontrent la qualité des extensions proposées par rapport aux méthodes
existantes.

Organisation de la Thèse

La thèse est composée de cinq chapitres. Le premier chapitre décrit brièvement
les concepts fondamentaux et les principaux résultats de l’analyse convexe, la pro-
grammation DC et DCA, et ses versions avancées, ce qui fournit la base théorique
et algorithmique pour les autres chapitres. Chacun des trois chapitres suivants est
consacré à la présentation d’une classe de problèmes abordée ci-dessus. Le chapitre
2 concerne le problème de la sélection de groupes de variables pour la régression lo-
gistique multi-classe. Ensuite, le chapitre 3 considère au problème du t-SNE. Dans le
chapitre 4, nous abordons les problèmes clustering en d’apprentissage en profondeur.
La conclusion et les perspectives de nos travaux sont données au chapitre 5.

Chapter 1

Methodology

This chapter summarizes some basic concepts and results that will be the ground-
work of the dissertation.

1.1 DC programming and DCA

DC programming and DCA, which constitute the backbone of nonconvex program-
ming and global optimization, were introduced by Pham Dinh Tao in their preliminary
form in 1985 [88]. Important developments and improvements on both theoretical and
computational aspects have been completed since 1994 throughout the joint works of
Le Thi Hoai An and Pham Dinh Tao. The readers are referred to the seminal paper [62]
for the thirty years of developments of DCA.

In this section, we present some basic properties of convex analysis and DC opti-
mization and DC Algorithm that computational methods of this thesis are based on.
The materials of this section are extracted from [44, 85, 60].

1.1.1 Fundamental convex analysis

First, let us recall briefly some notions and results in convex analysis related to
the dissertation (refer to the references [9, 85, 93] for more details). Let denote X the
Euclidean space Rn.

A subset C of X is said to be convex if (1− λ)x+ λy ∈ C whenever x, y ∈ C and
λ ∈ [0, 1].

Let f be a function whose values are in R and whose domain is a subset S of X.
The set

{(x, t) : x ∈ S, t ∈ R, f(x) ≤ t}
is called the epigraph of f and is denoted by epif .

25

-

26 Preliminary

We define f to be a convex function on S if epif is convex set in X × R. This is
equivalent to that S is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S, ∀λ ∈ [0, 1].

The function f is strictly convex if the inequality above holds strictly whenever x and
y are distinct in S and 0 < λ < 1.

The effective domain of a convex function f on S, denoted by domf , is the projec-
tion on X of the epigraph of f

domf = {x ∈ X : ∃t ∈ R, (x, t) ∈ epif} = {x ∈ X : f(x) < +∞}

and obviously, it is convex.

The convex function f is called proper if domf 6= ∅ and f(x) > −∞ for all x ∈ S.

The function f is said to be lower semi-continuous at a point x of S if

f(x) ≤ lim inf
y→x

f(y).

Denote by Γ0(X) the set of all proper lower semi-continuous convex functions on
X.

Let ρ be a nonnegative number and C be a convex subset of X. One says that a
function θ : C → R ∪ {+∞} is ρ–convex if

θ[λx+ (1− λ)y] ≤ λθ(x) + (1− λ)θ(y)− λ(1− λ)

2
ρ‖x− y‖2

for all x, y ∈ C and λ ∈ (0, 1). It amounts to say that θ − (ρ/2)‖ · ‖2 is convex on C.
The modulus of strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is
given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.

One says that θ is strongly convex on C if ρ(θ, C) > 0.

A vector y is said to be a subgradient of a convex function f at a point x0 if

f(x) ≥ f(x0) + 〈x− x0, y〉, ∀x ∈ X.

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is
denoted by ∂f(x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.

For ε > 0, a vector y is said to be an ε–subgradient of a convex function f at a
point x0 if

f(x) ≥ (f(x0)− ε) + 〈x− x0, y〉, ∀x ∈ X.

The set of all ε–subgradients of f at x0 is called the ε–subdifferential of f at x0 and is
denoted by ∂εf(x0).

Preliminary 27

For ε ≥ 0, a point xε is called an ε-solution of the problem inf{f(x) : x ∈ Rd} if

f(xε) ≤ f(x) + ε ∀x ∈ Rd.

Let us describe two basic notations as follows.

dom ∂f = {x ∈ X : ∂f(x) 6= ∅} and range ∂f(x) = ∪{∂f(x) : x ∈ dom ∂f}.

Proposition 1.1. Let f be a proper convex function. Then

1. ∂εf(x) is a closed convex set, for any x ∈ X and ε ≥ 0.

2. ri(domf) ⊂ dom ∂f ⊂ domf
where ri(domf) stands for the relative interior of domf .

3. If f has a unique subgradient at x, then f is differentiable at x, and ∂f(x) =
{∇f(x)}.

4. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f(x0).

Conjugates of convex functions

The conjugate of a function f : X → R is the function f ∗ : X → R, defined by

f ∗(y) = sup
x∈X
{〈x, y〉 − f(x)}.

Proposition 1.2. Let f ∈ Γ0(X). Then we have

1. f ∗ ∈ Γ0(X) and f ∗∗ = f .

2. f(x) + f ∗(y) ≥ 〈x, y〉, for any x, y ∈ X.
Equality holds if and only if y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

3. y ∈ ∂εf(x)⇐⇒ x ∈ ∂εf ∗(y)⇐⇒ f(x) + f ∗(y) ≤ 〈x, y〉+ ε, for all ε > 0.

1.1.2 DC optimization

DC program

In the sequel, we use the convention +∞− (+∞) = +∞.

For g, h ∈ Γ0(X), a standard DC program is of the form

(P) α = inf{f(x) = g(x)− h(x) : x ∈ X}

and its dual counterpart

(D) α∗ = inf{h∗(y)− g∗(y) : y ∈ X}.

There is a perfect symmetry between primal and dual programs (P) and (D): the
dual program to (D) is exactly (P), moreover, α = α∗.

28 Preliminary

Remark 1.1. Let C be a nonempty closed convex set. Then, the constrained problem

inf{f(x) = g(x)− h(x) : x ∈ C}

can be transformed into an unconstrained DC program by using the indicator function
χC, i.e.,

inf{f(x) = φ(x)− h(x) : x ∈ X}

where φ := g + χC belongs to Γ0(X).

We will always keep the following assumption that is deduced from the finiteness
of α

dom g ⊂ domh and domh∗ ⊂ dom g∗. (1.1)

Optimality conditions for DC optimization

A point x∗ is said to be a local minimizer of g − h if x∗ ∈ dom g ∩ domh (so,
(g − h)(x∗) is finite) and there is a neighborhood U of x∗ such that

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U. (1.2)

A point x∗ is said to be a critical point of g−h if it verifies the generalized Kuhn–Tucker
condition

∂g(x∗) ∩ ∂h(x∗) 6= ∅. (1.3)

Let P and D denote the solution sets of problems (P) and (D) respectively, and let

P` = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)}, D` = {y∗ ∈ X : ∂g∗(y∗) ⊂ ∂h∗(y∗)}.

In the following, we present some fundamental results on DC programming [85].

Theorem 1.1. i) Global optimality condition: x ∈ P if and only if

∂εh(x) ⊂ ∂εg(x), ∀ε > 0.

ii) Transportation of global minimizers: ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗.
The first inclusion becomes equality if g∗ is subdifferentiable in D. In this case,
D ⊂ (dom ∂g∗ ∩ dom ∂h∗).

iii) Necessary local optimality: if x∗ is a local minimizer of g − h, then x∗ ∈ P`.
iv) Sufficient local optimality: Let x∗ be a critical point of g−h and y∗ ∈ ∂g(x∗)∩

∂h(x∗). Let U be a neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for
any x ∈ U ∩dom g, there is y ∈ ∂h(x) such that h∗(y)−g∗(y) ≥ h∗(y∗)−g∗(y∗),
then x∗ is a local minimizer of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g.

Preliminary 29

v) Transportation of local minimizers: Let x∗ ∈ dom ∂h be a local minimizer of
g − h. Let y∗ ∈ ∂h(x∗) and a neighborhood U of x∗ such that g(x) − h(x) ≥
g(x∗)− h(x∗), ∀x ∈ U ∩ dom g. If

y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U

then y∗ is a local minimizer of h∗ − g∗.

Remark 1.2. a) By the symmetry of the DC duality, these results have their cor-
responding dual part. For example, if y is a local minimizer of h∗ − g∗, then
y ∈ D`.

b) The properties ii), v) and their dual parts indicate that there is no gap between
the problems (P) and (D). They show that globally/locally solving the primal
problem (P) implies globally/locally solving the dual problem (D) and vice–versa.
Thus, it is useful if one of them is easier to solve than the other.

c) The necessary local optimality condition ∂h∗(x∗) ⊂ ∂g∗(x∗) is also sufficient for
many important classes programs, for example [60], if h is polyhedral convex,
or when f is locally convex at x∗, i.e. there exists a convex neighborhood U of
x∗ such that f is finite and convex on U . We know that a polyhedral convex
function is almost everywhere differentiable, that is to say, it is differentiable
everywhere except on a set of measure zero. Thus, if h is a polyhedral convex
function, then a critical point of g − h is almost always a local solution to (P).

d) If f is actually convex on X, we call (P) a “false” DC program. In addition, if
ri(dom g)∩ ri(domh) 6= ∅ and x0 ∈ dom g such that g is continuous at x0, then
0 ∈ ∂f(x0) ⇔ ∂h(x0) ⊂ ∂g(x0) [60]. Thus, in this case, the local optimality
is also sufficient for the global optimality. Consequently, if in addition h is
differentiable, a critical point is also a global solution.

1.1.3 DC Algorithm (DCA)

The DCA consists in the construction of the two sequences {xk} and {yk} (can-
didates for being primal and dual solutions, respectively) which are easy to calculate
and satisfy the following properties:

i) The sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing.

ii) Their corresponding limits x∞ and y∞ either satisfy the local optimality condi-
tion (x∞, y∞) ∈ P`×D` or are critical points of g−h and h∗− g∗, respectively.

From a given initial point x0 ∈ dom g, the DCA generates these sequences by the
scheme

yk ∈ ∂h(xk) = arg min{h∗(y)− 〈y, xk〉 : y ∈ X}, (1.4a)

xk+1 ∈ ∂g∗(yk) = arg min{g(x)− 〈x, yk〉 : x ∈ X}. (1.4b)

The interpretation of the above scheme is simple. At iteration k of DCA, one
replaces the second component h in the primal DC program by its affine minorant

hk(x) = h(xk) + 〈x− xk, yk〉, (1.5)

30 Preliminary

where yk ∈ ∂h(xk). Then the original DC program is reduced to the convex program

(Pk) αk = inf{fk(x) := g(x)− hk(x) : x ∈ X}

that is equivalent to (1.4b). It is easy to see that fk is a majorant of f which is exact
at xk i.e. fk(x

k) = f(xk). Similarly, by replacing g∗ with its affine minorant

g∗k(y) = g∗(yk−1) + 〈y − yk−1, xk〉 (1.6)

where xk ∈ ∂g∗(yk−1), it leads to the convex program

(Dk) inf{h∗(y)− g∗k(y) : y ∈ X}

whose solution set is ∂h(xk).

Well definiteness of DCA

DCA is well defined if one can construct two sequences {xk} and {yk} as described
above from an arbitrary initial point. The following lemma is the necessary and suffi-
cient condition for this property.

Lemma 1.1 ([85]). The sequences {xk} and {yk} in DCA are well defined if and only
if

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗.

Since for ϕ ∈ Γ0(X) one has ri(domϕ) ⊂ dom ∂ϕ ⊂ domϕ (Proposition 1.1).
Moreover, under the assumptions dom g ⊂ domh, domh∗ ⊂ dom g∗, one can say that
DCA in general is well defined.

Convergence properties of DCA

Complete convergence of DCA is given in the following results [85].

Theorem 1.2. Suppose that the sequences {xk} and {yk} are generated by DCA. Then
we have

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) = g(xk)−h(xk) if and only if {xk, xk+1} ⊂ ∂g∗(yk)∩∂h∗(yk)
and [ρ(h) + ρ(g)]‖xk+1 − xk‖ = 0.

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) if and only if {yk, yk+1} ⊂ ∂g(xk) ∩
∂h(xk) and [ρ(h∗) + ρ(g∗)]‖yk+1 − yk‖ = 0.

DCA terminates at the kth iteration if either of the above equalities holds.

ii) If ρ(h) + ρ(g) > 0 (resp. ρ(h∗) + ρ(g∗) > 0), then the sequence {‖xk+1 − xk‖2}
(resp. {‖yk+1 − yk‖2}) converges.

iii) If the optimal value α is finite and the sequences {xk} and {yk} are bounded,
then every limit point x∞ (resp. y∞) of the sequence {xk} (resp. {yk}) is a
critical point of g − h (resp. h∗ − g∗).

Preliminary 31

iv) DCA has a linear convergence for general DC program.

v) In polyhedral DC programs, the sequences {xk} and {yk} contain finitely many
elements and DCA has a finite convergence.

vi) If DCA converges to a point x∗ that admits a convex neighborhood in which the
objective function f is finite and convex (i.e. the function f is locally convex at
x∗) and if the second DC component h is differentiable at x∗, then x∗ is a local
minimizer to the problem (P).

Remark 1.3. a) Finding yk, xk+1 based on the scheme 1.4 amounts to solving the
problems (Dk) and (Pk). Thus, DCA works by reducing a DC program to a
sequence of convex programs which can be solved efficiently.

b) In practice, the calculation of the subgradient of the function h at a point x is
usually easy if we know its explicit expression. But, the explicit expression of
the conjugate of a given function g is unknown, so calculating xk+1 is done by
solving the convex problem (Pk). For the large-scale setting, the solutions to
the problem (Pk) should be either in an explicit form or achieved by efficient
algorithms with inexpensive computations.

c) DCA’s distinctive feature relies upon the fact that DCA deals with the convex
DC components g and h but not with the DC function f itself. Moreover,
a DC function f has infinitely many DC decompositions which have crucial
implications for the qualities (e.g. convergence speed, robustness, efficiency,
globality of computed solutions) of DCA. For a given DC program, the choice
of optimal DC decompositions is still open. Of course, this depends strongly on
the very specific structure of the problem being considered.

d) Similarly to the effect of DC decompositions on DCA, searching the good initial
points for DCA is also an open question to be studied.

1.2 Stochastic DCA 1

The large sum of DC functions minimization problem takes the form

min
x∈Rd

{
F (x) :=

1

n

n∑
i=1

Fi(x)

}
, (1.7)

where Fi are DC functions, i.e., Fi(x) = gi(x) − hi(x) with gi and hi being lower
semi-continuous proper convex functions, and n is a very large integer number. The
problem of minimizing F under a convex set Ω is also of the type (1.7), as the convex
constraint x ∈ Ω can be incorporated into the objective function F via the indicator
function χΩ on Ω defined by χΩ = 0 if x ∈ Ω, +∞ otherwise.

A natural DC formulation of the problem (1.7) is

min
{
F (x) = G(x)−H(x) : x ∈ Rd

}
, (1.8)

1. The material of this section is from the following work: H.A. Le Thi, H.M. Le, D.N. Phan,
B. Tran. Stochastic DCA for minimizing a large sum of DC functions and its application in Multi-
class Logistic Regression. Submitted & Available on arvXiv [arXiv:1911.03992].

32 Preliminary

where

G(x) =
1

n

n∑
i=1

gi(x) and H(x) =
1

n

n∑
i=1

hi(x).

According to the generic DCA scheme, DCA for solving the problem (1.8) consists
of computing, at each iteration l, a subgradient vl ∈ ∂H(xl) and solving the convex
subproblem of the form

min
{
G(x)− 〈vl, x〉 : x ∈ Rd

}
. (1.9)

As H =
∑n

i=1 hi, the computation of subgradients of H requires the one of all functions
hi. This may be expensive when n is very large. The main idea of SDCA is to update,
at each iteration, the minorant of only some randomly chosen hi while keeping the
minorant of the other hi. Hence, only the computation of such randomly chosen hi is
required.

SDCA for solving the problem (1.8) [54] is described in Algorithm 1.1.

Algorithm 1.1 SDCA for solving the problem (1.7)

Initialization: Choose x0 ∈ Rd, s0 = {1, ..., n}, and l← 0.
Repeat

1. Compute vli ∈ ∂hi(x
l) if i ∈ sl and keep vli = vl−1

i if i /∈ sl, l > 0. Set
vl = 1

n

∑n
i=1 v

l
i.

2. Compute xl+1 by solving the convex problem (1.9).
3. Set l← l + 1 and randomly choose a small subset sl ⊂ {1, ..., n}.

Until Stopping criterion.

Convergence properties of SDCA: The following theorem shows that the conver-
gence properties of SDCA are guaranteed with probability one. The complete proof
proof of Theorem 1.3 is given in [54].

Theorem 1.3. Assume that α∗ = inf F (x) > −∞, and |sl| = b for all l > 0. Let {xl}
be a sequence generated by SDCA. The following statements are hold [54].

a) {F (xl)} is the almost sure convergent sequence.
b) If mini ρ(hi) > 0, then

∑∞
l=1 ‖xl − xl−1‖2 < +∞ and liml→∞ ‖xl − xl−1‖ = 0,

almost surely.
c) If mini ρ(hi) > 0, then every limit point of {xl} is a critical point of F with

probability one.

Preliminary 33

1.3 DCA-Like and Accelerated DCA-Like 1

First, let us considers the sum of a nonconvex differentiable function and composite
functions minimization problem, which takes the form

min
x∈X

{
F (x) := f(x) +

m∑
i=1

hi(gi(xi))

}
, (1.10)

where f : Rn → R is a nonconvex differentiable function with L-Lipschitz continuous
gradient; gi : Rni → R (i = 1 . . . n) are continuous convex functions (possibly nons-
mooth) with

∑m
i=1 ni = n; real functions hi are concave increasing and ∂(−hi)(t) ⊂ R−

if t ≥ gi(xi) and X is a closed convex subset of Rn.

1.3.1 DCA for the problem (1.10)

This section outlines the DCA based algorithm to solve the sum of nonconvex
and composite functions minimization problem (1.10) in [53]. The problem (1.10) is
formulated as follows:

min
(x,z)

{
ϕ(x, z) := χΩ(x, z) + f(x) +

m∑
i=1

hi(zi)

}
, (1.11)

where Ω = {(x, z) : x ∈ X, gi(xi) ≤ zi, i = 1, ...,m} and χΩ is the indicator function
of Ω. Let g(x) be the function defined by g(x) = (g1(x1), ..., gm(xm)). The problems
(1.10) and (1.11) are equivalent in the following sense.

Proposition 1.3. [53] A point x∗ ∈ X is a global (resp. local) solution to the problem
(1.10) if and only if (x∗, g(x∗)) is a global (resp. local) solution to the problem (1.11).

Since the problems (1.10) and (1.11) are equivalent, in the remaining of the sec-
tion 1.3, we consider the problem (1.11) instead of (1.10). Furthermore, the problem
(1.11) can be rewritten as

min
(x,z)
{ϕ(x, z) = Gµ(x, z)−Hµ(x, z)} , (1.12)

where Gµ(x, z) := µ
2
‖x‖2 + χΩ(x, z) and Hµ(x, z) := µ

2
‖x‖2 − f(x)−

∑m
i=1 hi(zi) with

µ > 0. It is easy to see that Gµ(x, z) is convex since Ω is a convex set. On the other
hand, ∇f is Lipschitz continuous with a constant L, hence µ

2
‖x‖2 − f(x) is convex

if µ ≥ L. Consequently, Hµ(x, z) is convex, and (1.11) is a standard DC program
with µ ≥ L. Thus DCA can be investigated to solve the problem (1.11). At each

1. The material of this section is from the following work: H.A. Le Thi, H.M. Le, D.N. Phan,
B. Tran. Novel DCA Based Algorithms for Minimizing the Sum of a Nonconvex Function and
Composite Functions with Applications in Machine learning. Submitted & Available on arvXiv
[arXiv:1806.09620].

34 Preliminary

iteration k, DCA approximates the second DC component Hµ by its affine minorant

H
(xk,zk)
µ (x, z) = Hµ(xk, zk)+〈(x, z)−(xk, zk), (yk, ξk)〉 with (yk, ξk) ∈ ∂Hµ(xk, zk) and

computes (xk+1, zk+1) by solving the following convex problem

min
{
ϕkµ(x, z) := Gµ(x, z)−Hk

µ(x, z)
}
. (1.13)

Note that ϕkµ is a majorant of ϕ. The convex sub-problem (1.13) can be rewritten as
follows

min
(x,z)∈Ω

{
µ

2
‖x‖2 − 〈yk,x〉+

m∑
i=1

(−ξki)zi

}
, (1.14)

where ξki ∈ ∂(−hi)(zki).

Lemma 1.2 [53] shows that an optimal solution of (1.14) can be obtained by solving
a strongly convex problem without the variables z.

Lemma 1.2. [53] If xk+1 is an optimal solution of the following strongly convex
problem

min
x∈X
{µ

2
‖x‖2 − 〈yk,x〉+

m∑
i=1

(−ξki)gi(xi)}, (1.15)

then (xk+1, zk+1), where zk+1 = g(xk+1), is an optimal solution of (1.14).

Finally, DCA for solving (1.11) is described in Algorithm 1.2.

Algorithm 1.2 DCA for solving (1.11)

Initialize:
Choose x0, µ ≥ L, and k ← 0.

repeat
1. Compute ξki ∈ ∂(−hi)(zki) with zki = gi(x

k
i) and yk = µxk −∇f(xk)

2. Compute xk+1 by solving the strongly convex problem (1.15)
3. k ← k + 1.

until Stopping criterion

The convergence properties of Algorithm 1.2 are provided in the Theorem 1.4 [53].
We recall that a point (x∗, z∗) ∈ Rn×Rm is called a critical point of the problem (1.11)
if and only if

[(∇f(x∗), 0m) +NΩ(x∗, z∗)] ∩ [0n × ∂(−h1)(z∗1)× ...× ∂(−hm)(z∗m)] 6= ∅,
where 0d denotes the zero vector in Rd, and NΩ(u∗) is the normal cone of Ω at u∗

defined by
NΩ(u∗) = {v : 〈v,u− u∗〉 ≤ 0,∀u ∈ Ω} .

Theorem 1.4. [53] Let {xk} be the sequence generated by Algorithm 1.2. The fol-
lowing statements hold.

i) The sequence {ϕ(xk, g(xk))} is decreasing.
ii) If α = inf ϕ(x, z) > −∞ then

∑+∞
k=0 ‖xk+1 − xk‖2 < +∞, and therefore

limk→+∞ ‖xk+1 − xk‖ = 0.
iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical

point of (1.11).

Preliminary 35

1.3.2 DCA-Like for solving the problem (1.11)

This section presents DCA-Like for for solving (1.11) [53]. As we have mentioned
above, the goal of DCA-Like is to avoid bad approximations of the objective function
with a too large value of µ (c.f. Algorithm 1.2). The main idea of DCA-Like is to
keep the parameter µ as small as possible while finding a convex approximation of
objecive function. By using a small value of µk, we can get a closer majorant of
the objective function which could lead to a better solution. DCA-Like relaxes the

key requirement of standard DCA that the minorant H
(xk,zk)
µ (x, z) = Hµ(xk, zk) +

〈(x, z) − (xk, zk), (yk, ξk)〉 must be a lower bound of the second component Hµ(x, z)
on the whole space. More precisely, at each iteration k, we only need to find µk such

that H
(xk,zk)
µk (x, z) is a lower bound of Hµk(x, z) at xk+1, zk+1, i.e.,

Hµk(x
k+1, zk+1) ≥ H(xk,g(xk))

µk
(xk+1, zk+1). (1.16)

where (xk+1, zk+1) ∈ arg minϕkµk(x, z).

The DCA-Like algorithm for solving (1.11) is described in Algorithm 1.3.

Algorithm 1.3 DCA-Like for solving (1.11)

Initialize:
Choose x0, η > 1, 0 < δ < 1, µ0 > 0 and k ← 0.

repeat
Compute ξki ∈ ∂(−hi)(zki) with zki = gi(x

k
i) and ∇f(xk);

Set µk = max{µ0, δµk−1} if k > 0;
Compute xk+1 by solving (1.15) with µ = µk and yk = µkx

k −∇f(xk);

while Hµk(x
k+1, g(xk+1)) < H

(xk,g(xk))
µk (xk+1, g(xk+1)) do

µk ← ηµk;
Compute xk+1 by solving (1.15) with µ = µk and yk = µkx

k −∇f(xk);
end while
k ← k + 1.

until Stopping criterion

Convergence properties of DCA-Like: The complete proof is given in [53].

Theorem 1.5. [53] Let {xk} be the sequence generated by DCA-Like (Algorithm 1.3).
The following statements hold.

(i) The sequence {ϕ(xk, g(xk))} is decreasing. More precisely, we have

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ µk
2
‖xk+1 − xk‖2.

(ii) If α = inf ϕ(x, z) > −∞ then
∑+∞

k=0 ‖xk+1 − xk‖2 < +∞, and therefore
limk→+∞ ‖xk+1 − xk‖ = 0.

(iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical
point of (1.11).

36 Preliminary

Theorem 1.6. [53] Suppose that inf ϕ(x, z) > −∞, and hi is differentiable with
locally Lipschitz derivative. Assume further that ϕ has the KL property at any point
(x, z) ∈ dom ∂Lϕ. If {xk} generated by DCA-Like is bounded, then the whole sequence
{xk} converges to x∗, which (x∗, g(x∗)) is a critical point of (1.11). Moreover, if the
function ψ appearing in the KL inequality has the form ψ(s) = cs1−θ with θ ∈ [0, 1)
and c > 0, then the following statements hold:

(i) If θ = 0, then the sequences {xk} and {ϕ(xk, g(xk))} converge in a finite number
of steps to x∗ and ϕ∗, respectively.

(ii) If θ ∈ (0, 1/2], then the sequences {xk} and {ϕ(xk, g(xk))} converge linearly
to x∗ and ϕ∗, respectively.

(iii) If θ ∈ (1/2, 1), then there exist positive constants δ1, δ2, and N0 such that

‖xk − x∗‖ ≤ δ1k
− 1−θ

2θ−1 and ϕ(xk, g(xk))− ϕ∗ ≤ δ2k
− 1

2θ−1 for all k ≥ N0.

1.3.3 Accelerated DCA-Like Algorithm for problem (1.11)

According to the DCA-Like scheme, at each iteration, one computes xk+1 from
xk by solving the convex sub-problem (1.15). The idea of ADCA-Like (Accelerated
DCA-Like) [53], in order to accelerate DCA-Like, is to find a point wk which is better
than xk for the computation of xk+1. In this work, we consider wk as an extrapolated
point of the current iterate xk and the previous iterate xk−1:

wk = xk +
tk − 1

tk+1

(
xk − xk−1

)
,

where tk+1 =
1+
√

1+4t2k
2

. If wk is better than the last iterate xk, i.e., ϕ(wk, g(wk)) ≤
ϕ(xk, g(xk)) then wk will be used instead of xk to compute xk+1. Note that, ADCA-
Like does not require any particular property of the sequence {tk}. ADCA-Like algo-
rithm for solving (1.11) is described in Algorithm 1.4.

In Theorem 1.7, we show that any limit point of the sequence generated by ADCA-
Like is a critical point of (1.11). The complete proof of the convergence is given in
[53].

Theorem 1.7. [53] Let {xk} be the sequence generated by Algorithm 1.4. The fol-
lowing statements hold

(i) The sequence {ϕ(xk, g(xk))} is decreasing. More precisely, we have

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ µk
2
‖xk+1 − vk‖2.

(ii) If α = inf ϕ(x, z) > −∞ then
∑+∞

k=0 ‖xk+1 − vk‖2 < +∞ and therefore
limk→+∞ ‖xk+1 − vk‖ = 0.

(iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical
point of (1.11).

Preliminary 37

Algorithm 1.4 ADCA-Like for solving (1.11)

Initialize:
Choose x0, w0 = x0, η > 1, 0 < δ < 1, µ0 > 0, t0 = (1 +

√
5)/2,

and k ← 0.
repeat

if ϕ(wk, g(wk)) ≤ ϕ(xk, g(xk)) then
set vk = wk.

else
set vk = xk.

end if
2: Compute ξki ∈ ∂(−hi)(zki) with zki = gi(v

k
i) and ∇f(vk);

3: Set µk = max{µ0, δµk−1} if k > 0;
4: Compute xk+1 by solving (1.15) with µ = µk and yk = µkv

k −∇f(vk);

while Hµk(x
k+1, g(xk+1)) < H

(vk,g(vk))
µk (xk+1, g(xk+1)) do

µk ← ηµk;
Update xk+1 by STEP 4.

end while

6: Compute tk+1 =
1+
√

1+4t2k
2

;
7: Compute wk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
;

8: k ← k + 1.
until Stopping criterion

The sufficient descent property (i) of Theorem 1.7 is different from Theorem 1.5
due to the intermediate variable vk. Hence, neither the convergence of the whole
sequence {xk} nor convergence rate for {‖xk − x∗‖} can be achieved. However, we
can still obtain some interesting results for the sequence {ϕ(xk, g(xk))} under the KL
assumption. These properties are presented in the Theorem 1.8.

Theorem 1.8. [53] Suppose that inf ϕ(x, z) > −∞, and hi is differentiable with
locally Lipschitz derivative. Assume further that ϕ has the KL property at any point
(x, z) ∈ dom ∂Lϕ with ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. If {xk} generated
by accelerated DCA-Like is bounded, then the following statements hold.

i) If θ = 0, then the sequence {ϕ(xk, g(xk))} converges in a finite number of steps
to ϕ∗.

ii) If θ ∈ (0, 1/2], then the sequence {ϕ(xk, g(xk))} converges linearly to ϕ∗.
iii) If θ ∈ (1/2, 1), then there exist positive constants δ and N0 such that

ϕ(xk, g(xk))− ϕ∗ ≤ δk−
1

2θ−1 for all k ≥ N0.

Chapter 2

Group Variable Selection in
Multi-class Logistic Regression1

Abstract: In this chapter, we aim at developing efficient methods to solve the group variable
selection in multi-class logistic regression for high-dimensional data. To deal with a large
number of features, we consider feature selection method evolving the `q,0 (q ∈ {1, 2,∞})
regularization. The resulting optimization problem is non-convex, and is tackled by two
approaches based on DC programming and DCA. The first approach based on Stochastic
DCA, exploits the special structure of the problem in data with a large number of samples.
The second approach is based on DCA-Like and its accelerated version Accelerated DCA-
Like. DCA-Like relaxes the convexity condition of the second DC component while ensuring
the convergence. Accelerated DCA-Like in-cooperates the Nesterov’s acceleration technique,
which potentially leads to better solution in comparison to DCA-Like. The efficiency of pro-
posed algorithms are empirically demonstrated on both real-world and synthetic datasets. It
turns out that both approaches reduce the running time significantly with recent algorithms
for the problem of group variable selection in multi-class logistic regression.

1. The material of this chapter is developed from the following works:
[1] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for the large-sum of non-convex func-
tions problem. Application to group variables selection in multiclass logistic regression. International
Conference on Machine Learning ICML, pp. 3394-3403, 2017.
[2] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for Sparse Multiclass Logistic Re-
gression. Advances in Intelligent Systems and Computing, 629, pp. 1-12, 2017.
[3] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Novel DCA Based Algorithms for Minimizing the Sum
of a Nonconvex Function and Composite Functions with Applications in Machine learning. Submitted
& Available on arvXiv [arXiv:1806.09620].
[4] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Stochastic DCA for minimizing a large sum of DC
functions and its application in Multi-class Logistic Regression. Submitted & Available on arvXiv
[arXiv:1911.03992].

39

40 Group Variable Selection in Multi-class Logistic Regression

2.1 Introduction

In machine learning, supervised learning consists in building a predictor function,
based on a labeled training data, which can identify the label of new instances with
the highest possible accuracy. Logistic regression, introduced by D. Cox in 1958 [19],
is undoubtedly one of the most popular supervised learning methods. Logistic regres-
sion can be seen as an extension of linear regression where the dependent variable is
categorical. Instead of estimating the outcome by a continuous value like linear regres-
sion, logistic regression tries to predict the probability that an instance belongs to a
category. Logistic regression has been successfully applied in various real-life problems
such as cancer detection [39], medical [8, 6, 103], social science [40], etc. Especially,
logistic regression combined with feature selection has been proved to be suitable for
high dimensional problems, for instance, document classification [27] and microarray
classification [70, 39].

In this chapter, we deal with the multi-class logistic regression problem where the
dependent variable has more than two outcome categories. We aim at developing an
efficient method for solving the multi-class logistic regression problem to deal with
data that has not only a large number of features but also a large number of instances.

The multi-class logistic regression problem can be described as follows. Let
{(xi, yi) : i = 1, ..., n} be a training set with observation vectors xi ∈ Rd and la-
bels yi ∈ {1, ..., Q} where Q is the number of classes. Let W be the d × Q matrix
whose columns are W:,1, ...,W:,Q and b = (b1, ..., bQ) ∈ RQ. The couple (W:,i, bi) forms
the hyperplane fi := W T

:,ix+ bi that separates the class i from the other classes.

In the multi-class logistic regression problem, the conditional probability p(Y =
y|X = x) that an instance x belongs to a class y is defined as

p(Y = y|X = x) =
exp(by +W T

:,yx)
Q∑
k=1

exp(bk +W T
:,kx)

. (2.1)

We aim to find (W, b) for which the total probability of the training observations xi
belonging to its correct classes yi is maximized. A natural way to estimate (W, b) is to
minimize the negative log-likelihood function which is defined by

L(W, b) :=
1

n

n∑
i=1

`(xi, yi,W, b), (2.2)

where `(xi, yi,W, b) = − log p(Y = yi|X = xi).

In many applications such as information retrial, face recognition, microarray anal-
ysis, etc., datasets contain a very large number of features. In such datasets, we often
encounter the problem of redundant features (information already presented by other
features) and irrelevant features (features that do not contain useful information). Fea-
ture selection methods that try to select only useful features for the considered task,

Group Variable Selection in Multi-class Logistic Regression 41

is a popular and efficient way to deal with this problem. A natural way to deal with
feature selection problem is to formulate it as a minimization of the `0-norm (or ‖.‖0)
where the `0-norm of x ∈ Rd is defined by the number of non-zero components of x,
namely, ‖x‖0 = |i = 1, . . . , n : xi 6= 0|. It is well-known that the problem of minimiz-
ing `0-norm is NP-hard [3] due to the discontinuity of `0-norm. The minimization
of `0-norm has been extensively studied on both theoretical and practical aspects for
individual variable selection in many practical problems. An extensive overview of
existing approaches for the minimization of `0-norm can be found in [63].

In our problem, as mentioned above, the class i (i = 1, . . . , Q) is separated from
the other classes by the hyperplane fi = W T

:,ix+ bi. If the weight Wj,i is equal to zero
then we can say that the feature j (j = 1, . . . , d) is not necessary to separate class i
from the other classes. Hence, the feature j is to be removed if and only if it is not
necessary for any separator fi (i = 1, . . . , Q), i.e. all components in the row j of W
are zero. Therefore, it is reasonable to consider rows of W as groups. Denote by Wj,:

the j-th row of the matrix W . The `q,0-norm of W , i.e., the number of non-zero rows
of W , is defined by

‖W‖q,0 = |{j ∈ {1, ..., d} : ‖Wj,:‖q 6= 0}|.

Hence, the `q,0 regularized multi-class logistic regression problem is formulated as fol-
lows

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ‖W‖q,0

}
. (2.3)

Our contributions

In this chapter, we investigate DC programming and DCA and propose two ap-
proaches for solving the problem (2.3). As mentioned above, the regularization term
`q,0 makes the problem (2.3) non-smooth non-convex. Hence, we first reformulated the
problem as a DC program, which DCA-based algorithms will be developed to solve it.
We exploit the special structure of the problem to propose an efficient DC decompo-
sition for which the corresponding DCA scheme is very inexpensive: it only requires
the projection of points onto balls that is explicitly computed. Next, we considers two
approaches based on advanced DC algorithms to efficiently solve it.

The first approach is suitable for large-scale setting, as it can exploit the advantage
of the sum structure of (2.3). The proposed alogrithm, SDCA, is a Stochastic DCA
for the multi-class logistic regression with group variable selection. SDCA requires only
a small subset of components `(xi, yi,W, b) at each iteration instead of using all n
components for the calculation of W and b. We perform an empirical comparison of
SDCA with standard methods on very large synthetic and real-world datasets, and show
that SDCA is efficient in group variable selection ability and classification accuracy as
well as running time.

In the second approach, we considered another advanced DC algorithms (DCA-
Like and Accelerated DCA-Like) for the problem (2.3). In standard DCA, the second

42 Group Variable Selection in Multi-class Logistic Regression

DC component H must convex. DCA-Like relaxes this condition by using the DCA-
Like condition (1.16), which leads to a closer majorant of the objective function and
potentially better solution. In addition, Accelerated DCA-Like – a variance of DCA-
Like with Nesterov’s acceleration techniques – potentially reduces the running time and
having better solution in compare with DCA-Like. Hence, the proposed algorithms
could potentially reduces the running time and having better solution in compare with
standard DCA. We conduct numerical experiment to compare proposed methods with
DCA and standard methods on synthetic and real-world datasets, which demonstrates
the efficiency of proposed algorithms in both terms of solution quality and running
time.

The rest of the chapter is organized as follows. Section 2.2 presents the standard
DCA for solving the problem (2.3). Next, section 2.3 shows the stochastic DCA applied
for the reformulation of the problem (2.3), including numerical experiments on large-
scale datasets. Section 2.4 applies DCA-Like and ADCA-like for the reformulation
of the problem (2.3), with numerical experiments. Finally, section 2.6 concludes this
chapter.

2.2 Standard DCA for the group variable selection

in multi-class logistic regression

An approximation of problem (2.3): In this application, we use a non-convex
approximation of the `q,0-norm (q ∈ {1, 2,∞}) based on the following two penalty
functions ηα(s):

Exponential: ηexp
α (s) = 1− exp(−αs),

Capped-`1: ηcap-`1
α (s) = min{1, αs}.

These penalty functions have shown to be efficient in several problems, for instance,
individual variables selection in SVM [11, 46], sparse optimal scoring problem [65],
sparse covariance matrix estimation problem [90]. The corresponding approximate
problem of (2.3) takes the form:

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ

d∑
j=1

ηα(‖Wj,:‖q)

}
. (2.4)

Since ηα is increasing on [0,+∞), the problem (2.4) can be equivalently reformulated
as follows

min
(W,b,t)

{
1

n

n∑
i=1

[
`(xi, yi,W, b) + χΩ(W, b, t) + λ

d∑
j=1

ηα(tj)

]}
, (2.5)

where Ω = {(W, b, t) ∈ Rd×Q × RQ × Rd : ‖Wj,:‖q ≤ tj, j = 1, ..., d}.

A DC formulation for problem (2.5): In the sequel, we consider problem (2.5).
Since `(xi, yi,W, b) is differentiable with L-Lipschitz continuous gradient and ηα is

Group Variable Selection in Multi-class Logistic Regression 43

concave, the problem (2.5) takes the form of (1.11) where f(W, b) =
∑n

i=1 `(xi, yi,W, b)
and hj(tj) = ληα(tj)

DCA scheme for problem (2.5): According to DCA scheme (1.2), applying DCA
to problem (2.5) consists of computing, at each iteration l, (U l, vl, zl) ∈ ∂H(W l, bl, tl)
where H(W, b, t) =

∑n
i=1 hi(W, b, t), and solving the convex sub-problem

min
(W,b,t)

{ρ
2
‖(W, b)‖2 + χΩ(W, b, t)− 〈U l,W 〉 − 〈vl, b〉 − 〈zl, t〉

}
. (2.6)

The computation of (U l, vl, zl) is explicitly defined as follows.

(U l, vl, zl) =
1

n

n∑
i=1

(U l
i , v

l
i, z

l
i), (U l

i , v
l
i, z

l
i) ∈ ∂hi(W l, bl, tl).

More precisely

(U l
i):,k = ρW l

:,k −
(
plk(xi)− δkyi

)
xi, k = 1, ...Q,

(vli)k = ρblk −
(
plk(xi)− δkyi

)
, k = 1, ...Q,

(zli)j =

{
−λα exp(−αtlj), j = 1, . . . , d, if ηα = ηexp

α

−λα if tlj ≤ 1, and 0 otherwise, j = 1, . . . , d, if ηα = ηcap−`1
α

(2.7)

with plk(xi) = exp(blk + (W l
:,k)

Txi)/(
∑Q

h=1 b
l
h + (W l

:,h)
Txi)), δkyi = 1 if k = yi and 0

otherwise.

The convex sub-problem (2.6) can be solved as follows (note that zlj ≤ 0 for j =
1, ..., d)

W l+1 = arg min
W

{
ρ

2
‖W‖2 +

d∑
j=1

(−zlj)‖Wj,:‖q − 〈U l,W 〉

}
, (2.8)

bl+1 = arg min
b

{ρ
2
‖b‖2 − 〈vl, b〉

}
=

1

ρ
vl, (2.9)

tl+1
j = ‖W l+1

j,: ‖q, j = 1, ..., d. (2.10)

Since the problem (2.8) is separable in rows of W , solving it amounts to solving d
independent sub-problems

W l+1
j,: = arg min

Wj,:

{ρ
2
‖Wj,:‖2 + (−zlj)‖Wj,:‖q − 〈U l

j,:,Wj,:〉
}
.

Moreover, W l+1
j,: is computed via the following proximal operator

W l+1
j,: = prox(−zlj)/ρ‖·‖q

(
U l
j,:/ρ

)
,

where the proximal operator proxf (ν) is defined by

proxf (ν) = arg min
t

{
1

2
‖t− ν‖2 + f(t)

}
.

The proximal operator of (−zlj)/ρ‖·‖q can be efficiently computed [83]. Computation of
prox(−zlj)/ρ‖.‖q

(ν/ρ) is detailed in Appendix A.1, and is summarized in Table 2.1. DCA

based algorithms for solving (2.5) with q ∈ {1, 2,∞} are described in Algorithm 2.1.

44 Group Variable Selection in Multi-class Logistic Regression

Table 2.1 – Computation of W l+1
j,: = prox(−zlj)/ρ‖.‖q

(
U l
j,:/ρ

)
corresponding to q ∈

{1, 2,∞}.

q prox(−zlj)/ρ‖.‖q
(
U l
j,:/ρ

)
1

(
|U l

j,:|/ρ− (−zlj)/ρ
)

+
◦ sign(U l

j,:)

2

(

1− −zlj
‖U lj,:‖2

)
U l
j,:/ρ if ‖U l

j,:‖2 > −zlj
0 if ‖U l

j,:‖2 ≤ −zlj.

∞

U l
j,:/ρ−

(
1
−zlj
|U l

j,:| − δ
)

+
◦ sign(U l

j,:) if ‖U l
j,:‖1 > −zlj

0 if ‖U l
j,:‖1 ≤ −zlj,

where δ satisfies
∑Q

k=1

(
1
−zlj
|U l

j,k| − δ
)

+
= 1.

Algorithm 2.1 DCA-`q,0: DCA for solving (2.5) with q ∈ {1, 2,∞}
Initialization: Choose (W 0, b0) ∈ Rd×Q × RQ, ρ > L and l← 0.
Repeat

1. Compute (U l, vl, zl) = 1
n

∑n
i=1(U l

i , v
l
i, z

l
i), where (U l

i , v
l
i, z

l
i), i = 1, ..., n are

computed by defined in (2.7).
2. Compute (W l+1, bl+1, tl+1) according to Table 2.1, (2.9) and (2.10), respec-

tively.
3. l← l + 1.

Until Stopping criterion.

2.3 SDCA for the group variable selection in multi-

class logistic regression

Rewrite problem (2.5) into the form of (1.7): Since `(xi, yi,W, b) is differen-
tiable with L-Lipschitz continuous gradient and ηα is concave, the problem (2.5) takes
the form of (1.7) where the function Fi(W, b, t) is given by

Fi(W, b, t) := gi(W, b, t)− hi(W, b, t)

where

gi(W, b, t) =
ρ

2
‖(W, b)‖2 + χΩ(W, b, t),

hi(W, b, t) =
ρ

2
‖(W, b)‖2 − `(xi, yi,W, b)− λ

d∑
j=1

ηα(tj),

with ρ > L.

Group Variable Selection in Multi-class Logistic Regression 45

SDCA scheme for problem (2.5): Following SDCA in section 1.2, at each
iteration l, we have to compute (U l

i , v
l
i, z

l
i) ∈ ∂hi(W

l, bl, tl) for i ∈ sl and keep
(U l

i , v
l
i, z

l
i) = (U l−1

i , vl−1
i , zl−1

i) for i /∈ sl, where sl is a randomly chosen subset of
the indexes, and solve the convex sub-problem taking the form of (2.6). This is the
main speed-up of SDCA in comparison with DCA. In standard DCA in section 2.7,
the most expensive operation is the computing the subgradient (U l, vl) =

∑n
i (Ui, vi),

which is linearly scale with n. In contrast, SDCA only uses a subset sl to compute
(U l, vl) =

∑
i∈sl (Ui, vi), which significantly reduces the computing time of this bottle-

neck. It is clear that each iteration of SDCA is much faster than DCA, hence SDCA
is potentially faster than DCA.

SDCA for solving (2.5) is described in Algorithm 2.2.

Algorithm 2.2 SDCA-`q,0: SDCA for solving (2.5) with q ∈ {1, 2,∞}
Initialize:

Choose (W 0, b0) ∈ Rd×Q × RQ, t0j = ‖W 0
j,:‖q, ρ > L, s0 = {1, ..., n}

and l← 0.
repeat

1. Compute (U l
i , v

l
i, z

l
i) by (2.7) if i ∈ sl and keep (U l

i , v
l
i, z

l
i) = (U l−1

i , vl−1
i , zl−1

i)
if i /∈ sl. Set (U l, vl, zl) = 1

n

∑n
i=1(U l

i , v
l
i, z

l
i).

2. Compute (W l+1, bl+1, tl+1) according to Table 2.1, (2.9) and (2.10), respec-
tively.

3. l← l + 1 and randomly choose a small subset sl ⊂ {1, ..., n}.
until Stopping criterion.

2.3.1 Numerical experiment

2.3.1.1 Datasets

To evaluate the performances of algorithms, we performed numerical experiments
on two types of data: real datasets (covertype, madelon, miniboone, protein, sensit and
sensorless) and simulated datasets (sim 1, sim 2 and sim 3). All real-world datasets
are taken from the well-known UCI and LibSVM data repositories. We give below a
brief description of real datasets:

— covertype belongs to the Forest Cover Type Prediction from strictly cartographic
variables challenge 2. It is a very large dataset containing 581, 012 points de-
scribed by 54 variables.

— madelon is one of five datasets used in the NIPS 2003 feature selection chal-
lenge 3. The dataset contains 2600 points, each point is represented by 500
variables. Among 500 variables, there are only 5 informative variables and 15
redundant variables (which are created by linear combinations of 5 informative

2. https://archive.ics.uci.edu/ml/datasets/Covertype

3. https://archive.ics.uci.edu/ml/datasets/Madelon

46 Group Variable Selection in Multi-class Logistic Regression

variables). The 480 others variables were added and have no predictive power.
Notice that madelon is a highly non-linear dataset.

— miniboone is taken form the MiniBooNE experiment to observe neutrino oscil-
lations 4, containing 130, 065 data points.

— protein 5 is a dataset for classifying protein second structure state (α, β, and
coil) of each residue in amino acid sequences, including 24, 387 data points.

— sensit 5 dataset obtained from distributed sensor network for vehicle classifi-
cation. It consists of 98, 528 data points categorized into 3 classes: Assault
Amphibian Vehicle (AAV), Dragon Wagon (DW) and noise.

— sensorless measures electric current drive signals from different operating con-
ditions, which is classified into 11 different classes 6. It is a huge dataset, which
contains 58, 509 data points, described by 48 variables.

We generate three synthetic datasets (sim 1, sim 2 and sim 3) by the same process
proposed in [115]. In the first dataset (sim 1), variables are independent and have
different means in each class. In dataset (sim 2), variables also have different means
in each class, but they are dependent. The last synthetic dataset (sim 3) has different
one-dimensional means in each class with independent variables. Detail produces to
generate three simulated datasets are described as follows:

— For sim 1 : we generate a four-classes classification problem. Each class is
assumed to have a multivariate normal distribution N (µk, I), k = 1, 2, 3, 4 with
dimension of d = 50. The first 10 components of µ1 are 0.5, µ2j = 0.5 if
11 ≤ j ≤ 20, µ3j = 0.5 if 21 ≤ j ≤ 30, µ4j = 0.5 if 31 ≤ j ≤ 40 and 0 otherwise.
We generate 100, 000 instances with equal probabilities.

— For sim 2 : this synthetic dataset contains three classes of multivariate normal
distributions N (µk,Σ), k = 1, 2, 3, each of dimension d = 50. The components
of µ1 = 0, µ2j = 0.4 and µ3j = 0.8 if j ≤ 40 and 0 otherwise. The covariance
matrix Σ is the block diagonal matrix with five blocks of dimension 10 × 10
whose element (j, j′) is 0.6|j−j

′|. We generate 150, 000 instances.
— For sim 3 : this synthetic dataset consists of four classes. For class k = 1, 2, 3, 4,

i ∈ Ck then Xij ∼ N (0, 1) for j > 100, and Xij ∼ N (k−1
3
, 1) otherwise, where

N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. We
generate 62, 500 data points for each class.

The number of points, variables and classes of each dataset are summarized in the
first column of Table 2.2.

2.3.1.2 Comparative algorithms

To the best of our knowledge, there is no existing method in the literature for solving
the group variable selection in multi-class logistic regression using `q,0 regularization.
However, closely connected to the Lasso (`1-norm), [109] proposed to use the convex

4. https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification

5. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

6. https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis

Group Variable Selection in Multi-class Logistic Regression 47

regularization `2,1 instead of `2,0. Thus, the resulting problem takes the form

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ‖W‖2,1

}
. (2.11)

A coordinate gradient descent method, named msgl, was proposed in [109] to solve
the problem (2.11). msgl is a comparative algorithm in our experiment.

On another hand, we are interested in a comparison between our algorithms and
a stochastic based method. A stochastic gradient descent algorithm to solve (2.11),
named SPGD-`2,1, is developed for this purpose. SPGD-`2,1 is described as follows.

Algorithm 2.3 SPGD-`2,1: Stochastic Proximal Gradient Descent for solving (2.11)

Initialization: Choose (W 0, b0) ∈ Rd×Q × RQ, and l← 0.
Repeat

1. Randomly choose a small subset sl ⊂ {1, ..., n}. Set αl = n
10l

. Compute
Ū l

:,k = W l
:,k −

αl
|sl|
∑

i∈sl

(
plk(xi)− δkyi

)
xi, k = 1, ...Q.

2. Compute (W l+1, bl+1) by

W l+1
j,: =

(
‖Ū l

j,:‖2 − αlλ
)

+

Ū l
j,:

‖Ū l
j,:‖2

, j = 1, ..., d

bl+1
k = blk −

αl
|sl|
∑
i∈sl

(
plk(xi)− δkyi

)
, k = 1, ..., Q.

(2.12)

3. l← l + 1.
Until Stopping criterion.

2.3.1.3 Experiment setting

We randomly split each dataset into a training set and a test set. The training set
contains 80% of the total number of points and the remaining 20% are used as test
set.

In order to evaluate the performance of algorithms, we consider the following three
criteria: the classification accuracy (percentage of well classified point on test set), the
sparsity of obtained solution and the running time (measured in seconds). The sparsity
is computed as the percentage of selected variables. Note that a variable j ∈ {1, . . . , d}
is considered to be removed if all components of the row j of W are smaller than a
threshold, i.e., |Wj,i| ≤ 10−8,∀i ∈ 1, . . . , Q. We perform each algorithm 10 times and
report the mean and standard deviation of each criterion.

We use the early-stopping condition for SDCA and SPGD-`2,1. Early-stopping is
a well-know technique in machine learning, especially in stochastic learning which
permits to avoid the over-fitting in learning. More precisely, after each epoch, we
compute the classification accuracy on a validation set which contains 20% randomly

48 Group Variable Selection in Multi-class Logistic Regression

chosen data points of training set. We stop SDCA and SPGD-`2,1 if the classification
accuracy is not improved after npatience = 5 epochs. The batch size of stochastic
algorithms (SDCA and SPGD-`2,1) is set to 10%. DCA is stopped if the difference between
two consecutive objective functions is smaller than a threshold εstop = 10−6. For msgl,
we use its default stopping parameters as in [109]. We also stop algorithms if they
exceed 2 hours of running time in the training process.

The parameter α for controlling the tightness of zero-norm approximation is chosen
in the set {0.5, 1, 2, 5}. We use the solution-path procedure for the trade-off parameter
λ. Let λ1 > λ2 > ... > λl be a decreasing sequence of λ. At step k, we solve the
problem (2.3) with λ = λk from the initial point chosen as the solution of the previous
step k − 1. Starting with a large value of λ, we privilege the sparsity of solution (i.e.
selecting very few variables) over the classification ability. Then by decreasing the value
λ decreases, we select more variables in order to increase the classification accuracy.
In our experiments, the sequence of λ is set to {104, 3× 103, 103, . . . , 3× 10−3, 10−3}.

All experiments are performed on a PC Intel (R) Xeon (R) E5-2630 v2 @2.60 GHz
with 32GB RAM.

2.3.1.4 Experiment 1

In this experiments, we study the effectiveness of SDCA. For this purpose, we
choose the `2,0 regularization, and perform a comparison between SDCA-`2,0-exp and
DCA-`2,0-exp. Furthermore, we will compare SDCA-`2,0-exp with msgl and SPGD-`2,1,
two algorithms for solving the multi-class logistic regression using `2,1 regularization
(c.f Section 2.3.1.2).

The comparative results between are reported in Table 2.2 and Figure 2.1. Note
that the running time is plotted in logarithmic scale.

Comparison between SDCA-`2,0 and DCA-`2,0-exp

In term of classification accuracy, SDCA-`2,0-exp produces fairly similar result com-
paring with DCA-`2,0-exp. DCA-`2,0-exp is better than SDCA-`2,0-exp on 4 datasets
(covertype, sensit, sensorless and sim 3) while SDCA-`1,0-exp gives better results on 2
datasets (madelon and protein). The two biggest gaps (3.49% and 1.17%) occur on
dataset sensorless and sensit respectively.

As for the sparsity of solution, DCA-`2,0-exp and SDCA-`2,0-exp provide the same
results on 4 datasets (miniboon, sim 1, sim 2 and sim 3). DCA-`2,0-exp suppresses
more variables than SDCA-`2,0-exp on 3 datasets (protein, sensit and sensorless),
while SDCA-`2,0-exp gives better sparsity on covertype and madelon. The gain of
DCA-`2,0-exp on this criterion is quite high, up to 22.3% on dataset protein.

Concerning the running time, SDCA-`2,0-exp clearly outperforms DCA-`2,0-exp. Ex-
cept for miniboone where DCA-`2,0-exp is 1.11 second faster, the gain of SDCA-`2,0-exp

is huge. SDCA-`2,0-exp is up to 19.58 times faster than DCA-`2,0-exp (dataset cover-

Group Variable Selection in Multi-class Logistic Regression 49

60 65 70 75 80 85 90 95 100

Accuracy (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype SDCA-ℓ2,0
SPGD-ℓ2,1
DCA-ℓ2,0
msgl

0 10 20 30 40 50 60 70 80 90 100

Sparsity (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

SDCA-ℓ2,0
SPGD-ℓ2,1
DCA-ℓ2,0
msgl

10-1 100 101 102 103 104

Time (sec)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype SDCA-ℓ2,0
SPGD-ℓ2,1
DCA-ℓ2,0
msgl

Figure 2.1 – Comparative results between SDCA-`2,0-exp, DCA-`2,0-exp, SPGD-`2,1

and msgl (running time is plotted on a logarithmic scale).

type).

Overall, SDCA-`2,0-exp is able to achieve equivalent classification accuracy with a

...
I: : 1

1 1 1 1 1 1 1 1

~

~ --c=J
c=J

1 1 1 1

50 Group Variable Selection in Multi-class Logistic Regression

running time much smaller than DCA-`2,0-exp.

Comparison between SDCA-`2,0-exp and msgl.

SDCA-`2,0-exp provides better classification accuracy on 6 out of 9 datasets with
a gain up to 1.85%. For the 3 remaining datasets, the gain of msgl in accuracy is
smaller than 0.3%. As for the sparsity of solution, the two algorithms are comparable.
SDCA-`2,0-exp is by far faster than msgl on all datasets, from 3.2 times to 470 time
faster.

Comparison between SDCA-`2,0-exp and SPGD-`2,1.

In term of classification accuracy, SDCA is better on 6 datasets with a gain up
to 4.65%, whereas SPGD only gives better result on sensit. Moreover, the number
of selected variables by SPGD-`2,1 is considerably higher. SPGD-`2,1 chooses from 2%
to 51.39% more variables than SDCA in 6 over 9 cases (covertype, miniboone, protein,
sensorless, sim 1, and sim 2), and > 27% more in 3 over 9 cases (covertype, protein
and sensorless). As for the running time, SDCA-`2,0-exp is up to 15.68 times faster than
SPGD-`2,1. Overall, SDCA-`2,0-exp clearly outperforms SPGD-`2,1 on all three criteria.

In conclusion, as expected, SDCA-`2,0-exp reduces considerably the running time of
DCA-`2,0 while achieving equivalent classification accuracy. Moreover, SDCA-`2,0-exp

outperforms the two related algorithms msgl and SPGD-`2,1.

2.3.1.5 Experiment 2

This experiment studies the effectiveness of different non-convex regularizations
`q,0. We compare three algorithms SDCA-`1,0-exp, SDCA-`2,0-exp and SDCA-`∞,0-exp.
The results are reported in Table 2.2 and plotted in Figure 2.2.

In term of classification accuracy, SDCA-`1,0-exp and SDCA-`2,0-exp are compara-
ble and are slightly better than SDCA-`∞,0-exp. SDCA-`1,0-exp produces similar results
with SDCA-`2,0-exp on 6 out of 9 datasets, where the gap is lower than 0.3% in classi-
fication accuracy. For protein, sensorless and sensit, SDCA-`∞,0-exp provides slightly
better classification accuracy than SDCA-`1,0-exp and SDCA-`2,0-exp. This is due to
the fact that SDCA-`∞,0-exp selects much more variables than the two others.

As for the sparsity of solution, SDCA-`2,0-exp is the best on 8 out of 9 datasets (ex-
cept for protein). SDCA-`1,0-exp selects moderately more variables than SDCA-`2,0-exp,
from 5.67% to 17.19%. In contrast to SDCA-`2,0-exp, SDCA-`∞,0-exp suppresses less
variables than SDCA-`1,0-exp and SDCA-`2,0-exp on all datasets, except covertype. Es-
pecially, on dataset sensorless, SDCA-`∞,0-exp selects 60.42% (resp. 43.23%) more
variables than SDCA-`2,0-exp (resp. SDCA-`1,0-exp).

In term of running time, SDCA-`1,0-exp is the fastest and SDCA-`2,0-exp is the
slowest among the three algorithms. SDCA-`1,0-exp is up to 3.4 time faster than
SDCA-`2,0-exp and 2.06 times faster than SDCA-`∞,0-exp.

Group Variable Selection in Multi-class Logistic Regression 51

Overall, SDCA-`1,0-exp and SDCA-`2,0-exp provide comparable results and realize
a better trade-off between classification and sparsity of solution than SDCA-`∞,0-exp.

2.3.1.6 Experiment 3

This experiment studies the effect of different types of sparsity approxima-
tions (capped-`1 and exponential approximation). We compare two algorithms:
SDCA-`2,0-exp and SDCA-`2,0-cap`1. The results are reported in Figure 2.3 and Ta-
ble 2.2.

For sensit, madelon, sim 1, sim 2 dataset, both algorithms have similar perfor-
mance in all three criteria. The differences in terms of accuracy are negligible (< 0.1%),
while the gaps of sparsity and running time are mostly the same.

For sim 3 and miniboone dataset, both algorithms choose the same number of
features. However, SDCA-`2,0-cap`1 is faster than SDCA-`2,0-exp (by 41% and 67% re-
spectively), while SDCA-`2,0-exp gives better (or similar) result in terms of classification
accuracy.

For covertype, sensorless and protein dataset, SDCA-`2,0-exp provides better results
than SDCA-`2,0-cap`1. SDCA-`2,0-exp furnishes results with higher classification accu-
racy in 2 out of 3 cases (covertype and sensorless) while having lower lower sparsity
in 2 out of 3 cases (protein and sensorless). In terms of running time, SDCA-`2,0-exp

is faster than SDCA-`2,0-cap`1 by at least 1.5 times.

Overall, SDCA-`2,0-exp clearly shows better results SDCA-`2,0-cap`1 in three criteria.

Table 2.2 – Comparative results on both synthetic and real datasets.
Bold values correspond to best results for each dataset. n, d and Q is the number of
instances, the number of variables and the number of classes respectively.

Dataset Algorithm
Accuracy (%) Time (s) Sparsity (%)

Mean STD Mean STD Mean STD

covertype SDCA-`2,0-exp 71.62 0.05 4.74 0.07 61.11 3.21
n = 581, 012 SDCA-`1,0-exp 71.34 0.07 10.27 1.25 69.91 1.77
d = 54 SDCA-`∞,0-exp 69.92 0.38 11.93 0.88 60.49 1.51
Q = 7 SDCA-`2,0-cap`1 70.40 0.03 7.47 5.69 57.41 1.85

SDCA-`1,0-cap`1 68.60 0.29 8.98 2.03 25.93 0.00
SDCA-`∞,0-cap`1 70.16 0.03 14.80 3.63 56.79 3.85
DCA-`2,0-exp 72.15 0.08 92.73 0.51 64.81 1.51
DCA-`1,0-exp 72.28 0.07 57.93 2.87 73.61 0.93
DCA-`∞,0-exp 69.39 0.10 57.22 5.36 42.13 0.93
DCA-`2,0-cap`1 70.40 0.03 61.15 3.34 57.41 1.85
DCA-`1,0-cap`1 69.41 0.39 37.20 1.23 69.14 1.07
DCA-`∞,0-cap`1 72.09 0.13 19.99 0.10 49.38 5.35
SPGD-`2,1 66.97 0.51 60.59 7.09 100.00 0.00

52 Group Variable Selection in Multi-class Logistic Regression

msgl 71.22 0.02 525.49 1.10 68.52 0.00

madelon SDCA-`2,0-exp 62.12 1.00 0.16 0.02 0.40 0.12
n = 2, 600 SDCA-`1,0-exp 61.92 0.80 0.14 0.03 0.65 0.10
d = 500 SDCA-`∞,0-exp 61.68 1.05 0.16 0.01 0.70 1.47
Q = 2 SDCA-`2,0-cap`1 62.18 1.35 0.15 0.09 0.40 0.00

SDCA-`1,0-cap`1 61.73 1.26 0.16 0.02 1.53 0.12
SDCA-`∞,0-cap`1 61.99 1.06 0.16 0.31 10.60 0.20
DCA-`2,0-exp 61.54 0.79 0.29 0.27 0.85 0.19
DCA-`1,0-exp 61.83 1.12 0.32 0.02 0.55 0.10
DCA-`∞,0-exp 61.88 1.03 2.17 0.01 4.65 0.25
DCA-`2,0-cap`1 61.28 2.23 0.21 0.00 0.93 0.12
DCA-`1,0-cap`1 61.54 1.57 0.41 0.00 1.07 0.31
DCA-`∞,0-cap`1 60.58 1.07 0.35 0.01 2.73 0.23
SPGD-`2,1 61.79 0.80 1.07 0.03 1.00 0.20
msgl 60.48 2.37 23.92 0.12 0.67 0.00

miniboone SDCA-`2,0-exp 83.84 0.08 3.60 0.04 6.00 0.00
n = 130, 065 SDCA-`1,0-exp 83.90 0.10 1.57 0.06 8.00 0.00
d = 50 SDCA-`∞,0-exp 83.10 0.22 1.62 0.04 8.00 0.00
Q = 2 SDCA-`2,0-cap`1 83.31 0.15 1.18 0.01 6.00 0.00

SDCA-`1,0-cap`1 82.50 0.06 2.96 0.19 8.00 0.00
SDCA-`∞,0-cap`1 83.77 0.10 4.22 0.28 16.00 4.00
DCA-`2,0-exp 83.93 0.12 2.49 0.31 6.00 0.00
DCA-`1,0-exp 84.19 0.15 9.42 0.09 8.00 0.00
DCA-`∞,0-exp 81.54 0.12 9.81 3.45 8.00 0.00
DCA-`2,0-cap`1 83.74 0.07 7.04 0.01 6.00 0.00
DCA-`1,0-cap`1 83.11 0.05 7.54 0.00 4.00 0.00
DCA-`∞,0-cap`1 82.81 0.09 7.14 0.00 15.33 1.15
SPGD-`2,1 83.86 0.13 8.77 0.41 11.00 1.15
msgl 81.99 0.21 121.17 4.30 10.00 0.00

protein SDCA-`2,0-exp 67.84 1.11 1.28 0.06 64.89 1.95
n = 24, 387 SDCA-`1,0-exp 67.23 0.90 1.47 0.02 63.67 2.39
d = 357 SDCA-`∞,0-exp 68.13 0.57 1.36 0.06 92.79 0.86
Q = 3 SDCA-`2,0-cap`1 66.41 1.12 1.13 0.12 22.64 0.47

SDCA-`1,0-cap`1 67.25 1.24 1.33 0.14 65.73 1.09
SDCA-`∞,0-cap`1 68.19 1.06 1.13 0.10 77.47 0.42
DCA-`2,0-exp 67.23 0.75 2.59 0.02 42.56 1.66
DCA-`1,0-exp 66.19 0.96 3.77 0.41 33.36 1.87
DCA-`∞,0-exp 66.93 0.75 13.53 2.12 54.21 0.61
DCA-`2,0-cap`1 67.04 0.72 3.35 0.00 50.47 1.27
DCA-`1,0-cap`1 67.89 0.60 3.43 0.00 79.68 0.58
DCA-`∞,0-cap`1 66.90 0.84 3.66 1.04 58.43 1.46
SPGD-`2,1 66.59 1.82 11.73 2.80 92.70 2.50
msgl 67.34 0.48 5.59 0.36 47.15 1.32

Group Variable Selection in Multi-class Logistic Regression 53

sensit SDCA-`2,0-exp 78.67 0.11 3.48 0.21 28.33 8.50
n = 98, 528 SDCA-`1,0-exp 79.64 0.22 3.11 0.96 34.00 17.35
d = 100 SDCA-`∞,0-exp 79.73 0.28 1.61 0.07 53.67 6.81
Q = 3 SDCA-`2,0-cap`1 78.59 0.08 2.94 0.17 33.80 5.31

SDCA-`1,0-cap`1 79.71 0.23 2.94 2.12 100.00 0.00
SDCA-`∞,0-cap`1 78.83 0.24 2.91 0.20 35.00 2.74
DCA-`2,0-exp 79.84 0.11 27.97 0.80 19.25 0.50
DCA-`1,0-exp 79.65 0.21 18.31 4.90 17.50 0.58
DCA-`∞,0-exp 79.16 0.17 42.91 5.24 91.50 2.38
DCA-`2,0-cap`1 78.92 0.15 26.36 2.22 56.67 1.53
DCA-`1,0-cap`1 78.91 0.38 27.05 2.80 57.33 0.58
DCA-`∞,0-cap`1 79.20 0.17 35.78 2.69 91.67 7.23
SPGD-`2,1 79.52 0.27 22.44 2.41 27.00 1.00
msgl 79.02 0.13 11.16 0.53 23.00 0.00

sensorless SDCA-`2,0-exp 86.52 0.78 1.47 0.16 37.50 5.10
n = 58, 509 SDCA-`1,0-exp 87.33 0.27 1.40 0.09 54.69 10.67
d = 48 SDCA-`∞,0-exp 86.91 0.19 1.41 0.38 97.92 2.08
Q = 11 SDCA-`2,0-cap`1 84.77 0.08 2.45 0.13 68.06 1.20

SDCA-`1,0-cap`1 82.89 0.30 2.69 0.62 72.92 2.08
SDCA-`∞,0-cap`1 87.12 0.72 1.36 0.09 25.69 1.20
DCA-`2,0-exp 90.00 0.31 15.96 0.65 32.81 1.04
DCA-`1,0-exp 89.11 0.18 16.28 0.97 31.25 0.00
DCA-`∞,0-exp 90.76 0.14 18.99 0.81 100.00 0.00
DCA-`2,0-cap`1 89.60 1.15 24.75 1.39 53.47 1.20
DCA-`1,0-cap`1 88.87 1.04 16.28 0.44 47.92 0.80
DCA-`∞,0-cap`1 81.06 3.9 14.99 3.22 41.67 0.70
SPGD-`2,1 86.07 1.39 8.16 1.05 88.89 2.41
msgl 85.06 0.31 199.00 41.75 50.00 0.00

sim 1 SDCA-`2,0-exp 72.22 0.46 0.46 0.02 80.00 0.00
n = 100, 000 SDCA-`1,0-exp 72.24 0.43 0.46 0.03 80.00 0.00
d = 50 SDCA-`∞,0-exp 72.24 0.47 0.56 0.06 80.00 0.00
Q = 4 SDCA-`2,0-cap`1 72.24 0.52 0.50 0.04 80.00 0.00

SDCA-`1,0-cap`1 72.24 0.58 0.42 0.06 80.00 0.00
SDCA-`∞,0-cap`1 72.21 0.58 0.51 0.07 80.00 0.00
DCA-`2,0-exp 72.22 0.40 2.34 0.05 80.00 0.00
DCA-`1,0-exp 72.25 0.38 0.26 0.01 80.00 0.00
DCA-`∞,0-exp 72.22 0.40 9.79 0.10 80.00 0.00
DCA-`2,0-cap`1 72.25 0.52 0.32 0.00 80.00 0.00
DCA-`1,0-cap`1 72.24 0.52 0.30 0.00 80.00 0.00
DCA-`∞,0-cap`1 72.24 0.51 3.00 0.00 80.00 0.00
SPGD-`2,1 71.48 0.81 7.16 0.91 83.50 2.52
msgl 72.33 0.18 214.83 25.40 82.00 0.00

54 Group Variable Selection in Multi-class Logistic Regression

sim 2 SDCA-`2,0-exp 68.53 0.29 0.79 0.00 80.00 0.00
n = 150, 000 SDCA-`1,0-exp 68.48 0.34 0.73 0.16 80.00 0.00
d = 50 SDCA-`∞,0-exp 68.71 0.23 0.97 0.12 80.00 0.00
Q = 3 SDCA-`2,0-cap`1 68.50 0.29 1.02 0.14 80.00 0.00

SDCA-`1,0-cap`1 67.42 0.40 0.71 0.23 80.00 0.00
SDCA-`∞,0-cap`1 68.38 0.28 1.40 0.18 80.00 0.00
DCA-`2,0-exp 68.55 0.22 1.14 0.26 80.00 0.00
DCA-`1,0-exp 68.31 0.23 13.51 1.93 80.00 0.00
DCA-`∞,0-exp 68.71 0.18 2.75 2.80 80.00 0.00
DCA-`2,0-cap`1 67.70 0.31 4.29 0.03 80.00 0.00
DCA-`1,0-cap`1 68.43 0.24 0.93 0.16 80.00 0.00
DCA-`∞,0-cap`1 67.49 0.35 0.69 0.10 80.00 0.00
SPGD-`2,1 67.62 0.48 7.77 0.28 82.00 0.00
msgl 68.42 0.03 367.29 53.52 82.00 0.00

sim 3 SDCA-`2,0-exp 99.69 0.04 36.61 1.48 80.00 0.00
n = 250, 000 SDCA-`1,0-exp 99.93 0.01 10.74 0.42 80.00 0.00
d = 500 SDCA-`∞,0-exp 99.56 0.07 22.11 3.43 80.73 0.64
Q = 4 SDCA-`2,0-cap`1 99.69 0.01 21.45 0.93 80.00 0.00

SDCA-`1,0-cap`1 99.00 0.01 23.10 0.12 80.00 0.00
SDCA-`∞,0-cap`1 99.67 0.01 21.05 1.06 80.00 0.00
DCA-`2,0-exp 99.88 0.02 249.74 10.73 80.00 0.00
DCA-`1,0-exp 99.88 0.02 202.67 33.27 80.00 0.00
DCA-`∞,0-exp 97.74 2.05 431.13 26.47 80.00 0.00
DCA-`2,0-cap`1 99.92 0.01 178.89 7.83 80.00 0.00
DCA-`1,0-cap`1 99.87 0.01 270.69 17.64 80.00 0.00
DCA-`∞,0-cap`1 99.85 0.03 24.40 4.29 80.40 0.40
SPGD-`2,1 99.70 0.12 212.71 21.79 80.00 0.00
msgl 99.93 0.01 1581.44 14.76 80.20 0.00

Group Variable Selection in Multi-class Logistic Regression 55

60 65 70 75 80 85 90 95 100

Accuracy (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

0 10 20 30 40 50 60 70 80 90 100

Sparsity (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

10-1 100 101 102

Time (sec)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

Figure 2.2 – Comparative results between SDCA-`1,0-exp, SDCA-`2,0-exp and
SDCA-`∞,0-exp (running time is plotted on a logarithmic scale).

- SDCA-€2,0-exp
- SDCA-€1,0-exp
c==J SDCA-€00,0-exp

1

- SDCA-€2,0-exp

i - SDCA-€1,0-exp
c==J SDCA-t'oo,o-exp

r--

1 1

- SDCA-l 2,o-exp

~ - SDCA-€1,0-exp
c==J SDCA-loo,o-exp

'

56 Group Variable Selection in Multi-class Logistic Regression

60 65 70 75 80 85 90 95 100

Accuracy (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

0 10 20 30 40 50 60 70 80

Sparsity (%)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

10-1 100 101 102

Time (sec)

sim_3

sim_2

sim_1

sensorless

sensit

protein

miniboone

madelon

covertype

Figure 2.3 – Comparative results between SDCA-`2,0-exp and SDCA-`2,0-cap`1 (run-
ning time is plotted on a logarithmic scale).

- SDCA-C,,o-exp
- SDCA-C2,0-capf1

- SDCA-f,,o-exp
- SDCA-f2,0-capf1

- SDCA-f2,o-exp
- SDCA-f2,o-capf1

Group Variable Selection in Multi-class Logistic Regression 57

2.4 DCA-Like and ADCA-Like for the group vari-

able selection in multi-class logistic regression

Standard DCA scheme (Algorithm 2.1) requires computing a parameter µ. In
practice, it is often estimate by estimating µ ≥ L – the Lipschitz constant of L, which
leads to bad approximations of the objective function since µ is usually quite large.
DCA-Like applied to the problem (2.3) eliminates the needs to compute µ while keeping
µ small, which leads to closer majorant of the objective function and potentially to a
better solution.

DCA-Like scheme for problem (2.4): Applying DCA-Like to (2.4), we observe
that the while loop in DCA-Like (Algorithm 1.3) stops if the following inequality holds

ULR
µk

((W, b)k+1, (W, b)k) ≥ F ((W, b)k+1), (2.13)

where

ULR
µk

((W, b)k+1, (W, b)k) = F ((W, b)k) + 〈∇f((W, b)k), (W, b)k+1 − (W, b)k〉
+µk

2
‖(W, b)k+1 − (W, b)k‖2 − 〈ok, g(W k+1)− g(W k)〉.

Thus, DCA-Like for solving problem (2.4) is presented in Algorithm 2.4.

Algorithm 2.4 DCA-Like: DCA-Like for solving (2.4)

Initialize:
Choose (W 0, b0) ∈ Rd×Q × RQ, µ0 > 0 and k ← 0.

repeat
Compute (U, v, o)k by (2.7).
Set µk = max{µ0, δµk−1} if k > 0.
Compute (W, b, z)k+1 according to Table 2.1, (2.9) and (2.10), respectively.
while ULR

µk
((W, b, z)k+1, (W, b, z)k) < F ((W, b, z)k+1) do

µk ← ηµk.
Compute (W, b, z)k+1 according to Table 2.1, (2.9) and (2.10), respectively.

end while
k ← k + 1.

until Stopping criterion

ADCA-Like scheme for problem (2.4): According to ADCA-Like scheme in
Alogrithm (1.4), ADCA-Like for solving (2.4) is obtained by adding the acceleration
step of Algorithm 1.4 to Algorithm 1.2. The alogrithm is described in 2.5.

2.4.1 Numerical experiment

2.4.1.1 Experiment setting

To evaluate the performances of algorithms, we performed numerical experiments
on several benchmark datasets taken from UCI and LIBSVM data repositories. The

58 Group Variable Selection in Multi-class Logistic Regression

Algorithm 2.5 ADCA-Like: ADCA-Like for solving (2.4)

Initialize:
Choose (W 0, b0) ∈ Rd×Q × RQ, ω0 = W 0, β0 = b0,
η > 1, 0 < δ < 1, µ0 > 0 and k ← 0.

repeat
if F (ωk, βk) ≤ F (W k, bk) then

set wk = ωk and bk = βk

else
set wk = W k and bk = bk

end if
Compute (Uk, vk) = µ(wk,bk)− 1

n

∑n
i=1∇`(xi, yi,wk,bk)

Compute okj ∈ ∂
(
−λ
∑d

j=1 ηα(‖wk
j,:‖2)

)
for j = 1, . . . , d (similar to (2.7)).

Set µk = max{µ0, δµk−1} if k > 0.
Compute (W, b, z)k+1 according to Table 2.1, (2.9) and (2.10), respectively.
while ULR

µk
((W, b, z)k+1, (W, b, z)k) < F ((W, b, z)k+1) do

µk ← ηµk.
Compute (W, b, z)k+1 according to Table 2.1, (2.9) and (2.10), respectively.

end while

Compute tk+1 =
1+
√

1+4t2k
2

.
Compute (ω, β)k+1 = (W, b)k+1 + tk−1

tk+1

(
(W, b)k+1 − (W, b)k

)
.

k ← k + 1.
until Stopping criterion

detailed information of used datasets is summarized in the first column of Table 2.3.
n represents the number of points in dataset, d is the number of features, and Q is the
number of classes. We randomly take 80% of the whole dataset as a training set and
the rest is used as test set (20%).

The comparisons are performed between 6 algorithms: DCA, DCA-Like, ADCA,
ADCA-Like, nm-APG (non-monotone APG) [69] and DC-PN (DC Proximal Newton) [91].
Recall that nm-APG is an accelerated proximal gradient based method for minimizing
f(x) + r(x) where f(x) is a differentiable function with L-Lipschitz gradient and r(x)
is a nonconvex function. nm-APG requires to compute the proximal mapping of the DC
function ηα. However, this proximal mapping does not have a closed form. We there-
fore use DCA to compute the proximal mapping of ηα in nm-APG. ADCA is Accelerated
DCA for solving problem (2.4), which is described in Algorithm 2.6.

For DCA and ADCA, the Lipschitz constant L is estimated by an upper bound of
Hessian matrix of logistic loss function which clearly too large. Hence, similarly as in
the first application, we incorporate a µ-updating procedure into DCA and ADCA. We
set the initial value of µ to µ0 = 10−1.

The parameter α for controlling the tightness of zero-norm approximation capped-
`1 is set to 5. All the algorithms are terminated if the change of two consecutive
objective function values is less than 10−5. We also stop the algorithms after either

Group Variable Selection in Multi-class Logistic Regression 59

Algorithm 2.6 ADCA: Accelerated DCA for solving (2.4)

Initialize:
Choose (W 0, b0) ∈ Rd×Q × RQ, ω0 = W 0, β0 = b0,
η > 1, 0 < δ < 1, µ0 > L and k ← 0.

repeat
if F (ωk, βk) ≤ F (W k, bk) then

set wk = ωk and bk = βk

else
set wk = W k and bk = bk

end if
Compute (Uk, vk) = µ(wk,bk)− 1

n

∑n
i=1∇`(xi, yi,wk,bk)

Compute okj ∈ ∂
(
−λ
∑d

j=1 ηα(‖wk
j,:‖2)

)
for j = 1, . . . , d (similar to (2.7)).

Compute (W, b, z)k+1 according to Table 2.1, (2.9) and (2.10), respectively.

Compute tk+1 =
1+
√

1+4t2k
2

.
Compute (ω, β)k+1 = (W, b)k+1 + tk−1

tk+1

(
(W, b)k+1 − (W, b)k

)
.

k ← k + 1.
until Stopping criterion

one hour of running time or 10, 000 iterations.

In order to evaluate the performance of algorithms, we consider the following cri-
teria: the classification accuracy (percentage of well-classified point on test set), the
sparsity of obtained solution (percentage of selected features), the running time (mea-
sured in seconds) and the number of iterations. The numerical results are reported
in Table 2.3. In Figure 2.4, we plot the curves of objective function values versus the
running time.

2.4.1.2 Comments on numerical results

Comparison between DCA and DCA-Like. Concerning the running time,
DCA-Like is clearly faster than DCA, with the gains from 1.6 to 8.8 times. In term
of classification accuracy and sparsity, DCA-Like is slightly better than DCA. In 4 cases
(satimage, mushroom, shuttle and sensorless), DCA-Like achieves better classification
accuracy (up to 1%) whereas choosing the same number of features. In the remaining
2 cases, the difference between them are neglectable.

Comparison between ADCA and ADCA-Like. In terms of classification accuracy,
ADCA-Like is slightly better than DCA-Like. In five over six datasets (except mushroom
dataset), ADCA-Like shows the superior over DCA-Like in both classification accuracy
and sparsity: ADCA-Like yields higher classification accuracy while choosing a smaller
subset of features.

Comparison between our algorithms and existing methods (nm-APG
and DC-PN). In term of classification accuracy, ADCA-Like produces the best re-

60 Group Variable Selection in Multi-class Logistic Regression

sults in all six datasets. As for the sparsity of solution, ADCA-Like also furnishes
good results: the best result on four datasets and the second-best result on the other
two datasets. It is worth to mention that in two datasets (sensorless and shuttle),
while most algorithms choose the same percentage of features, ADCA-Like has the
highest classification accuracy. We also observe that DC-PN often chooses the biggest
subset of features while giving lower classification accuracy. In term of computing
time, DCA-Like and ADCA-Like are arguably faster than the other algorithms, whereas
nm-APG is the slowest. Overall, both ADCA-Like and ADCA achieve better results than
nm-APG and DC-PN.

0 0.02 0.04 0.06 0.08

Time (seconds)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(a) dna

0 1 2 3 4 5 6

Time (seconds)

0.6

0.8

1

1.2

1.4

1.6

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(b) satimage

0 0.01 0.02 0.03 0.04

Time (seconds)

0

0.05

0.1

0.15

0.2

0.25

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(c) mushroom

0 0.005 0.01 0.015 0.02 0.025 0.03

Time (seconds)

0.05

0.1

0.15

0.2

0.25

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(d) phishing

0 0.02 0.04 0.06

Time (seconds)

0.1

0.2

0.3

0.4

0.5

0.6

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(e) shuttle

0 1 2 3

Time (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
bj

ec
tiv

e
(lo

g-
sc

al
e)
DCA
ADCA
DCA-Like
ADCA-Like
nmAPG
DC-PN

(f) sensorless

Figure 2.4 – Objective value versus running time (average of ten runs)

2.5 Comparison between proposed algorithms

This section focuses on evaluating the performance of three proposed algorithms
(SDCA, DCA-Like and ADCA-Like) for high-dimensional datasets.

Datasets: We performed numerical experiments on two types of data: real
datasets (CLL SUB 111, Carcinom, lung, ORL, BASEHOCK, protein and miniboone)
and simulated datasets (sim 1 and sim 3). All real-world datasets are taken from
the well-known UCI, LibSVM and Feature Selection Datasets 7 data repositories. Two
simulated datasets (sim 1 and sim 3) are generated from the same procedures in sec-
tion 2.3.1.1.

Experiment setting Unless stated, this experiment’s settings are the same as in
section 2.3.1. We employ grid search for λ ∈ {104, 3× 103, 103, . . . , 3× 10−3, 10−3}.

7. http://featureselection.asu.edu/datasets.php

[]

Group Variable Selection in Multi-class Logistic Regression 61

All experiments are performed on a PC Intel (R) i5-6300HQ CPU @2.30 GHz (4
CPUs) with 8GB RAM.

The numerical experiment is reported in Table 2.4. We notice that:
— The classification accuracy of DCA-Like and ADCA-Like are similar (< 0.1%

in 8 over 9 cases); and both are slightly higher than SDCA by up to 0.5% (in
protein and sim 1). Overall, the differences are neglectable.

— Similarly, in terms of sparsity, DCA-Like and ADCA-Like often choose the least
number of variables, and is much smaller than SDCA. The gap between DCA-Like

(reps. ADCA-Like) and SDCA is up to 9%, which is equivalent to 2 to 6 times
bigger subset of features in some datasets (CLL SUB 111, ORL and miniboone).

— In terms of running time, it is clear that SDCA is faster than DCA, especially
for large dataset. Except the three smallest datasets (CLL SUB 111, Carcinom
and lung) where DCA-Like (reps. ADCA-Like) is faster than SDCA; SDCA is
faster. The reduction in running time is from 1.3 to 8 times; especially in the
two biggest datasets where SDCA is faster than the second fastest ones by 4 and
8 times respectively.

In conclusion, ADCA-Like is faster than DCA-Like, while having similar classifica-
tion accuracy and sparsity. SDCA is much faster than ADCA-Like (reps. DCA-Like)
while having similar accuracy; however ADCA-Like selects more compact subset of
variables than SDCA.

2.6 Conclusion

We have rigorously studied the DC programming and DCA for the problem of
group variables selection in multi-class logistic regression. Using the `q,0 regularization,
the resulting optimization problem is non-convex. The `q,0-norm is approximated by
piecewise exponential function and capped-`1 function. We have developed DCA-based
algorithms to solve it by two approaches based on recent advanced DC algorithms.

The first approach developed an algorithm for multi-class logistic regression based
on Stochastic DCA. The proposed algorithm, SDCA, is very inexpensive and suitable
for large-scale datasets. SDCA exploits the special structure of the problem: not only
all computation of SDCA are explicit, but SDCA also only requires a small subset of data
at each iteration for computing the subgradient of the second DC component, which
significantly reduces the running time. Numerical results showed that the proposed
algorithm reduces the running time of DCA (standard DCA for this problem) by more
than 19 times while achieving equivalent classification accuracy. Moreover, SDCA out-
performs the two related algorithms (msgl and SPGD-`2,1): it reduces the running time
by more than 15 times while giving more accurate result. We are convinced that SDCA
is fast and scalable method for the problem of group variable selection in multi-class
logistic regression.

In the second approach, we developed two algorithms for the multi-class logistic
regression with group variables selection, DCA-Like and ADCA-Like. DCA-Like elimi-

62 Group Variable Selection in Multi-class Logistic Regression

nates the needs to compute µ, and iterative updating µ while keeping µ small, hence
it potentially reduces the running time with better solution in compare with standard
DCA. ADCA-Like improves DCA-Like by in-cooperating Nesterov’s acceleration. Both
algorithms are efficient, all computation are explicit. DCA-Like and ADCA-Like im-
proves the running time of DCA (by up to 8 times and 18.6 times respectively) while
having equivalent classification accuracy and sparsity. In addition, both of them de-
liver better results than the two related algorithms (nm-APG and DC-PN) in both term of
classification accuracy and running time. We can undoubtedly conclude that DCA-Like
and ADCA-Like improves DCA in this application.

In comparison between two proposed approaches, SDCA is more suitable for large
datasets as it is faster while achieving similar classification accuracy. In contrasts,
ADCA-Like and DCA-Like is more suitable if we prefer a more compact subset of
variables. And ADCA-Like is better than DCA-Like while achieving the similar clas-
sification accuracy and sparsity. Hence, the choice for one method is depend on the
compactness of the solution and the size of the dataset. For small dataset, the suit-
able choice is clearly ADCA-Like; whereas the choice for large dataset is based on the
trade-off between the compactness of the solution versus training time.

Group Variable Selection in Multi-class Logistic Regression 63

Table 2.3 – Comparative results on group variable selection for multi-class logistic
regression. Bold values correspond to best results for each dataset. NA means that the
algorithm fails to furnish a result. n, d and Q are the number of instances, dimensions
and classes respectively. Unit of time is second.

Dataset Algorithm
Accuracy (%) Time (sec.) Sparsity (%)

Mean STD Mean STD Mean STD

dna DCA 93.41 0.54 3.95 0.19 8.89 0.56
n = 3186 ADCA 93.30 0.18 0.60 0.02 8.89 0.56
d = 180 DCA-Like 93.20 0.74 0.98 0.13 7.78 0.96
Q = 3 ADCA-Like 93.88 0.83 0.92 0.05 7.78 2.00

nm-APG 93.30 0.65 3.30 0.05 8.52 0.32
DC-PN 93.56 0.16 1.20 0.13 29.07 2.51

satimage DCA 84.25 0.20 4.02 1.15 44.44 2.78
n = 6435 ADCA 83.61 0.95 2.90 2.58 62.04 25.66
d = 36 DCA-Like 84.51 0.25 0.46 0.05 44.44 2.78
Q = 6 ADCA-Like 84.67 0.43 0.28 0.03 49.07 1.60

nm-APG 81.84 0.70 1.98 0.05 100.00 0.00
DC-PN 78.63 0.88 4.24 0.26 47.22 16.90

mushroom DCA 98.44 0.30 5.71 0.08 4.50 0.00
n = 8124 ADCA 98.24 0.30 0.48 0.03 6.31 3.12
d = 112 DCA-Like 99.41 0.22 0.25 0.02 4.50 0.00
Q = 2 ADCA-Like 99.41 0.22 0.20 0.09 3.60 0.00

nm-APG 98.44 0.30 12.07 0.47 4.50 0.00
DC-PN 97.81 0.66 0.17 0.04 27.93 1.80

phishing DCA 92.52 0.18 2.60 0.08 33.82 2.55
n = 11055 ADCA 92.64 0.07 0.38 0.01 28.92 0.85
d = 68 DCA-Like 92.36 0.32 0.19 0.01 27.94 1.47
Q = 2 ADCA-Like 92.66 0.15 0.14 0.01 27.45 0.85

nm-APG 92.40 0.32 6.95 0.18 28.43 1.70
DC-PN 92.66 0.11 0.38 0.03 61.76 5.30

shuttle DCA 95.97 0.11 16.50 5.13 59.26 6.42
n = 58000 ADCA 96.11 0.26 15.93 4.43 59.26 6.42
d = 9 DCA-Like 96.06 0.05 1.81 0.20 59.26 6.42
Q = 7 ADCA-Like 96.13 0.08 1.43 0.21 59.26 6.42

nm-APG 96.06 0.05 21.27 0.30 66.67 0.00
DC-PN 92.56 0.61 3.04 0.73 92.59 6.42

sensorless DCA 78.55 0.45 58.76 0.15 12.50 0.00
n = 58509 ADCA 79.03 0.44 12.47 0.27 12.50 0.00
d = 54 DCA-Like 79.51 0.41 55.10 1.32 12.50 0.00
Q = 11 ADCA-Like 79.56 0.36 36.02 0.79 12.50 0.00

nm-APG 78.72 0.41 46.53 0.86 12.50 0.00
DC-PN 77.64 1.20 8.43 1.11 78.47 12.73

64 Group Variable Selection in Multi-class Logistic Regression

Table 2.4 – Comparative results on group variable selection for multi-class logistic
regression. Bold values correspond to best results for each dataset. NA means that the
algorithm fails to furnish a result. n, d and Q are the number of instances, dimensions
and classes respectively. Unit of time is second.

Dataset Algorithm
Accuracy (%) Time (sec.) Sparsity (%)

Mean STD Mean STD Mean STD

CLL SUB 111 DCA-Like 78.79 6.94 0.75 0.03 0.32 0.18
n× d = 111× 11340 ADCA-Like 78.79 6.94 0.63 0.06 0.18 0.04
Q = 3 SDCA 78.79 5.25 5.25 1.64 1.95 1.09

Carcinom DCA-Like 89.52 8.25 3.06 0.05 0.41 0.01
n× d = 174× 9182 ADCA-Like 90.48 6.60 1.81 0.11 0.41 0.01
Q = 11 SDCA 90.48 6.60 4.16 2.74 0.66 0.25

lung DCA-Like 91.06 3.73 0.71 0.01 0.47 0.02
n× d = 203× 3312 ADCA-Like 91.06 3.73 0.42 0.08 0.50 0.02
Q = 5 SDCA 91.06 3.73 0.86 0.10 0.57 0.11

ORL DCA-Like 94.58 5.05 10.76 0.56 6.02 0.31
n× d = 400× 1024 ADCA-Like 94.58 2.89 7.43 0.76 7.71 0.34
Q = 40 SDCA 94.58 5.05 3.04 1.38 16.76 6.69

BASEHOCK DCA-Like 94.65 1.26 5.72 2.53 4.24 0.87
n× d = 1993× 4862 ADCA-Like 94.65 1.38 5.47 1.51 2.28 0.69
Q = 2 SDCA 94.74 0.25 3.54 0.28 2.73 0.16

protein DCA-Like 68.26 0.50 2.92 0.43 77.90 2.03
n× d = 24387× 357 ADCA-Like 68.29 0.51 4.16 0.90 78.00 2.13
Q = 3 SDCA 67.94 0.62 1.17 0.35 80.43 0.58

sim 1 DCA-Like 72.22 0.50 0.66 0.00 80.00 0.00
n× d = 100000× 50 ADCA-Like 72.22 0.50 0.63 0.02 80.00 0.00
Q = 4 SDCA 72.18 0.57 0.49 0.06 80.00 0.00

miniboone DCA-Like 83.78 0.07 4.82 0.42 6.00 0.00
n× d = 130064× 50 ADCA-Like 83.78 0.07 3.68 0.60 6.00 0.00
Q = 2 SDCA 84.25 0.34 0.92 0.23 11.33 1.15

sim 3 DCA-Like 99.93 0.01 358.40 7.38 80.00 0.00
n× d = 250000× 500 ADCA-Like 99.93 0.01 159.95 16.26 80.00 0.00
Q = 4 SDCA 99.93 0.02 17.86 3.28 80.00 0.00

Chapter 3

t-distributed Stochastic Neighbor
Embedding 1

Abstract: t-distributed Stochastic Neighbor Embedding (t-SNE) is a popular method for dimen-
sional reduction and data visualization, especially for high-dimensional data. In this chapter,
we developed two alogrithms based on advanced DCAs – DCA-Like and ADCA-Like – for the
t-SNE problem. DCA-Like relaxes the convexity condition of the second DC component while
ensuring the convergence; whereas ADCA-Like in-cooperates the Nesterov’s acceleration tech-
nique into DCA-Like, which potentially leads to better solution in comparison to DCA-Like.
It turns out that Majorization Minimization, the best state-of-the-art algorithm for t-SNE,
is DCA-Like applied for t-SNE. Numerical experiments on several benchmark datasets for
visualizing high-dimensional data illustrate the efficiency of our algorithms.

1. The material of this chapter is developed from the following work:
[1] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran. Novel DCA Based Algorithms for Minimizing the Sum
of a Nonconvex Function and Composite Functions with Applications in Machine learning. Submitted
& Available on arvXiv [arXiv:1806.09620].

65

66 t-distributed Stochastic Neighbor Embedding

3.1 Introduction

Dimensional reduction for high-dimensional data, especially in data visualization,
is an important task in data mining. Due to the nature of high-dimensional data where
only pairwise distances are reliable, many techniques exploit this property by trying
to preserve the small pairwise distance in low-dimensional embedding. Among them,
t-SNE is a gaining popular method from the family of stochastic neighbor embedding
(SNE) methods [34], operates by retaining local pairwise distances. t-SNE was first
introduced in [106] as a visualization technique for high dimensional data. Later, it
has been applied in many applications such as bioinformatic [114], cancer research,
visualize features in neural networks [77], etc.

The t-SNE problem is formulated as the minimization of the divergence between
two distributions: (1) a distribution that measures pairwise similarities of the input
objects and (2) a distribution that measures pairwise similarities of the corresponding
low-dimensional points in the embedding. This problem is described as follows. Given
a data set of n objects D = {a1, ..., an} with ai ∈ Rd, t-SNE aims to find their low-
dimensional representation E = {x1, ...,xn} with xi ∈ Rs (d� s) which preserves the
pairwise similarities of input objects. To this end, t-SNE defines joint probabilities pij
that measure the pairwise similarity between objects xi and xj by symmetrizing two

conditional probabilities as pij =
pj|i+pi|j

2n
, where

pj|i =

{
exp(−‖ai−aj‖2/2σ2

i)∑
k 6=i exp(−‖ai−ak‖2/2σ2

i)
if i 6= j,

0 otherwise.

In the embedding subspace E , the similarities between two points xi and xj are
measured using a normalized heavy-tailed kernel. Specifically, the embedding similar-
ity qij between the two points xi and xj is computed as a normalized Student-t kernel
with a single degree of freedom:

qij =

{
(1+‖xi−xj‖2)−1∑
k 6=l(1+‖xk−xl‖2)−1 if i 6= j,

0 otherwise.

The locations of the embedding points xi are determined by minimizing the
Kullback-Leibler divergence between the joint distributions P and Q:

min
x

{
KL(P ||Q) =

∑
i6=j

pij log
pij
qij

}
, (3.1)

which is equivalent to

min
x

{
F (x) = f(x) +

∑
i,j

pij log(1 + ‖xi − xj‖2)

}
, (3.2)

where f(x) = log(
∑

i6=j(1 + ‖xi − xj‖2)−1).

t-distributed Stochastic Neighbor Embedding 67

The nonconvex optimization problem (3.1) has been studied in several works [106,
122, 110], but the most noticeable was presented in [123]. Yang et al. [123] presented
and compared Majorization Minimization algorithm (MM) with five state-of-the-arts
methods, such as gradient descent, gradient descent with momentum [106], spec-
tral direction [110], FPHSSNE [122] and Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) [81]. The numerical results in Yang et al. [123] showed that MM
for t-SNE outperforms all five state-of-the-art optimization methods.

Our contributions

This chapter investigates DC programming and DCA to solve the t-SNE problem.
First, we study the standard DCA for the t-SNE problem (3.2). As shown in Chapter
2, the main advantage of DCA-Like (reps. ADCA-Like) over standard DCA is using
the DCA-Like condition (1.16), which leads to closer majorant of the objective function
and potentiality a better solution. Hence, we develop two algorithms by DCA-Like and
ADCA-Like for the t-SNE problem. It turns out that Majorization Minimization [123],
the best state-of-the-art algorithm for t-SNE, is nothing else but DCA-Like applied for
t-SNE. In addition, its accelerated version – ADCA-Like – further reduces the running
time of DCA-Like. We carefully conduct the numerical experiments and provide a
comparison of proposed algorithms on several benchmark datasets.

The remainder of this chapter is organized as follows. The solution method based
on DCA, DCA-Like and ADCA-Like is developed in section 3.2. The numerical exper-
iments on the t-SNE problem are reported in section 3.4. Finally, section 3.5 concludes
the chapter.

3.2 Standard DCA for t-SNE problem

A DC formulation for problem (3.1):

Let us rewrite the problem (3.1) from (3.2) into

min
x∈X

{
F (x) := f(x) +

∑
i,j

hij(gij(x))

}
, (3.3)

where f(x) = log(
∑

i6=j(1+‖xi−xj‖2)−1), hij(t) = pij log(1+t) and gij(x) = ‖xi−xj‖2.
It is obvious that gij are convex functions, and hij are concave increasing functions
whose derivatives are non-negatives and Lipschitz continuous on [0,+∞). Moreover,
the function f(x) is differentiable with L-Lipschitz continuous gradient as shown in
the following proposition.

Proposition 3.1. The function f(x) = log(
∑

i6=j(1 + ‖xi − xj‖2)−1) is smooth with

Lipschitz gradient, where we can choose a Lipschitz constant L = 6n
√
s.

Therefore, the optimization problem (3.3) takes the form of (1.10), where we can
use the DC decomposition in (1.12).

68 t-distributed Stochastic Neighbor Embedding

DCA scheme for problem (3.1):

Since the optimization problem (3.3) takes the form of (1.10), then according to
DCA scheme (1.2), at each iteration, we have to compute

ξkij = ∇(−hij)(gij(xki ,xkj)) = − pij
1 + ‖xki − xkj‖2

and ∇f(xk) by

∇xif(xk) =
n∑
j=1

−4(xki − xkj)(1 + ‖xki − xkj‖2)−2∑
l 6=m(1 + ‖xkl − xkm‖2)−1

, (3.4)

and solve the following convex problem to compute xk+1

min
x

{
µk
2
‖x− xk‖2 + 〈∇f(xk),x〉+

∑
i,j

−ξkij‖xi − xj‖2

}
.

The solution xk+1 of the above problem is given by

xk+1 = (2L−ξk−(ξk)T + µkI)−1(−∇f(xk) + µkx
k), (3.5)

where the matrix ξk is defined by the elements ξkij and LA denotes the matrix with
(LA)ij = −Aij if i 6= j and −Aii +

∑n
l=1 Ail otherwise.

The standard DCA for solving the t-SNE problem (3.1) is presented in Algorithm
3.1.

Algorithm 3.1 DCA: DCA for solving t-SNE problem (3.1)

Initialize:
Choose x0, µ0 > L and k ← 0.

repeat
Compute ξkij = − pij

1+‖xki−xkj ‖2
and ∇f(xk) by (3.4).

Compute xk+1 by (3.5).
k ← k + 1.

until Stopping condition

3.3 DCA-Like and ADCA-Like for t-SNE problem

The DCA (Algorithm 3.1) requires setting µ0 ≥ L, where we have estimated
L = 6n

√
s. This value is clearly too large, which could lead to a bad convex ap-

proximation of F , then potentially a bad solution. Hence, we consider DCA-Like to
solve this problem. As we have mentioned in Section 1.3.2, the goal of DCA-Like is
to avoid bad approximations of the objective function with a too large value of µ (c.f.

t-distributed Stochastic Neighbor Embedding 69

Algorithm 1.2). The main idea of DCA-Like is to keep the parameter µ as small as
possible while finding a convex approximation of objecive function. By using a small
value of µk, we can get a closer majorant of the objective function which could lead to
a better solution. According to the Algorithm 1.3, stops if the following inequality
holds

Utsne
µk

(xk+1,xk) ≥ F (xk+1), (3.6)

where Utsne
µk

(xk+1,xk) = F (xk)+〈∇f(xk),xk+1−xk〉+ µk
2
‖xk+1−xk‖2−〈ξk, g(xk+1)−

g(xk)〉. From the update rule (3.5) for xk+1 and this stopping criterion for searching µk,
we can conclude that MM [123] for (3.1) is a special version of DCA-Like. DCA-Like
for solving t-SNE problem (3.1) is described in Algorithm 3.2.

Algorithm 3.2 DCA-Like: DCA-Like for solving t-SNE problem (3.1)

Initialize:
Choose x0, η > 1, 0 < δ < 1, µ0 > 0 and k ← 0.

repeat
Compute ξkij = − pij

1+‖xki−xkj ‖2
and ∇f(xk) by (3.4).

Set µk = max{µ0, δµk−1} if k > 0.
Compute xk+1 by (3.5).
while Utsne

µk
(xk+1,xk) < F (xk+1) do

µk ← ηµk.
Compute xk+1 by (3.5).

end while
k ← k + 1.

until Stopping criterion

ADCA-Like for solving (3.1) is obtained by adding the acceleration steps of Algo-
rithm 1.4 to Algorithm 3.2, and is presented in Algorithm 3.3.

3.4 Numerical experiment

Experiment setting

To evaluate the performances of our methods, we perform numerical experiments
on 13 datasets taken from UCI data repository 2 and Feature Selection repository 3.
20news and rcv1 dataset are downloaded and pre-processed using the same detailed
procedure in [26, 117].

The comparison is realized on three criteria: the objective value F (x), the number
of iterations and the computation time (measured in seconds). Each experiment is
repeated 10 times, then the final result is the average value of each criterion. The
results are reported in the Table 3.1.

2. http://archive.ics.uci.edu/ml/index.php

3. http://featureselection.asu.edu/datasets.php

70 t-distributed Stochastic Neighbor Embedding

Algorithm 3.3 ADCA-Like: Accelerated DCA-Like for solving t-SNE problem (3.1)

Initialize:
Choose x0, w0 = x0, η > 1, 0 < δ < 1, µ0 > 0 and k ← 0.

repeat
if F (wk) ≤ F (xk) then

set vk = wk;
else

set vk = xk.
end if
Compute ξkij = − pij

1+‖vki −vkj ‖2
and ∇f(vk) by (3.4).

Set µk = max{µ0, δµk−1} if k > 0.
Compute xk+1 by (3.5).
while Utsne

µk
(xk+1,xk) < F (xk+1) do

µk ← ηµk.
Compute xk+1 by (3.5).

end while

Compute tk+1 =
1+
√

1+4t2k
2

.
Compute wk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
.

k ← k + 1.
until Stopping criterion

Algorithm 3.4 ADCA: Accelerated DCA for solving t-SNE problem (3.1)

Initialize:
Choose x0, w0 = x0, η > 1, 0 < δ < 1, µ0 > L and k ← 0.

repeat
if F (wk) ≤ F (xk) then

set vk = wk;
else

set vk = xk.
end if
Compute ξkij = − pij

1+‖vki −vkj ‖2
and ∇f(vk) by (3.4).

Compute xk+1 by (3.5).

Compute tk+1 =
1+
√

1+4t2k
2

.
Compute wk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
.

k ← k + 1.
until Stopping criterion

The comparisons are performed between 5 algorithms: DCA, DCA-Like, ADCA,
ADCA-Like and DC-PN (DC Proximal Newton [91]). DC-PN is a DCA-based algorithm
for minimizing f(x) + h(x), where f(x) = f1(x)− f2(x) is a DC function, twice differ-
entiable, with f(x) verifying the L-Lipschitz gradient property; h(x) = h1(x) − h2(x)
where both h1 and h2 are convex functions and (possibly) non-differential. Note
that, in DC-PN, L-BFGS is employed for approximating the Hessian matrix Hk; and

t-distributed Stochastic Neighbor Embedding 71

the sub-problem is solved by minFunc solver 4. ADCA, the accelerate version of Algo-
rithm 3.1 [89], is described in Algorithm 3.4.

As mentioned before, in the DCA (Algorithm 3.1) and ADCA (Algorithm 3.4), we
have to estimate the L-Lipschitz constant of f . According to Proposition 3.1, we can
choose L = 6n

√
s. This value is clearly too large. Hence, we incorporate a µ updating

procedure into DCA and ADCA. We start with a small value of µ and increase µ if the
objective value increases in DCA/ADCA scheme. For all algorithms, the initial value of
µ is set to be µ0 = 10−6.

Stopping conditions of all algorithms are the same, by either (1) number of itera-
tions exceeds 10, 000 or (2) ‖xk − xk−1‖/‖xk−1‖ ≤ 10−8. Throughout our experiment,
the number of embedding dimension is set to s = 2. All experiments are performed
on a PC Intel (R) Xeon (R) E5-2630 v4 @2.20 GHz of 32GB RAM.

For large datasets, Barnes-Hut tree approximation is used for reducing computing
cost [74]. This technique is well-known in Neighbor Embedding problems, which pro-
vides a good trade-off small loss in gradients and cost function against huge reduction
in computation time. We set the parameter θBarnes-Hut = 0.5.

We adopt the same test process as described in [123]. For all datasets, k-Nearest
Neighbor (with k = 10) is employed to construct p̄ij, where p̄ij = 1 if data point j (reps.
i) is one of k nearest neighbors of data point j (reps. i), and p̄ij = 0 otherwise. pij is
then computed by pij =

p̄ij∑
k,l p̄kl

. The initial point x0 is drawn from normal distribution

N (0, 10−8) for all methods. Early exaggeration technique [106] is deployed for first 20
iterations with the constant value of 4.

Table 3.1 – Comparative results on datasets. Bold values correspond to best results
for each dataset, n and d are the number of instances and dimensions respectively.
Unit of time is second.

Dataset Algorithm
Objective Iteration Time (sec.)

Mean STD Mean STD Mean STD

tox 171 DCA 1.52 0.03 22 0 0.64 0.01
n = 171 ADCA 1.62 0.64 37 22 1.95 1.38
d = 5748 DCA-Like (MM) 1.25 0.00 46 3 2.92 0.21

ADCA-Like 1.25 0.00 49 21 3.54 1.40
DC-PN 1.25 0.00 83 5 0.62 0.04

orl DCA 1.86 0.20 23 2 5.50 4.77
n = 400 ADCA 1.59 0.00 59 23 15.10 3.59
d = 1024 DCA-Like (MM) 1.59 0.00 54 13 17.45 3.49

ADCA-Like 1.59 0.01 68 30 20.43 8.18
DC-PN 1.62 0.01 177 47 3.25 0.82

4. minFunc: unconstrained differentiable multivariate optimization in Matlab. http://www.cs.

ubc.ca/~schmidtm/Software/minFunc.html

72 t-distributed Stochastic Neighbor Embedding

relathe DCA 3.82 0.00 22 0 2.98 0.04
n = 1427 ADCA 3.05 0.02 61 23 18.69 7.09
d = 4322 DCA-Like (MM) 3.03 0.01 71 15 26.74 9.86

ADCA-Like 3.02 0.00 67 2 28.85 1.98
DC-PN 3.10 0.04 1,044 313 117.36 32.09

pcmac DCA 4.35 0.00 22 0 1.87 0.07
n = 1943 ADCA 3.60 0.01 103 10 11.10 0.45
d = 3289 DCA-Like (MM) 3.59 0.00 103 11 14.88 1.07

ADCA-Like 3.59 0.01 81 16 13.78 2.67
DC-PN 3.69 0.01 1,363 124 232.60 39.44

gisette DCA 3.52 0.04 27 0 15.3 0.2
n = 7000 ADCA 3.33 0.00 118 31 39.5 7.9
d = 5000 DCA-Like (MM) 3.34 0.01 283 81 209.0 57.9

ADCA-Like 3.32 0.02 133 24 62.9 10.0
DC-PN 3.53 0.02 2187 186 1218.3 194.3

usps DCA 2.41 0.01 29 1 23.1 1.8
n = 9298 ADCA 3.92 1.36 70 107 27.9 39.0
d = 256 DCA-Like (MM) 2.34 0.00 106 18 62.5 11.0

ADCA-Like 2.34 0.01 107 15 64.9 6.0
DC-PN 2.57 0.07 2083 538 1315.2 171.7

rcv1 DCA 5.39 0.41 30 13 17.43 10.31
n = 10000 ADCA 4.86 0.05 259 179 119.11 57.89
d = 2000 DCA-Like (MM) 4.84 0.00 295 88 135.77 45.39

ADCA-Like 4.82 0.00 130 22 78.53 20.99
DC-PN 5.13 0.03 5,083 582 9,783.73 2,539.40

20news DCA 3.67 0.05 78 27 160.57 84.05
n = 18846 ADCA 3.64 0.09 221 145 207.45 114.95
d = 2000 DCA-Like (MM) 3.45 0.01 687 147 1,378.75 353.95

ADCA-Like 3.43 0.01 145 5 208.51 8.62
DC-PN 3.93 0.02 3,156 79 6,843.18 280.67

magic DCA 2.40 0.00 850 373 413.4 170.4
n = 19020 ADCA 2.46 0.01 215 9 150.5 9.8
d = 10 DCA-Like (MM) 2.36 0.00 168 39 135.2 31.1

ADCA-Like 2.36 0.00 106 7 101.7 4.8
DC-PN 2.80 0.07 3498 237 4321.0 557.8

letters DCA 1.58 0.02 1186 159 652.8 98.2
n = 20000 ADCA 1.49 0.02 369 104 268.4 86.8
d = 16 DCA-Like (MM) 1.48 0.01 164 24 149.0 19.3

ADCA-Like 1.48 0.01 90 7 96.8 7.4

t-distributed Stochastic Neighbor Embedding 73

DC-PN 2.14 0.07 1326 253 1997.1 539.0

shuttle DCA 1.60 0.02 3520 459 6056.5 782.9
n = 58000 ADCA 1.48 0.04 760 96 1781.7 215.1
d = 9 DCA-Like (MM) 1.45 0.02 333 9 981.7 33.1

ADCA-Like 1.42 0.00 152 23 553.7 123.6
DC-PN 2.54 0.03 4693 68 26784.4 3633.2

sensorless DCA 3.18 0.02 1788 454 3232.1 837.3
n = 58509 ADCA 3.13 0.01 418 24 912.8 50.0
d = 48 DCA-Like (MM) 3.21 0.02 313 41 953.7 114.5

ADCA-Like 3.18 0.02 153 28 499.3 91.2
DC-PN 3.81 0.04 4255 144 20586.9 4488.6

mnist DCA 3.44 0.00 3894 111 13752.7 644.9
n = 70000 ADCA 3.45 0.01 960 60 2659.1 63.3
d = 784 DCA-Like (MM) 3.46 0.01 371 67 1576.8 259.7

ADCA-Like 3.43 0.01 196 27 834.1 127.5
DC-PN 4.12 0.01 3703 308 21486.7 3643.1

miniboone DCA 3.55 0.05 3401 1151 20473.3 6471.2
n = 130064 ADCA 3.47 0.06 454 338 2917.1 2050.2
d = 50 DCA-Like (MM) 3.53 0.05 469 61 4841.7 691.5

ADCA-Like 3.53 0.02 170 12 1560.6 209.1
DC-PN 5.36 0.15 471 29 7071.7 844.0

covertype DCA 2.14 0.00 3998 35 71591.8 1407.2
n = 581012 ADCA 1.88 0.00 1670 0 29954.8 0.0
d = 54 DCA-Like (MM) 2.10 0.04 1217 66 37123.1 3546.5

ADCA-Like 1.68 0.01 330 10 8338.4 191.8
DC-PN 4.24 0.00 5741 45 140122.8 5126.4

Comments on numerical results
— We first interest in the performance of DCA-Like in compare to DCA. It is clear

that DCA-Like is better than DCA. DCA-Like gives a lower or equal objective
value than DCA in 13 out of 15 datasets (all except sensorless and mnist). For
dataset with more than 19, 000 datapoints, the running time of DCA-Like is
from 1.9 to 8.7 times less than DCA. For other cases, although DCA is faster than
DCA-Like, the objective value of DCA higher than than DCA-Like by a large
margin.

— We study now the benefit of using acceleration technique. The comparison is
made between 2 pairs: ADCA versus DCA and ADCA-Like versus DCA-Like. As
we can see, ADCA-Like improves the performance of DCA-Like. The gains in
computing time are huge, as ADCA-Like is faster than DCA-Like from 1.0 to 6.6
times (for datasets with more than 1000 datapoints, the reset are neglectable).

74 t-distributed Stochastic Neighbor Embedding

Concerning objective, ADCA-Like performs the best in 13 out of 15 datasets
among all algorithms. Similarly, ADCA also improves the performance of DCA.
ADCA is significantly faster than DCA by 2.7 to 7.1 times (for datasets with
more than 1000 datapoints) while having a lower objective value in 11 over 15
datasets.

— Overall, ADCA-Like gives the best results among the 5 comparative algorithms.
In term of objective value, ADCA-Like gives the lowest in 13 out of 15 datasets
among all algorithms. As for running time, ADCA-Like is the fastest for dataset
with more than 19000 datapoints. Note that for the remaining cases, although
ADCA-Like does not have the smallest running time, it still has the best objective
value overall.

In Figure 3.1, we plot the value of objective function as time progress. Surpris-
ingly, DCA performs thoroughly at the beginning but then it is left behind; while
DCA-Like, ADCA and ADCA-Like improve swiftly over time. It is noticeable that, al-
though ADCA-Like struggle at first in many cases (rcv1, 20news, gissete, magic, letters,
and shuttle), it soon catches up and surpasses others algorithms to produces the best
result while being the fastest. Also, for the biggest dataset (covertype), the effec-
tiveness of accelerated algorithms is clearly demonstrated: ADCA-Like (reps. ADCA)
surpass DCA-Like (reps. DCA) after short amount of time.

Figure 3.2 visualizes the results on mnist dataset given by all five algorithms. This
dataset consists of 70000 gray-scale 28 × 28 images over 10 classes of handwritten
digits. mnist can be considered as the benchmark dataset for SNE-based algorithms,
since they are able to capture both local and global structure of this dataset, especially
in 2D embedding space. As we can see, in the embedding space, all four DCA-based
algorithms managed to keep the structure of dataset of the original space, whereas
DC-PN failed to maintain the structure. Four images of DCA-based algorithms in
Figure 3.2 are quite similar since the objective values of all algorithms in this case are
fairly similar.

In conclusion, ADCA-Like gives the best results in all three comparison criteria.
DCA-Like is clearly an improvement of DCA, and ADCA-Like is undoubtedly an im-
provement over DCA-Like.

3.5 Conclusion

We proposed two algorithms for the t-SNE problem, DCA-Like and ADCA-Like,
which are both inexpensive: the solution of the convex sub-problem can be explic-
itly computed. We showed that the Majorization-Minimization algorithm, the best
state-of-the-art algorithm for t-SNE, is nothing else but DCA-Like. Both proposed
algorithms enjoy the convergence properties of DCA. Numerical experiments on high-
dimensional and large dataset were carefully conducted on several benchmark datasets
for visualization. The numerical results show that DCA-Like greatly improves the run-
ning time of DCA while giving similar or better solution. DCA-Like is up to 9.2 times
faster than DCA while giving better objective value. ADCA-Likes improves further the

t-distributed Stochastic Neighbor Embedding 75

running time (by up to 5 times) as well as the objective value of DCA-Like. Thus, we
can undoubtedly conclude the two proposed method, DCA-Like and ADCA-Like, are
the state-of-the-art algorithms for solving the t-SNE problem.

76 t-distributed Stochastic Neighbor Embedding

0 0.5 1 1.5 2 2.5 3

Time (seconds)

1.2

1.4

1.6

1.8

2

2.2

2.4

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(a) tox 171-10

2 4 6 8 10

Time (seconds)

2

2.5

3

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(b) orl

2 4 6 8 10

Time (seconds)

3.5

4

4.5

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(c) pcmac

5 10 15

Time (seconds)

3

3.2

3.4

3.6

3.8

4

4.2

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(d) relathe

10 20 30 40 50

Time (seconds)

3.5

4

4.5

5

5.5

6
O

bj
ec

tiv
e

(lo
g-

sc
al

e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(e) gisette

10 20 30 40

Time (seconds)

5

5.5

6

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(f) rcv1

20 40 60 80 100

Time (seconds)

4

5

6

7

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
MM (DCA-Like)
ADCA-Like
DC-PN

(g) 20news

10 20 30 40 50

Time (seconds)

3

4

5

6

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(h) usps

20 40 60 80

Time (seconds)

3

4

5

6

7

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(i) magic

20 40 60 80 100 120

Time (seconds)

2

3

4

5

6
7

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(j) letters

200 400 600 800

Time (seconds)

2

3

4

5
6
7
8

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(k) shuttle

200 400 600 800

Time (seconds)

3

4

5

6

7

8

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(l) sensorless

200 400 600 800 1000 1200

Time (seconds)

4

5

6

7

8

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(m) mnist

1000 2000 3000 4000

Time (seconds)

4

5

6

7

8

9

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(n) miniboone

0.5 1 1.5 2 2.5 3 3.5

Time (seconds) 104

2

4

6

8

10

O
bj

ec
tiv

e
(lo

g-
sc

al
e)

DCA
ADCA
DCA-Like
ADCA-Like
DC-PN

(o) covertype

Figure 3.1 – Objective value versus running time (average of ten runs)

\ E
\ I'\

D

X

t-distributed Stochastic Neighbor Embedding 77

(a) DCA (b) ADCA

(c) DCA-Like (d) ADCA-Like

(e) DC-PN

Figure 3.2 – Visualization of embedding space on mnist dataset. Colors represent
classes of data (0 – 9).

Chapter 4

Deep Clustering1

Abstract: In this chapter, we propose new approaches for clustering high-dimensional data.
The first approach considers the usage of t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) in clustering. We propose two clustering algorithms based on DC Programming and
DCA. In the second approach, we consider the problem of joint-clustering using auto-encoder.
We propose an extension by using a scale invariance distance measures for a class of joint-
clustering problem using auto-encoder, and apply for a particular case of joint-clustering with
MSSC (minimizing sum-of-square clustering). The efficiency of the proposed algorithms in
comparison with the state-of-the-art algorithms on real-world high-dimensional datasets are
empirically demonstrated in terms of clustering quality and running time.

1. The material of this chapter is developed from the following works:
[1] H.A. Le Thi, B. Tran. A DCA-based approach for Joint Clustering and Dimensional Reduction by
t-SNE. Submitted.
[2] B. Tran, H.A. Le Thi. Deep Clustering with Spherical Distance in Latent Space. In: Advanced
Computational Methods for Knowledge Engineering. ICCSAMA 2019. Advances in Intelligent Sys-
tems and Computing, Springer, Cham. Accepted.
[3] G. Da Silva, H.M. Le, H.A. Le Thi, V. Lefieux, B. Tran. Customer Clustering of French Trans-
mission System Operator (RTE) Based on Their Electricity Consumption. In: Le Thi H., Le H.,
Pham Dinh T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applica-
tions. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991, pp. 893–905. Springer,
Cham.

79

80 Deep Clustering

4.1 Introduction and related works

Clustering is an important task in data mining with the aim of segmenting data-
points into groups which pose similarity. Despite decades of research, clustering high-
dimensional datasets is still a difficult problem due to the “curse of dimensionality”
phenomenon. In general terms, it is “the widely observed phenomenon that data
analysis techniques (including clustering), which work well at lower dimensions, of-
ten perform poorly as the dimensionality of analyzed data increases” [101]. Using
dimension reduction techniques is a popular way to overcome this problem, where the
original features are presented by a smaller but informative set of features. For cluster-
ing methods using dimensional reduction techniques, we can categorize them by two
components: clustering approaches and dimensionality reduction methods.

There are two main approaches of using dimensional reduction techniques in clus-
tering: “tandem analysis” approach (or two-step approach) and joint-clustering ap-
proach. The first approach, “tandem analysis”, first introduced in [7], refers to a
clustering procedure of two steps. The first step transforms the high-dimensional data
to a lower-dimensional space (embedding space) that has preferable properties, where
a clustering algorithm is performed on such space in the second step. This approach
has extensively studied in the literature and has proved to be effective (better clus-
tering results), such as Principal Component Analysis (PCA) [16, 128], Non-negative
Matrix Factorization (NMF) [118], Volume Minimization-based Factorization [119],
Auto-encoder, Isomap [124, 132], etc. However, since these two steps are applied sepa-
rately, the obtained embedding data from the dimension reduction step do not receive
any information from the clustering step which gives better adaptation of the latent
structure.

Joint-clustering approach has been developed to overcome the mentioned limita-
tion of the “tandem analysis” approach. Instead of employing dimension reduction
and clustering seperately, joint-clustering executes simultaneously both tasks, usually
by combining them into an optimization problem to solve. In the earliest works, [108]
and [22] considered integrating K-means clustering with components analysis for di-
mension reduction, which is closely related to PCA, and demonstrated the advantages
of the proposed joint-clustering method (readers can refer to [78] for an extensively list
of joint-clustering by PCA-based techniques). NMF and auto-encoder with their vari-
ances have been considered in the joint-clustering framework ([119, 112], and [2, 76],
to name a few). The joint-clustering approach often obtains more accurate results
than considering each problem independently, which has been demonstrated in the
literature.

Beside clustering approaches, one could categorize clustering methods based on
reduction techniques. Dimensionality reduction methods have been extensively studied
(see [107] and [12] for an extensive review of dimensionality reduction methods). In
short, they can be divided into two main categories: linear and non-linear methods.
As the name suggested, linear methods performs linear mapping of data points from
original space into low-dimension space. In contrasts, non-linear methods assume that

Deep Clustering 81

data lie on a non-linear manifold within then high-dimensional space, where they seek
the projection/mapping of data points on that space. Despite clustering methods and
algorithms are frequently developed for linear methods by both clustering approaches
(i.e. PCA [22, 108, 78] and NMF [119, 112]), non-linear methods have mostly been
considered only in “tandem analysis” approach (Isomap [100, 124, 132], t-SNE [127,
94], and auto-encoder [2, 76]). For joint-clustering approach, most proposed methods
are based on auto-encoder, where they empirically show significant improvement in
clustering quality in compare with state-of-the-art methods (readers can refer to [2, 76]
for a comprehensive review). The lack of joint-clustering method based on non-linear
dimensionality reduction techniques may due to their complexity: they often result
in a non-convex optimization problem in most cases, which is practically discouraged.
Hence, the usage of non-linear techniques in clustering are not common, except auto-
encoder.

With the recent advances in optimization, the non-convexity resulted in joint-
clustering methods using non-linear dimensional reduction techniques is no longer a
big problem. Motivated by the success of auto-encoder for clustering high-dimensional
data, the development of new methods based on non-linear dimensional reduction tech-
niques may lead to better clustering result. Hence, this chapter focuses on developing
clustering methods based on two non-linear dimensionality reduction methods: t-SNE
and auto-encoder.

We first consider the non-linear dimensionality reduction by t-SNE in clustering.
Motivated by the superior of t-SNE over standard methods such as auto-encoder and
PCA [105, 107, 106] with efficient non-convex optimization methods for t-SNE [123, 51],
we consider the combination of t-SNE with clustering. t-SNE [106] is a relatively
new, based on Stochastic Neighbor Embedding family, which based on preserving the
pairwise distance between high and low-dimensional data, well-suited for visualization
high-dimensional data. According to our knowledge, although there exist several works
where t-SNE is considered as the dimensional reduction step for “tandem clustering”
such as spectral clustering [94] and Gaussian Mixture Model [127]; attempted to jointly
combine t-SNE and clustering in the joint-clustering approach. In this work, we con-
sider the combination of t-SNE with clustering in both joint-clustering and standard
“tandem analysis” approach. The proposed algorithms are applicable in many ap-
plications, as we can in-cooperate domain knowledge from experts for the clustering
tasks by using an appropriate measure that captures the similarities between objects
in the original data space. One of the most popular clustering techniques is MSSC
(minimizing sum-of-squares clustering), which is well-known by the popularity of K-
means [75, 72]. The rapidity and efficiency of MSSC on large-scale datasets have been
demonstrated in several works [45, 47], but it still suffers the same limitation when
applying to high-dimensional data. Hence, our proposed method would bring the ad-
vantage of t-SNE as a powerful dimension reduction method with the fast and effective
of MSSC. The resulting problem is a difficult non-convex problem, where we tackle by
DC (Difference of Convex functions) programming and DCA (DC Algorithm), which
are powerful tools in non-convex optimization literature.

For the second considered non-linear dimensionality reduction – auto-encoder, we

82 Deep Clustering

consider a class of joint-clustering methods with auto-encoder. Auto-encoder seeks a
mapping function fθ to project data xi into zi := fθ(xi) in lower-dimensional space.
Since fθ is often a composition of non-linear transformations parametrized by θ, f can
approximate a large class of function. Learning a high-quality mapping fθ requires a
massive amount of data, which enjoys the growing volume of unlabeled data, hence ex-
plained its popularity recently. Auto-encoder have demonstrated its effectiveness over
standard methods for high-dimensional data such as PCA [35, 107], and its application
in clustering recently empirically show significant improvement in clustering quality in
compare with state-of-the-art methods (readers can refer to [2, 76] for a comprehensive
review). They can be classified into two main types: (1) simultaneously minimizing the
auto-encoder reconstruction and clustering in a joint framework by linear scalarization
techniques (i.e. min F joint = FAE+λF clustering) [104, 99, 120, 129, 32, 38, 130, 131, 96],
or (2) progressively updating neural network mapping and clustering assignment in
order to match a target distribution/pseudo label, which is updated during the opti-
mization process [117, 33, 32, 121, 14, 28]. Generally speaking, it can be viewed as
solving an optimization problem or a sequence of problems where each has the form
similar to (1). However, the derived problem in several works is not well-defined, be-
cause clustering is applied on data’s representation zi in the latent space, the clustering
objective F clustering is affected by the scaling whereas the reconstruction objective of
the auto-encoder FAE is not. This affects a class of joint-clustering algorithm realized
on Euclidean distance or `p norm such as K-means (MSSC) [104, 99, 120, 129, 32, 43],
latent space clustering [38, 130, 131]; or integrating additional tasks on the latent space
depends on Euclidean distance/`p norm [21, 37, 17, 97]. To solve the mentioned prob-
lem, one could consider regularization techniques for neural network, such as ‖θ‖p or
‖zi‖p [37]. However, it introduces another trade-off parameter that needs to be tuning,
which is not encouraged in unsupervised setting. Hence, instead of using Euclidean
distance or `p norm, we could choose another distance function that is invariance to
scaling. Motivated by the success of cosine distance in document clustering [24], which
is a well-known measure that satisfies our mentioned property, we consider two vari-
ants of cosine distance. As a specific case, we considered the specific problem of deep
joint-clustering with MSSC, and proposed an algorithm to solve the mentioned re-
formulation by taking advantage of state-of-the-art first-order stochastic methods for
neural networks such as Adam [41].

This chapter contains two main parts divided into two sections. Section 4.2 dedi-
cates to the clustering problems using t-SNE, and the section 4.3 considers the problem
of clustering using auto-encoder. Finally, section 4.4 concludes the chapter.

In this chapter, we use the following notations:

Deep Clustering 83

Notation Meaning

n Number of datapoints
k Number of clusters
m Number of features of raw data
d Number of dimensions in low-dimensional space
ai Row i-th of the matrix a
xi ∈ Rm The ith original datapoint
x := {x1, . . . , xn} ∈ Rn×m Original dataset
zi ∈ Rd The ith datapoint in low-dimensional space
z := {z1, . . . , zN} ∈ Rn×d Data matrix of dataset in low-dimensional space

4.2 Two-step and joint-clustering by t-SNE and

MSSC

4.2.1 Our contributions

In the first part, we study the problem of clustering by t-SNE by following the two
approaches of “tandem analysis” and joint-clustering. In the joint-clustering approach,
we propose a model for simultaneously clustering and dimensional reduction by t-
SNE. Later on, we study DC Programing and DCA for both approaches and propose
algorithms that are suitable for large-scale setting. We conduct extensive experiments
for high-dimensional large-scale datasets with several recent clustering methods to
study the quality of the proposed algorithm.

The remaining of this chapter is organized as following. Section 4.2.2 introduces
the “tandem analysis” clustering by t-SNE. Next, in Section 4.2.3, we formulate the
problem of joint-clustering between t-SNE and MSSC, and develop an efficient method
to solve the proposed model by DC Programming and DCA. Numerical experiment’s
results are report in Section 4.2.4.

4.2.2 Two-step clustering by t-SNE and MSSC

The two-step clustering approach has two main steps: (1) applying a dimensional
reduction algorithm to data for mapping high-dimensional data to a lower-dimensional
space that suitable for performing clustering, then (2) performing clustering on embed-
ded space. In this work, we consider the t-SNE as the dimensional reduction algorithm.
This choice is motivated by its effectiveness for high-dimensional setting, which has
been widely used for visualizing data ([106, 114, 77], to cite a few) and for cluster-
ing [94, 127]. In addition, t-SNE offers the liberty to choose the distance measures the
similarity between objects in the datasets. In detail, the original work [106] defines
joint probabilities pij that measure the pairwise similarity between objects xi and xj

84 Deep Clustering

by symmetrizing two conditional probabilities as pij =
pj|i+pi|j

2n
, where

pj|i =

{
exp(−doriginal(xi,xj)/2σ2

i)∑
k 6=i exp(−doriginal(xi,xk)/2σ2

i)
if i 6= j,

0 otherwise,

doriginal is squared Euclidean distance. However, (squared) Euclidean distance is not
always the suitable to measure the similarity between two objects in the original space.
For example, Dynamic Time Warping distance has been proved in several works [30,
92, 82, 20] for measuring distance between time-series (see the surveys [1] and [113]
for a complete list of similarity measures for time-series data). Hence, clustering high-
dimensional data by t-SNE is suitable for a wide range of applications.

Minimize sum-of-squares clustering (MSSC)

Given a dataset z := {z1, . . . , zn} where zi ∈ Rd (i = 1, . . . , n), our goal is to find k
points {u1, . . . , uk}, known as “centroid”, and assign each data point in z to its closest
centroid in u by a distance measure. The MSSC problem is formulated as minimizing
the sum of assignment distance, which is the distance from zi to the assigned/closest
centroid, by squared Euclidean distance. The formulation of MSSC is

min
u∈Rk×d

{
FC(u) =

1

2

n∑
i=1

min
l=1,...,k

‖ul − zi‖2
2

}
. (4.1)

The problem has been investigated, and solve efficiently by several methods, in-
cluding classical method such as K-means [72], or more recent methods such as
DCA [45, 61, 47]. In [45], the authors have formulated the MSSC problem as a DC
program, and proposed an efficient algorithm. In detail, according to the property

min
l=1,...,k

‖ul − zi‖2
2 =

k∑
l=1

‖ul − zi‖2
2 − max

r=1,...,k

k∑
l=1,l 6=r

‖ul − zi‖2
2,

we can derive FC(u) as a DC decomposition FC(u) = GC(u)−HC(u), with

GC(u) :=
n∑
i=1

k∑
l=1

1

2
‖ul − zi‖2

2 (4.2)

HC(u) :=
n∑
i=1

max
r=1,...,k

k∑
l=1,l 6=r

1

2
‖ul − zi‖2

2, (4.3)

where both GC(u, z) and HC(u, z) are convex [45].

According to the general scheme of DCA in Section 1.1.3, for each iteration, DCA
computes ūC

q ∈ ∂HC(uq) and obtain uq+1 by solving the convex sub-problem

min{Gc(u)− 〈u, ūCq〉 : u ∈ Rk×d}. (4.4)

Deep Clustering 85

The calculation of ūC
q is as following. For i ∈ {1, . . . , n}, denote:

hi(u) = max
r=1,...,k

hi,r(u), where hi,r(u) =
k∑

l=1,l 6=r

1

2
‖ul − zi‖2

2 for r ∈ {1, . . . , k},

Vi(u) := arg max
r=1,...,k

hi,r(u) = arg max
r=1,...,k

1

2

(
k∑
l=1

‖ul − zi‖2
2 − ‖ur − zi‖2

2

)
= arg min

r=1,...,k
‖ur − zi‖2

2.

Hence, ūC
q ∈ ∂HC(uq)⇔ ūC

q =
∑n

i=1 ū
q
i where ūqi ∈ ∂hi(uq). Then we have [36]

∂hi(u) = co

 ⋃
r∈Vi(u)

∂hi,r(u)

 ,

where co stands for the convex hull. Hence, ∂hi(u) is a convex combination of
{∇hi,r(u) : r ∈ Vi(u)}, i.e,

∂hi(u) =
∑

r∈Vi(u)

λ[i]
r ∇hi,r(u) with λ[i]

r ≥ 0 and
∑

r∈Vi(k)

λ[i]
r = 1.

The gradient of ∇ulhi,r(u) is computed as (for r, l ∈ {1, . . . , k}):

∇ulhi,r(u) = (ul − zi) if r 6= l, 0 otherwise.

For simplicity, at each iteration q, we choose pq(uq) = (pqi (u
q))i=1,...,n where pqi (u

q)
is an element from Vi(u

q), which results ūqi = ∇hi,pqi (uq)(u
q). ūC

q is calculated as

(ūC
q)l = (n− |cql |)u

q
l +

∑
i∈cql

zi −
n∑
i=1

zi for l = 1, . . . , k,

where (ūC
q)l is the l-th row of ūC

q and cql = {i = 1, . . . , n : l = pqi (u
q)}.

The solution of the convex sub-problem (4.4) is obtained as following. Since the ob-
jective of the problem (4.4) is convex, and according to first order optimality condition,
uq+1 can be obtained by solving the following system of equations

ūC
q = ∇uGC(u). (4.5)

The gradient of GC(u) is computed as

∇ulGC(u, z) = nul −
n∑
i=1

zi for l = 1, . . . , k.

86 Deep Clustering

Algorithm 4.1 MSSC: DCA for solving problem (4.1)

Input: Dataset x and the number of cluster k.
Output: Centroids u∗ and clustering assignment p∗.
Initialization: Choose u0 and q ← 0.
repeat

Calculate uq+1 according to (4.6).
q ← q + 1.

until Stopping condition.
Output u∗ ← uq and p∗ ← uq.

Consequently, equation (4.5) can be simplified to

ul =

(
1− |c

q
l |
n

)
uql +

1

n

∑
i∈cql

zi for l = 1, . . . , k. (4.6)

The DCA for Problem (4.1) is described in Algorithm 4.1.

Two-step clustering by t-SNE

Given a high-dimensional dataset x := {x1, . . . , xn} in Rm. Our task consists of
finding z := {z1, . . . , zn} where zi ∈ Rd (i = 1, . . . , n) and k points {u1, . . . , uk}, known
as ”centroid”, and assign each data point in z to its closest centroid in u. The two-step
MSSC clustering with t-SNE, named MSSC-2S (2-step) is described in Algorithm 4.2.

Algorithm 4.2 MSSC-2S: two-step MSSC clustering with t-SNE

Input: Dataset x, number of cluster k.
Output: Low-dimensional data representation z, centroids u∗ and clustering as-
signment p∗.
Step 1: Apply t-SNE to the data

Compute proximity matrix P from x.
Apply algorithm 3.2 with input P to obtain z.

Step 2: Apply MSSC clustering
Initialize u0 from z.
Apply MSSC (algorithm 4.1) with initial point u0 and data z to obtain the clustering

result (u∗, p∗).

As an application, we use two-step clustering algorithm for customer clustering
of French transmission system operator (RTE) based on their electricity consumption
in [20]. The ultimate goal of customer clustering is to automatically detect patterns
for understanding the behaviors of customers in their evolution. It will allow RTE to
better know its customers and consequently to propose them more adequate services,
to optimize the maintenance schedule, to reduce costs, etc. We tackle three crucial is-
sues in high-dimensional time-series data clustering for pattern discovery: appropriate
similarity measures, efficient procedures for high-dimensional setting, and fast/scalable
clustering algorithms. For that purpose, we use the DTW (Dynamic Time Warping)

Deep Clustering 87

distance in the original time-series data space, the t-distributed stochastic neighbor
embedding (t-SNE) method to transform the high-dimensional time-series data into a
lower dimensional space, and DCA (Difference of Convex functions Algorithm) based
clustering algorithms. We conduct numerical experiment on a dataset contains 462
clients, where each is represented by a curve of electricity consumption for each 10
minutes over two years (from 01 January 2016 to 31 December 2017); hence it results
a dataset of 462 time-series in R105,120. We observe that the two-step algorithm only
takes approximately 10 minutes, whereas the whole process (including other steps)
takes 42 minutes in total. The numerical results on real-data of RTE’s customer have
shown that our clustering result is coherent: customers in the same group have similar
consumption curves and the dissimilarity between customers of different groups are
quite clear.

4.2.3 Joint-clustering by t-SNE and MSSC

In this section, we proposed a formulation for joint-clustering by MSSC and t-SNE
problem, and developed an optimization algorithm to the proposed problem.

4.2.3.1 Problem formulation and solution methods

Given a dataset x := {x1, . . . , xn} in Rm. Let z := {z1, . . . , zn; zi ∈ Rd}, d � m;
and u := {u1, . . . , uk} are k centroids in Rd. Recall that the objective function of
MSSC in section 4.2.2 and t-SNE in section 3.2 are

FC(u, z) =
1

2

n∑
i=1

min
l=1,...,k

‖ul − zi‖2
2,

FE(z) = log
∑
i6=j

(1 + ‖zi − zj‖2
2)−1 +

∑
i,j

pij log(1 + ‖zi − zj‖2
2).

We aim to jointly learn an embedding z in Rd (of x) by t-SNE, that clustered
around k centroids in Rd. One nature way to formulate the joint-clustering problem
is by adding the objective functions FC(u, z) and FE(z). This gives us the following
optimization problem

min
u,z

FJoint(u, z) = FE(z) + λFC(u, z), (4.7)

where λ controls the trade-off parameter between clustering and dimension reduction.
Since both FE(z) and FC(u, z) are non-convex, the problem (4.7) is a non-convex
optimization problem. In the next section, we will employ DCA-based algorithms to
efficiency solve this problem.

88 Deep Clustering

4.2.3.2 DC Decomposition for the Problem (4.7)

Recall from section 4.2.2 and 1.3.1, the objective function FE(z) can be reformu-
lated as FE(z, v) = Gµ

E(z, v)−Hµ
E(z, v), with

Gµ
E(z, v) :=

µ

2
‖z‖2

2 + χΩ(z, v), (4.8)

Hµ
E(z, v) :=

µ

2
‖z‖2

2 − FE(z, v) =
µ

2
‖z‖2

2 − fE(z)−
∑
i,j

hij(v), (4.9)

where Ω = {(z, v) : gij(z) ≤ vij | i, j = 1, . . . , n}; gij(z), fE(z) and hij(v) are gij(x),
f(x) and hij(z) in section 4.2.2 respectively; fE(z) is differentiable with L-Lipschitz
constant and µ > L.

Using the same reformation as in section 1.3.1, the problem (4.7) is equivalent to
the following optimization problem

min
(u,z,v)∈Ψ

FJ(u, z, v) = FE(z, v) + λFC(u, z), (4.10)

where FC(u, z) is defined in (4.7), FE(z, v) is defined as Ψ = Rk×d × Ω.

This gives us the following DC decomposition of FJ(u, z, v):

FJ(u, z, v) = GJ(u, z, v)−HJ(u, z, v) (4.11)

where

GJ(u, v, z) = λGC(u, z) +Gµ
E(z, v),

HJ(u, v, z) = λHC(u, z) +Hµ
E(z, v),

GC(u, z) and HC(u, z) take the form

GC(u, z) :=
n∑
i=1

k∑
l=1

1

2
‖ul − zi‖2

2

HC(u, z) :=
n∑
i=1

max
r=1,...,k

∑
l=1,l 6=r

1

2
‖ul − zi‖2

2;

Gµ
E(z, v) and Hµ

E(z, v) are defined as in (4.8) and (4.9).

According to the convexity property of ‖ul − zi‖2, it is clear that GC(u, z) and
HC(u, z) are convex. With µ > L (in Section 4.2.2), GE(u, z) and HE(u, z) are convex.
Hence, the decomposition (4.11) is a valid DC decomposition.

4.2.3.3 Optimization algorithm for (4.7)

Followed the DC decomposition (4.11), this section develops a solution method
based on DCA to solve the problem (4.10).

Deep Clustering 89

Calculation of ∂HJ :

Denote (z̄E
q, v̄E

q) ∈ ∂Hµ
E(zq, vq) = ∇zH

µ
E(zq, vq) and (ūC

q, z̄C
q) ∈ ∂HC(uq, zq). z̄E

q

and v̄E
q are calculated as

z̄E
q = ∇zH

µ
E(zq, vq) = µzq −∇zfE(zq),

∇zifE(zq) =
n∑
j=1

−4(zqi − z
q
j)(1 + ‖zqi − z

q
j‖2

2)−2∑
l 6=m(1 + ‖zql − z

q
m‖2

2)−1
, for i = 1 . . . , n,

v̄E
q = ∇vH

µ
E(zq, vq) =

pij
1 + ‖zqi − z

q
j‖2

2

;

and ūC
q and z̄C

q are computed as

(ūC
q)l = (n− |cql |)u

q
l +

∑
i∈cql

zqi −
∑n

i=1 z
q
i for l = 1, . . . , k,

(z̄C
q)i = (k − 1)zqi + upqi (uq ,zq) −

∑k
l=1 u

q
l for i = 1, . . . , n,

where cql = {i = 1, . . . , n : l = pqi (u
q, zq)} and pqi (u

q, zq) are chosen from Vi(u
q, zq) :=

arg minj=1,...,k ‖u
q
j − z

q
i ‖2

2.

Solving the convex sub-problem by alternating:

According to DCA scheme (section 1.1.3), we solve the following convex sub-
problem at each iteration q,

min
(u,z,v)∈Ψ

{GJ(u, v, z)− λ 〈ūCq, u〉 − λ 〈z̄Cq, z〉 − 〈z̄Eq, z〉+ 〈−v̄Eq, v〉} . (4.12)

The solution of the problem (4.12) is given by:

(u, z)q+1 ∈ argmin
u,z
{FS(u, z)} (4.13)

vq+1
ij = gij(z) (4.14)

where

FS(u, z) = λGJ(u, v, z) +
∑
i,j

(−v̄Eqij)gij(z)− λ 〈ūCq, u〉 − λ 〈z̄Cq, z〉 − 〈z̄Eq, z〉 .

Solving (4.13) effectively for large-scale setting faces a huge obstacle. Since the
objective function of problem (4.13) is convex, then the most straigh-forward way is
solving the linear system ∇FS(u, z) = 0 by using the first order optimality condition.
This linear system has the form of

(Aq − Bq)z = Cq, (4.15)

where Aq = (λk+µ)In+2(L−v̄Eq−(v̄Eq)T) and Bq = λk
n
1n×n (detail about the expansion

is presented in appendix A.2).

90 Deep Clustering

In practice, Aq is a sparse matrix in case the proximity matrix P is sparse, but the
Aq − Bq is a full matrix as Bq is a full matrix. Storing Aq − Bq is memory-intensive,
as the space complexity for storing it is O(n2) regardless of the sparsity of matrix P
(hence Aq). As for n = 70, 000 yields the total size of 36, 5 GB of RAM for the matrix
Aq − Bq, hence this algorithm can not scale for bigger dataset. One may argue that
Aq−Bq could be stored in custom “sparse” matrix format where the “sparse” element
is λk/n (or 1 if we divide both sides of the linear system by λk/n) instead of 0 in
standard sparse matrix, but it is complex and difficult to apply existing powerful tools
for solving the huge system of equation (Aq − Bq)z = Cq.

Hence, in order to exploit the sparsity structure of the matrix P , we employ alter-
nating optimization algorithm to solve the convex sub-problem (4.13). Each alternat-
ing iteration t of problem (4.13) requires solving two convex sub-problems as

uq,t+1 ∈ argmin
u

{
GC(u, zq,t+1)− 〈ūCq, u〉

}
, (4.16)

and

zq,t+1 ∈ argmin
z

{
λGC(uq,t, z) +

µ

2
‖z‖2 − λ 〈z̄Cq, z〉 − 〈z̄Eq, z〉+

∑
i,j

(−v̄Eqij)gij(z)

}
.

(4.17)

Since the objective function of problem (4.16) is convex, then according to the first
order optimality condition, its solution can be obtained by solving ∇uGC(u, zq,t+1) −
ūC

q = 0. Hence, uq,t+1 is computed as

uq,t+1 =
1

n

(
ūC

q + 1k×nz
q,t+1

)
. (4.18)

Solving (4.17) is equivalent to solving the following linear system

Dq,tz =
(
λz̄C

q + z̄E
q + λ1n×ku

q,t
)
, (4.19)

where Dq,t =
(
(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)

)
, LA is a Rn×n matrix with (LA)ij = −Aij

if i 6= j and −Aii +
∑n

l=1 Ail otherwise. For the detailed expansion to acquire (4.19),
refer to section A.3. Algorithm for solving the problem (4.12) is detailed in Algorithm
4.3.

Solving (4.13) has double advantages. Beside the memory issue, algorithm 4.3 is
potentially faster than solving (4.15). The best alogrithm for solving the linear system
(4.15) has the complexity O(n2.376) since (Aq − Bq) is a full matrix. On the other
hand, since the sparse matrix P has at most (2kn) non-zero elements (where k is the
k-nearest neighbor paramter for computing P), hence the matrix Dq,t of (4.19) has at
most (2k + 1)n non-zero elements. Algorithm 4.3 runs for t iterations, each has the
complexity of O((2k+ 1)

√
κn)) ([98], by Conjugate Gradient method), where κ is the

condition number of Dq,t. Since we add (λk+µ) to the diagonal of Dq,t, the κ of Dq,t is
small. In addition, the number of neighbor are often small (k � n, i.e k = 5). Hence,
for a large value of n, this is an huge improvement in terms of running time.

Deep Clustering 91

Algorithm 4.3 Algorithm for solving the problem (4.12)

Input: uq,0, zq,0, λ
Output: u∗, z∗

Initialization: t← 0.
repeat

Compute zq,t+1 by solving (4.19).
Compute uq,t+1 = 1

n
(ūC

q + 1k×nz
q,t+1).

t← t+ 1.
until Stopping condition.
Output (z∗, u∗) = (zq,t, uq,t)

DCA-Like for problem (4.7):

The DCA for solving the problem (4.7) is described in Algorithm 4.4. However,
based on the advantages of DCA-Like over DCA for t-SNE problem in chapter 3, we
consider DCA-Like for solving the problem (4.7).

Algorithm 4.4 DCA for solving problem (4.7)

Initialization: Choose u0, z0, µ > L and q ← 0.
repeat

Compute (z̄E
q, v̄E

q) ∈ ∂Hµq
E (zq, vq) and (ūC

q, z̄C
q) ∈ ∂HC(uq, zq).

Obtain (zq+1, uq+1) by using Algorithm (4.3).
q ← q + 1.

until Stopping condition.

At each iteration q, DCA-Like requires µq satisfies the following condition:

HJ(uq+1, zq+1, vq+1) ≥ HJ(uq, zq, vq) + 〈ūJq, uq+1 − uq〉
+ 〈v̄Jq, vq+1 − vq〉+ 〈z̄Jq, zq+1 − zq〉 (4.20)

where (ūJ
q, v̄J

q, z̄J
q) ∈ ∂HJ(uq, vq, zq). Hence, in compare to Algorithm 4.4, we only

need to search for µ = µq such that the inequality (4.20) holds at (zq+1, uq+1, vq+1).
The condition (4.20) is detailed in (4.21). The strategy to update µq is described in
Alogrithm 4.5.

In detail, condition (4.20) is expanded as

U
µq
E (zq, zq+1)− λUC(uq, zq, uq+1, zq+1) ≥ FE(xq+1)− λHC(zq+1, uq+1), (4.21)

where

U
µq
E (zq, zq+1) = FE(zq) +

〈
∇fE(zq), zq+1 − zq

〉
+
µq
2
‖zq+1 − zq‖2 −

〈
v̄E

q, g(zq+1)− g(zq)
〉
,

UC(uq, zq, uq+1, zq+1) = HC(uq, zq) +
〈
∇HC(zq, uq), (zq+1 − zq, uq+1 − uq)

〉
.

Proposition 4.1. Let g(z) = {gi,j(z)}i,j=1,...,n, φ = (u, z, g(z)). The sequence {φq}
generated by Algorithm 4.5 enjoys the following properties:

92 Deep Clustering

Algorithm 4.5 MSSC-JDR: DCA-Like for solving problem (4.7)

Initialization: Choose u0, z0, η > 1, 0 < δ < 1, µ0 > 0 and q ← 0.
repeat

Compute (z̄E
q, v̄E

q) ∈ ∂Hµq
E (zq, vq) and (ūC

q, z̄C
q) ∈ ∂HC(uq, zq).

Set µq = max{µ0, δµq−1}.
Obtain (zq+1, uq+1) by using Algorithm (4.3).
while U

µq
E (zq, zq+1)− λUC(uq, zq, uq+1, zq+1) < FE(xq+1)− λHC(zq+1, uq+1) do

µq ← ηµq
Obtain (zq+1, uq+1) by using Algorithm (4.3).

end while
q ← q + 1.

until Stopping condition.

(i) The sequence {FJ(φq)} is decreasing;

(ii) If FJ(φq+1) = FJ(φq), then φq is a critical point of (4.10) and Algorithm 4.5
terminates at the q-th iteration.

(iii) If µ(G) + µ(H) > 0 then the series {‖φq+1 − φq‖2} converges.

Proof. Direct consequences of the convergence properties of DCA-Like in [51] and
[80].

4.2.4 Numerical experiment

4.2.4.1 Experiment settings and Datasets

Evaluation criteria:

Given an input xi with ground-truth label li; and pi is the assignment label from
clustering algorithm, we measure the following criteria to evaluate experimental results:

— Clustering Accuracy (ACC [13]): ACC is calculated as ACC(l, p) =
1
n

∑n
i=1 1m(pi)=li , where m(xi) is the function which maps each clustering as-

sign in pi to the equivalent label li. In our case, we use the mapping by using
the Kuhn-Munkres algorithm [73].

— Normalized mutual information (NMI [102]): The NMI criterion is cal-

culated as NMI(l, p) = I(l,p)√
H(l)H(p)

, where I(l, p) is the mutual information of l

and p.

In addition, we measure running time (in seconds) to evaluate the speed of algo-
rithms. All experiments are conducted on a Intel(R) Xeon (R) CPU E5-2630 v4 @2.20
GHz with 32GB of RAM and a GTX 1080 GPU.

We repeat the experiment 10 times, and report the average with standard deviation
of each criterion.

D

Deep Clustering 93

Setting for MSSC-2S and MSSC-JDR: following the work of [51, 123], we set µ0 =
10−6. For all datasets, proximity matrix P is constructed by k-Nearest Neighbor with
kNN = 10. z0 is draw from N (0, 10−8). Early exaggeration technique [106] is deployed
for first 20 iterations with the constant value of 4. For MSSC-2S, we execute t-SNE until
convergence, then clustering on z by MSSC 10 times, choosing the solution which has
the best objective value. For MSSC-JDR, we initialize zMSSC-JDR0 from the 5th iteration of
t-SNE after early exaggeration. uMSSC-JDR0 is obtained by executing MSSC 10 times on
zMSSC-JDR0 and choose the solution with the lowest objective value. The linear system of
the sub-problem is solved by Conjugate Gradient solver with the complexity of O(n).

Datasets: Datasets used in the experiment are downloaded from Feature Selection
Repository 2 and UCI Repository 3.

4.2.4.2 Experiment 1: Hyper-parameters of MSSC-JDR and MSSC-2S

In this experiment, we interest in the performance of MSSC-JDR and MSSC-2S as
their hyper-parameters vary: λ for MSSC-JDR and d for both algorithms.

For this experiment, we vary λ ∈ {10−4, 10−3, . . . , 1} and d ∈ {5, 10, 20, 30}. Clus-
tering accuracy is reported in Figure 4.1 for 6 datasets (leukemia, GLI 85, Carcinom,
coil20, isolet and gisette), due to the large grid-search used in this experiment.

We observe that:

- For MSSC-2S, the number of dimensions has a strong effect on the clustering
accuracy. In detail, for d ∈ {20, 30}, MSSC-2S produces the highest clustering accuracy
in 4 over 6 cases (leukemia, coil20, gissete and usps); which is higher than d ∈ {5, 10}
by 1 case.

- For MSSC-JDR, both λ and d strongly affect clustering accuracy. In detail, the
highest accuracy is mostly obtained for d = 20 in 4 over 6 cases (leukemia, coil20,
isolet, and usps); followed by d = 10 for 3 over 4 cases (leukemia, coil20 and usps).
For d = 20, λ = 10−2 produces the best result with the highest accuracy in 4 over
6 cases (leukemia, Carcinom, coil20, isolet, gissete, and usps); followed by λ = 10−1

with 3 over 4 cases (leukemia, Carcinom, and gissete).

From these observations, we choose d = 10 (for both MSSC-JDR and MSSC-2S) and
λ = 10−2 (for MSSC-JDR) in the next experiments.

4.2.4.3 Experiment 2: Comparasion between MSSC-2S, MSSC-JDR and stan-
dard MSSC

In this experiment, we interest in studying the effectiveness of MSSC-2S and
MSSC-JDR in compare with the standard MSSC algorithm [45], to demonstrate the ef-

2. http://featureselection.asu.edu/index.php

3. https://archive.ics.uci.edu/ml/datasets/isolet

94
D

ee
p

C
lu

st
er

in
g

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

7374757677787980
Accuracy (%)

d
=

 5
d

=
 1

0
d

=
 2

0
d

=
 3

0

(a
)

le
u

ke
m

ia

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

80

80
.581

81
.582

82
.5

Accuracy (%)
(b

)
C

a
rc

in
o
m

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

6870727476788082

Accuracy (%)

(c
)

co
il

2
0

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

58606264666870
Accuracy (%)

(d
)

is
o
le

t

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

93
.2

93
.3

93
.4

93
.5

93
.6

93
.7

Accuracy (%)

(e
)

gi
ss

et
e

MSSC-2S

MSSC-JDR
=10-4

MSSC-JDR
=10-3

MSSC-JDR
=10-2

MSSC-JDR
=10-1

MSSC-JDR
=100

95
.8

95
.996

96
.1

96
.2

96
.3

96
.4

Accuracy (%)

(f
)

u
sp

s

F
ig

u
re

4
.1

–
C

lu
st

er
in

g
ac

cu
ra

cy
of

M
S
S
C
-
2
S

an
d
M
S
S
C
-
J
D
R

as
λ

va
ri

es
.

\' \' \'

\' \' \'

\' \' \'

\'
\'

\'

\' \'
\'

\' \' \'

\' \' \'

\' \' \'

w
\' \'

\'

\' 1 ~ 1 \'
/ / / 1 1 \'

Deep Clustering 95

fectiveness of our proposed method.

Parameters of MSSC-2S and MSSC-JDR are the same as in the Experiment 1, but
with the number of reduced dimension d = 10 for both algorithms and λ = 10−2 for
MSSC-JDR.

The comparative results between algorithms are reported in Table 4.1 and Fig-
ure 4.2.

In comparison between MSSC-2S and MSSC-JDR:
— In terms of clustering accuracy, both MSSC-2S and MSSC-JDR are clearly better

than MSSC in all datasets. The gain is high, from 6.95% (isolet) to 48.42%
(emnist-digits).

— In terms of running time, in general, both MSSC-2S and MSSC-JDR are slower
than MSSC. However, MSSC-JDR is faster than MSSC for 2 biggest datasets (mnist
and emnist-digits). It is worthy to note that the running time for small-size
datasets is quite small (lower than 15 minutes), but the save-up in terms of
running time for large-scale datasets is enormous: from 8.8 hours (reps. 80
minutes) to 1.5 hours (reps. 10.5 minutes) for emnist-digits dataset (reps. mnist
dataset).

In comparison between MSSC-JDR and MSSC-2S, MSSC-JDR proved to be more effi-
cient, in both terms of clustering quality and running time. In terms of the clustering
accuracy, MSSC-JDR is better than MSSC-2S in 7 over 9 datasets (from 0.01% to 1.09%),
and equal in the remaining 2 datasets (leukemia and GLI 85). As for running time,
except for 2 datasets (isolet and gisette), MSSC-JDR is faster than MSSC-2S by a large
margin, up to 14 times. Most notably, in the three largest datasets (usps, mnist and
emnist-digits), the gains are from 3.17 to 14 times, with no drop in accuracy.

In short, both MSSC-2S and MSSC-JDR out-perform MSSC in term of accuracy (up
to 48.42%) but with a trade-off in term of computing time. This result is aligned with
previous result on clustering high-dimensional data: the dimension reduction technique
improves the clustering accuracy by reducing the number of dimension to cope with
“curse of dimensionality” phenomenal. MSSC-JDR is clearly an enhancement of MSSC
for high-dimensional datasets with an agreeable trade-off in terms of computing time;
and MSSC-JDR also clearly is an improvement over MSSC-2S.

4.2.4.4 Experiment 3: Comparison with NMF and VolMin-based factor-
ization joint-clustering algorithms

Comparative algorithms and settings: This experiment compares the per-
formance between our proposed method with jointly dimension reduction and MSSC-
based clustering algorithms. We consider the following algorithms:

— NMFKM [119]: Two-stage combination of NMF and K-means.
— JNKM [119]: Joint NMF and K-means.
— JVKM [119]: Joint VolMin and K-means.
For JNKM and JVKM, the parameters for this experiments is the number of reduced

96 Deep Clustering

dimensions F . We choose F ∈ {5, 10, 20, 30} and report the best average result. Others
parameters are set as default provided by the authors’ source code.

Parameters of MSSC-JDR are the same as in Experiment 1, but with the number of
reduced dimension d = 10 and λ = 10−2.

Experiment result and comments: The comparative results between algo-
rithms are reported in Table 4.1 and Figure 4.2. We observe that MSSC-JDR out-
performs others by a large margin in term of clustering accuracy but requires longer
running time. The gains in clustering accuracy depends on the datasets, but MSSC-JDR
is always better or equal: from no gains at all (as in GLI 85 dataset) up to 38% (as
in mnist dataset). In terms of computing time, the same situation as in comparison
with MSSC: the improvement in term of clustering accuracy comes with a trade-off but
reasonable computing time.

To sum up, MSSC-JDR is the most accurate clustering algorithm among MSSC-JDR,
MSSC-2S and MSSC.

leukemia GLI_85 Carcinom coil20 isolet gisette usps mnist emnist-digits
10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

MSSC
JNKM
JVKM
NMFKM
MSSC-2S
MSSC-JDR

Figure 4.2 – Clustering accuracy of all algorithms. For the last dataset (emnist-
digits), JNKM and JVKM encounter the Out Of Memory error.

Table 4.1 – Comparative result between algorithms over all datasets. Bold values
correspond to best results for each dataset. NA means the algorithm failed to procedure
the result (i.e. Out of Memory).

Dataset Algorithm
NMI Accuracy Time (sec.)

Average STD Average STD Average STD

leukemia MSSC 12.54% 0.00% 70.83% 0.00% 1.44 0.05

- ·-I-··
- ·-I-··
- ·-I-··
- ·-I-··
-+--+-

Deep Clustering 97

n = 72 JNKM 16.47% 0.91% 74.44% 0.76% 1.78 0.30
d = 7070 JVKM 18.34% 3.02% 76.11% 1.81% 37.31 0.08
k = 2 NMFKM 17.25% 18.21% 71.94% 9.49% 1.10 0.06

MSSC-2S 23.14% 0.00% 79.17% 0.00% 7.36 0.15
MSSC-JDR 23.14% 0.00% 79.17% 0.00% 3.82 0.05

GLI 85 MSSC 5.00% 0.58% 57.06% 1.02% 6.12 0.21
n = 85 JNKM 25.09% 0.00% 70.59% 0.00% 0.77 0.02
d = 22283 JVKM 5.27% 2.21% 68.94% 3.07% 340.97 0.18
k = 2 NMFKM 22.96% 3.27% 68.24% 3.63% 15.90 0.46

MSSC-2S 25.09% 0.00% 70.59% 0.00% 5.41 0.33
MSSC-JDR 25.09% 0.00% 70.59% 0.00% 3.98 0.16

Carcinom MSSC 76.23% 3.33% 74.71% 3.48% 7.88 0.23
n = 174 JNKM 33.02% 1.48% 37.01% 0.87% 0.56 0.01
d = 9182 JVKM 75.23% 3.93% 74.94% 5.73% 62.13 0.19
k = 11 NMFKM 81.20% 2.11% 78.39% 1.32% 9.74 0.09

MSSC-2S 79.93% 0.39% 81.03% 0.36% 10.16 0.19
MSSC-JDR 81.10% 0.28% 82.18% 0.26% 9.77 0.11

coil20 MSSC 78.37% 0.62% 68.40% 2.63% 13.94 0.21
n = 1440 JNKM 74.47% 3.03% 59.42% 4.59% 3.06 2.56
d = 1024 JVKM 79.17% 2.13% 65.58% 2.44% 19.47 1.16
k = 20 NMFKM 74.07% 1.22% 62.22% 2.65% 2.58 0.32

MSSC-2S 86.70% 0.04% 79.90% 0.16% 73.82 4.74
MSSC-JDR 86.97% 0.01% 80.26% 0.23% 71.07 3.82

isolet MSSC 76.27% 0.66% 61.99% 1.58% 9.80 0.14
n = 1560 JNKM 43.64% 0.66% 17.65% 3.89% 0.71 0.08
d = 617 JVKM 77.50% 1.04% 65.60% 2.44% 16.83 7.14
k = 26 NMFKM 77.24% 1.47% 62.41% 2.75% 2.86 0.13

MSSC-2S 80.30% 0.41% 67.85% 0.80% 63.28 5.50
MSSC-JDR 80.14% 0.33% 68.94% 0.53% 80.53 0.68

gisette MSSC 12.16% 0.01% 68.40% 0.01% 815.42 18.33
n = 7000 JNKM 9.80% 1.89% 67.16% 1.66% 162.89 1.40
d = 5000 JVKM 30.17% 6.07% 79.70% 3.00% 61.74 1.36
k = 2 NMFKM 1.17% 1.47% 55.35% 3.56% 19.90 0.55

MSSC-2S 64.45% 0.03% 93.25% 0.01% 330.37 0.83
MSSC-JDR 65.06% 0.00% 93.41% 0.00% 27.34 3.13

usps MSSC 61.35% 0.01% 67.26% 0.05% 83.88 2.40
n = 9298 JNKM 29.28% 4.48% 32.95% 2.25% 2.02 0.16
d = 256 JVKM 67.75% 0.85% 69.87% 1.14% 58.17 1.50
k = 10 NMFKM 60.11% 0.92% 64.04% 1.28% 4.94 0.14

MSSC-2S 90.91% 0.11% 96.29% 0.06% 1862.05 95.57

98 Deep Clustering

MSSC-JDR 90.92% 0.13% 96.30% 0.07% 583.97 41.56

mnist MSSC 44.25% 0.02% 48.24% 0.05% 4774.27 171.50
n = 70000 JNKM 23.73% 2.26% 30.33% 2.60% 31.96 10.55
d = 784 JVKM 49.94% 1.00% 58.65% 2.26% 201.61 3.50
k = 10 NMFKM 44.36% 2.21% 50.89% 4.10% 95.36 3.25

MSSC-2S 91.41% 0.01% 96.63% 0.00% 2294.60 49.17
MSSC-JDR 91.46% 0.03% 96.66% 0.01% 630.52 24.49

emnist-digits MSSC 42.86% 0.01% 46.78% 0.00% 31816.56 1,013.58
n = 280000 JNKM NA NA NA NA NA NA
d = 784 JVKM NA NA NA NA NA NA
k = 10 NMFKM 36.67% 0.45% 26.23% 0.63% 274.79 3.61

MSSC-2S 94.35% 0.01% 97.97% 0.01% 78962.85 5078.14
MSSC-JDR 94.36% 0.00% 97.97% 0.00% 5623.78 691.53

4.2.4.5 Experiment 4: Compare with joint-clustering algorithms using
auto-encoder

This experiment compares our proposed approach with auto-encoder-based joint-
clustering algorithms on image datasets. We consider the following ones:

— DC-Kmeans [104] proposes an algorithm for solving the joint-clustering of Deep
Auto-Encoder and K-means by Alternating Direction of Multiplier Method
(ADMM).

— DEC [117] uses a two-step procedure: the first step consists of training the auto-
encoder using reconstruction loss; then the second step jointly optimizes the
encoder and soft assignment clustering loss function for dimension reduction
and clustering respectively.

— IDEC [33] (Improved DEC) argues the two-step procedure in DEC could weaken
the representatives of the embedded features and hurts clustering performances
as DEC strips out the decoder part during the optimization the joint-clustering;
hence it simultaneously optimizes the full auto-encoder and clustering by soft
assignment clustering as in DEC.

Setting for DC-Kmeans: we use the authors’ implementation 4. We set the number
of neural in the bottle-neck layer equals to the number of classes for all datasets. For
training the auto-encoder, we use Matlab’s neural network toolbox. We also notice
that the author’s scheme for initializing K-means’ centroids often produces bad results
(especially for coil20 dataset), so we use to the same procedure for initial point as
MSSC-JDR.

4. https://github.com/JennyQQL/DeepClusterADMM-Release

Deep Clustering 99

leukemia GLI_85 Carcinom coil20 isolet gisette usps mnist emnist-digits
10-1

100

101

102

103

104

105
T

im
e

(s
ec

)

MSSC
JNKM
JVKM
NMFKM
MSSC-2S
MSSC-JDR

Figure 4.3 – Running time (in seconds) of all algorithms. For the last dataset (emnist-
digits), JNKM and JVKM encounter the Out Of Memory error.

Setting for IDEC and DEC: we use the implementation from IDEC’s authors 5 6 for
pre-train the auto-encoder and for applying the joint-clustering algorithm respectively.

Setting for MSSC-JDR is the same as in the Experiment 1, but with the number
of reduced dimension d = 10 and λ = 10−2.

Note that, there would be different from the original work’s result due to the
randomness.

Result in this experiment is summarized in Table 4.2. We observe that MSSC-JDR is
very competitive in general. In terms of both NMI and clustering accuracy, MSSC-JDR
has the best result in all 4 datasets. The improvement is huge: the gap to the second-
best alogrithm in terms of clustering accuracy is from 5.92% to 20.32%. In terms
of running time, DEC is the fastest in 2 smaller datasets (coil20 and usps), whereas
MSSC-JDR is the fastest in the 2 bigger ones (mnist and emnist-digits). It is clear that
MSSC-JDR outperforms considering deep clustering algorithms (DC-Kmeans, DEC and
IDEC) in clustering quality and running time, especially in large-scale dataset.

5. https://github.com/XifengGuo/IDEC

6. https://github.com/XifengGuo/IDEC-toy

/ / ____ .,,..

' . ,,,,,.,.. ·' . . ·-wf ,,.--· ..,,,.--
• I .t-·-· • ·-·-· -·""· /

/,-...__ ,.,_ i ·--· / \ / ,. ----- ________ _-_:-_-- j;· ; _,., \ / ,I
b,.</ :-t~ -~ _.,// ·--~-,.,<,/
2-- __ --·-- ·,. / ~/ . _____ ,,,. '·..f

.r,
I' • . ' / .

/ '· . ' I' •
.L.

100 Deep Clustering

Table 4.2 – Comparative result between MSSC-JDR and Auto-encoder-based joint-
clustering algorithms. Bold values correspond to best results for each dataset. NA
means the algorithm failed to produced a result under 12 hours.

Dataset Algorithms
NMI Accuracy Time

Environment
Average STD Average STD Average STD

coil20 DC-Kmeans 75.35% 0.85% 62.43% 2.09% 810.39 0.04 CPU
n = 1440 DEC 67.16% 0.77% 41.25% 1.69% 28.51 0.87 GPU
d = 1024 IDEC 67.58% 1.18% 40.68% 1.83% 36.84 1.28 GPU
k = 20 MSSC-JDR 86.97% 0.01% 80.26% 0.23% 71.07 3.82 CPU

usps DC-Kmeans 55.26% 0.11% 60.55% 0.16% 5,006.83 19.35 CPU
n = 9298 DEC 77.75% 0.81% 75.98% 0.54% 20.06 1.70 GPU
d = 256 IDEC 77.38% 0.86% 75.78% 0.62% 218.79 13.29 GPU
k = 10 MSSC-JDR 90.92% 0.13% 96.30% 0.07% 583.97 41.56 CPU

mnist DC-Kmeans 75.65% 0.02% 78.04% 0.03% 39,840.73 635.35 CPU
n = 70000 DEC 84.65% 0.64% 87.19% 3.21% 2,377.82 520.98 GPU
d = 784 IDEC 88.98% 1.53% 90.74% 4.56% 2,135.05 98.4 GPU
k = 10 MSSC-JDR 91.46% 0.03% 96.66% 0.01% 630.52 24.49 GPU

emnist-digits DC-Kmeans NA NA NA NA NA NA CPU
n = 280000 DEC 86.05% - 82.85% - 5,899.98 - GPU
d = 784 IDEC 89.05% 0.12% 84.74% 0.17% 8,762.10 135.31 GPU
k = 10 MSSC-JDR 94.36% 0.00% 97.97% 0.00% 5,623.78 691.53 CPU

coil20 usps mnist emnist-digits
30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

DC-Kmeans
DEC
IDEC
MSSC-JDR

Figure 4.4 – Clustering accuracy of MSSC-JDR and AE-based joint-clustering algo-
rithms. For the last dataset (emnist-digits), DC-Kmeans failed to give result due to the
time limitation of 24 hours.

-·-:3:-··
-·-:3:-··
-·-:3:-··
-+-

Deep Clustering 101

4.3 An approach for the scaling problem in a class

of joint-clustering algorithms by auto-encoder

4.3.1 Auto-encoder

According to the definition from [31], auto-encoder is “a neural network that is
trained to attempt to copy its input to its output”. It is a powerful tool to train a
mapping from original data to code, which minimizes the reconstruction error from
such code. Usually, the dimension of the code is smaller than the one of data, hence
auto-encoder traditionally has been used for dimension reduction or feature learning.
In this study, we focus on stacked auto-encoder - a variance of auto-encoder which is
widely used in clustering.

The standard stacked auto-encoder consists of two components: an encoder and
a decoder. An encoder fE (reps. decoder fD) is a neural network parametrized by
parameter θE (reps. θD), maps data from Rm → Rd (reps. Rd → Rm). Given a
raw input data point xi ∈ Rm (i.e. an image, a document, etc.), the encoder first
produces code zi ∈ Rd, then the decoder reconstructs x̂i of xi only from code zi
(figure 4.5 illustrates the corresponding auto-encoder). By reconstructing the input,
the network can learn the under-complete but informative representation from the raw
input data. Mathematically, given a data-set {xi}i=1,...,n where xi ∈ Rm, the problem
of auto-encoder reconstruction can be defined as

min
θE ,θD

{
FAE(θE, θD) =

n∑
i=1

`(xi, f
D(θD, f

E(θE, xi)))

}
, (4.22)

where ` measures the reconstruction error. Common choices for ` are mean squared
error, binary cross-entropy, `1 norm, etc. In this work, we consider the square error
`(x, y) = ‖x− y‖2

2.

The autoencoder fAE = fD ◦ fE can be seen as a neural network of L layers,
where fD = f (L) ◦ · · · ◦ f (l) and fE = f (l) ◦ · · · ◦ f (1). Each function f (i) represents a
layer of the neural network, which maps the output of the previous layer z(i−1) into
new code z(i) = h(z, θ(i−1)) where h is the activation function. A typical choice for
h is linear function (hlinear(z, θ) = φ(z, θ)) or non-linear function such as ReLU [79]
(hReLU(z, θ) = max(φ(z, θ), 0), where max is a element-wise operator), where φ(z, θ)
is the matrix multiplication operators (dense layer in neural network) or convolution

Code
𝑧 = 𝑓𝐸 𝑥

Input
𝑥

Output
ො𝑥 = 𝑓𝐷(𝑧)

Encoder 𝑓𝐸 Decoder 𝑓𝐷

Figure 4.5 – Illustration of an auto-encoder.

()

IJ ~

102 Deep Clustering

operation (convolution layer in convolution neural network).

4.3.2 Scaling problem of joint-clustering by auto-encoder

Let us consider the problem of deep joint-clustering by MSSC. Several works
[99, 104, 120, 129, 32, 43] combines auto-encoder with K-means (MSSC) into an
optimization problem by using the linear scalarization technique of multi-objective
programing. Formally, this problem is defined as

min
θE ,θD,u,s

F J-MSSC(θE, θD, u, s) := FAE(θE, θD) + λF IP-MSSC(θE, u, s) (4.23)

=
n∑
i=1

‖xi − fD(θD, f
E(θE, xi))‖2

2 + λ‖us− fE(θE, xi)‖2
2

s.t. sj,i ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , k,∑
j

si,j = 1 for i = 1, . . . , n,

or

min
θE ,θD,u

F J-MSSC(θE, θD, u, s) := FAE(θE, θD) + λFBi-MSSC(θE, u) (4.24)

=
n∑
i=1

(
‖xi − fD(θD, f

E(θE, xi))‖2
2 + λ min

l=1...k
‖ul − fE(θE, xi)‖2

2

)
,

where λ controls the trade-off between two terms; u ∈ Rk×m are k centroids in latent
space.

However, problem (4.23) and (4.24) both suffer the scaling problem in latent space,
which is explained as following. Let l is the bottle-neck layer of the L-layer auto-
encoder, i.e. fE = f (l) ◦ f (l−1) ◦ · · · ◦ f (1) and fD = f (L) ◦ · · · ◦ f (l+1), where f (i) is the
transformation function of i-th layer/block. In modern auto-encoder in general and
in deep clustering in particular, f (l) and f (l+1) are linear function or sometimes are
nonlinear activation function (such as ReLU):

ReLU: f (i)(θ(i), z(i−1)) = ReLU(θ(i)z(i−1)),

Linear activation: f (i)(θ(i), z(i−1)) = θ(i)z(i−1),

for i ∈ {l, l − 1}, and z(i) is the output of the i-th layer. For these networks, the first

terms FAE is invariance to the scaling of z
(l)
i = fE(θE, xi), but the second term FMSSC

scale quadratically to z
(l)
i .

4.3.3 Proposed solution

4.3.3.1 Spherical distance

Instead of computing the Euclidean distance on Rm space, we measure the distance
on the projection of data points on the surface of the unit hypersphere Sm−1 instead.

Deep Clustering 103

By only considering the distance between projections, we eliminate the magnitude of zi
but only its direction. Among them, the cosine distance function is a popular distance
function, which has been used in several clustering algorithms, notably by Spherical
K-means [24]. It is defined as

dcosine(zi, zj) = 1−
〈

zi
‖zi‖2

,
zj
‖zj‖2

〉
.

This distance function has recently been used in deep clustering problem [5], and
have demonstrated its effectiveness in comparison with other regularization methods
such as Batch Normalization and Layer Normalization. However, the cosine distance is
not a metric because it violates the triangular inequality. In addition, consider the case
where comparing the distance between two projects on the surface of the hypersphere
Sm−1. Let us consider the example in Figure 4.6. Since x̄i and x̄j are the projection of
xi and xj onto the hypersphere, measuring the arc length between x̄i and x̄j (length
of the dashed orange arc) is more suitable than the Euclidean distance between them
(length of the solid blue line segment). Hence, instead of using the dcosine, we employ
the dspherical as

dspherical(zi, zj) =
arccos(scosine(zi, zj))

π
=

1

π
arccos

〈
zi
‖zi‖2

,
zj
‖zj‖2

〉
,

where arccos(α) is the inverse cosine 1function for α ∈ [−1, 1]. To avoid numerical
problem of ‖zi‖2 = 0, we slightly modify dspherical to

dεspherical(zi, zj) =
1

π
arccos

〈
zi

‖zi‖2 + ε
,

zj
‖zj‖2 + ε

〉
, (4.25)

for a very small value of ε.

𝑥𝑖

𝑥𝑗

ഥ𝑥𝑗

ഥ𝑥𝑖𝑟 = 1

𝑑spherical(𝑥𝑖 , 𝑥𝑗)

Figure 4.6 – Illustration of the spherical distance. The solid blue line segment (reps.
dashed orange arc) represents the Euclidean distance between x̄i and x̄i (reps. spherical
distance), which are the projection of xi and xj onto the hypersphere (i.e. x̄ = x

‖x‖2).

104 Deep Clustering

4.3.3.2 Application for deep joint-clustering with MSSC

In this section, we applied the proposed extension in section 4.3.2 for the specific
problem (4.24). Modifying the distance in problem (4.24) from squared Euclidean
distance to dεspherical leads to the

min
θE ,θD,u

F J-Sphericalε(θE, θD, u, s) := FAE(θE, θD) + λF Sphericalε(θE, u) (4.26)

=
n∑
i=1

‖xi − fD(θD, f
E(θE, xi))‖2

2 + λ

n∑
i=1

min
l=1,...,k

dεspherical(f
E(θE, xi), ul),

where λ is the trade-off parameter.

Motivated by the success of Adam algorithm [41] in deep learning, especially for
solving the first term FAE(θE, θD) in (4.26), we adopt Adam to solve our problem. The
problem (4.26) is difficult due to the non-differentiable of the second term F Sphericalε .
We apply the following smoothing technique for min function with αs > 0,

min
l=1,...,k

rl ≈ LSEαs(r) = −αs log
k∑
l=1

exp(−αsrl),

which turns problem (4.26) into following optimization problem

min
θE ,θD,u

F J-Sphericalε(θE, θD, u, s) := FAE(θE, θD) + λF Smooth-Sphericalε(θE, u)

(4.27)

=
n∑
i=1

‖xi − fD(θD, f
E(θE, xi))‖2

2 +
n∑
i=1

−λα
π

log
k∑
l=1

exp−αdεspherical(f
E(θE, xi), ul).

Each iteration of Adam for solving the problem (4.27) requires computing gradient
∇θE ,θD,uF

J . The computation of ∇θE ,θDF
J can be calculated by the back-propagation

algorithm [95], and the computation for ∇uF
J is computed by

∂F J(u)

∂ul
=
α2λ

π

n∑
i=1

LSE1(αti) softmax(αti)

1
‖ul‖2+ε

I− 1
‖ul‖2(‖ul‖2+ε)2

ulu
T
l√

1−
〈
zi,

ul
‖ul‖2+ε

〉 zi, (4.28)

where softmax(t̄) = exp(−t̄)∑
l exp(−t̄l)

, ti = (t
(i)
l)l=1,...,k =

(
arccos

〈
zi,

ul
‖ul‖2

〉)
l=1,...,k

and zi =

FE(θE ,xi)

‖FE(θ0E ,xi)‖
, i = 1, . . . , n.

The Adam applied for problem (4.26) is outlined in Algorithm 4.6.

Similar to MSSC-JAE-Sphere, MSSC-JAE-Cosine solves the joint-clustering prob-
lem of auto-encoder with MSSC using the cosine distance (problem (4.26) with

Deep Clustering 105

Algorithm 4.6 MSSC-JAE-Sphere: Adam applied for problem (4.26)

Input: Data x, number of clusters k, trade-off parameter λ, smooth parameter α,
batch-size b, Adam’s parameter (α, β1, β2)
Initialization:

Initialize θE, θD (by pre-train of by random initialization).
Initialize u (by random initialization or by clustering on z = fE(θE, x)).

repeat
Sample a batch xt.
Compute Gt = ∇θE ,θD,uF

J-Spherical(θtE, θ
t
D, u

t) with data xt where
∇θE ,θDF

J-Sphericalε(θtE, θ
t
D, u

t) is computed by back-propagation and
∇uF

J-Sphericalε(θtE, θ
t
D, u

t) is computed by (4.28).
Update (θE, θD, µ) using Adam with Gt.
t← t+ 1.

until Stopping condition.

dcosine instead of dεspherical) by Adam. The difference is the step of computing

∇uF
J-Sphericalε(θtE, θ

t
D, u

t), which is done automatically by autograd 7.

4.3.4 Numerical experiment

4.3.4.1 Datasets

To study the performances of clustering algorithms, we consider the following image
and text dataset(s), which are all widely used to benchmark clustering algorithms:

— mnist: The mnist dataset [68] consists of 70000 gray-scale 28× 28 images over
10 classes of handwritten digits.

— fashion: The fashion dataset [116] consists of 70000 gray-scale 28×28 images.
fashion contains 10 classes of clothing items (shirt, dress, shoe, bag, etc.).

— usps: Similar to mnist dataset, the usps dataset consists of 9298 gray-scale
16× 16 images over 10 classes of handwritten digits.

— rcv1: Similar to [117, 120], we used a subset of 10000 documents from the
full RCV1–v2 corpus (Reuters Corpus Volume 1 Version 2) of the four largest
classes. Following the procedure in [117], we represent each document by a
tf-idf vector of the 2000 most frequently occurring words.

4.3.4.2 Comparative algorithms

We compare the proposed methods (MSSC-JAE-Sphere and MSSC-JAE-Cosine)
with the following baselines:

— MSSC: MSSC clustering for raw data.

7. https://pytorch.org/docs/stable/autograd.html

106 Deep Clustering

— AE-MSSC: The 2-step approach, which an auto-encoder is first applied for di-
mensionality reduction, followed by MSSC for clustering

— DC-Kmeans [104] solves an alternative of problem (4.23) by Alternating Direction
of Multiplier Method (ADMM).

— DCN [120] solves the problem (4.23) by their proposed alternating stochastic
gradient algorithm.

Auto-encoder settings: For a fair comparison, we following the setting
from [120]. For all algorithms, we follow the standard architecture for clustering with
auto-encoder: the number of node in the encoder is m− 500− 500− 2000− k, where
m is the number of features in the dataset and k is the number of clusters; and the
decoder is the mirror of the encoder. The activation function of embedding layer and
the last layer are linear, whereas the rest are ReLU. Unless specified otherwise, the
auto-encoder is initialized follow the ”Xavier Uniform” scheme [29] and pre-train by
Adam with learning rate α = 10−3 and (β1, β2) = (0.9, 0.999) for 50 epochs with
batch-size of 256.

Setting for MSSC-JAE-Cosine: we use the Adam optimizer with learning rate
α = 3 × 10−4, (β1, β2) = (0.9, 0.999) and batch-size of 256. The smooth parameter
αs = 16. The algorithm stop when either of the following criteria is met: (1) 500

epochs or (2) convergence (F
J (θk,uk)−FJ (θk−1,uk−1)

FJ (θk−1,uk−1)
< ε or ‖(θ, u)k − (θ, u)k−1‖2 < ε).

For initial point, the weighted θ0 = (θ0
E, θ

0
D) is obtained by the procedure above. u0

is initialized as the best result (by objective value) among 10 runs of K-means on

extracted feature
{

FE(θ0E ,xi)

‖FE(θ0E ,xi)‖

}
i=1,...,n

. The activation in auto-encoder is Soft Plus - a

smooth approximation of ReLU: Softplus(x) = 1
β

log(1 + exp(βx)) , with β = 256.

Setting for MSSC-JAE-Sphere: the setting is the same as MSSC-JAE-Cosine’s
except u0. We set ε = 10−4 for the dεspherical. For u0, we solve the MSSC-Sphere

problem (MSSC with dεspherical instead of dSquared Euclidean) by Adam optimizer (default

parameters) for 10 runs for extracted data
{
FE(θ0

E, xi)
}
i=1,...,n

. u0 is selected as the

result whose objective value is smallest. The algorithm is implemented in PyTorch 8.

Setting for DC-Kmeans: We use the authors’ implementation 9. For training the
auto-encoder, we use Matlab’s neural network toolbox. We also notice that the initial
point scheme for K-means from the author’s implementation often produces bad re-
sults, so we use to the same procedure for initial point as MSSC-JAE-Cosine but with
extracted feature {FE(θ0

E, xi)}i=1,...,n. For DC-Kmeans, the authors set λ = 1.

Setting for DCN: We use the source code available at 10.

8. https://pytorch.org/

9. https://github.com/JennyQQL/DeepClusterADMM-Release

10. https://github.com/MaziarMF/deep-k-means

Deep Clustering 107

4.3.4.3 Experiment setting

Evaluation criteria: Given an input xi with ground-truth label li; and pi is
the assignment label from clustering algorithm, we measure the following criteria to
evaluate experimental results:

— Clustering Accuracy (ACC [13]): ACC is calculated as ACC(l, p) =
1
n

∑n
i=1 1m(pi)=li , where m(xi) is the function which maps each clustering as-

sign in pi to the equivalent label li. In our case, we use the mapping by using
the Kuhn-Munkres algorithm [73].

— Normalized mutual information (NMI [102]): The NMI criterion is cal-

culated as NMI(l, p) = I(l,p)√
H(l)H(p)

, where I(l, p) is the mutual information of l

and p.

All algorithms in our experiment (except MSSC and AE+KM) has a hyper parameter
λ controls the trade-off between the auto-encoder and the clustering. For choosing the
λ, we performs a grid search λ ∈ {10−7, 10−6, . . . , 102}. We repeat the experiment 10
times, select the results which has the highest accuracy among 10 runs, and report the
average with standard deviation of each criterion.

All experiments are conducted on a Intel(R) Xeon (R) CPU E5-2630 v4 @2.20 GHz
with 32GB of RAM and a GTX 1080 GPU.

4.3.4.4 Experiment results

The experiment result of all datasets is reported in Table 4.3.

The results show that reducing the number of dimension by auto-encoder facilitates
the clustering process: the increase in accuracy by using the 2-step approach (AE+MSSC)
over clustering on raw data (MSSC) is significant. The gap in clustering accuracy is up to
32.56% as in mnist dataset. However, the final result of both MSSC and AE+MSSC do not
exceed the joint-clustering approach (DCN, MSSC-JAE-Cosine, and MSSC-JAE-Sphere).
DCN further improves the accuracy of AE+MSSC among all 4 datasets, range from 0.33%
to 2.68%.

The proposed methods (MSSC-JAE-Cosine and MSSC-JAE-Sphere) further improve
the clustering quality over DCN. The increase in terms of clustering accuracy is consis-
tent, ranging from 1.21% to 7.63% (reps. from 2.48% to 8.17%) for MSSC-JAE-Cosine
(reps. MSSC-JAE-Sphere). Both MSSC-JAE-Cosine and MSSC-JAE-Sphere pro-
duces better results than DCN. The NMI of both results of MSSC-JAE-Cosine and
MSSC-JAE-Sphere is higher than DCN’s, up to 3.90% and 6.72% respectively. This
result demonstrates the importance of regularization on the latent space, which is
achieved in this case by projection the data point’s representation in the latent space
onto the `2 ball. In addition, among two methods that utilize the `2 projection in the
latent space, MSSC-JAE-Sphere is undoubtedly better than MSSC-JAE-Cosine: the
gap in clustering accuracy is from 0.22% (usps dataset) to 2.5% (mnist dataset). This

108 Deep Clustering

Table 4.3 – Comparative result between Auto-encoder-based joint-clustering algo-
rithms. Bold values correspond to best results for each dataset. NA means that the
algorithm fails to furnish a result.

Dataset Algorithms
NMI Accuracy

Average STD Average STD

usps MSSC 61.35% 0.01% 67.26% 0.05%
n = 9298 AE+MSSC 65.41% 1.09% 69.14% 0.52%
d = 256 DC-Kmeans 55.26% 0.11% 60.55% 0.16%
k = 10 DCN 69.68% 0.60% 71.21% 0.29%

MSSC-JAE-Cosine 70.59% 1.73% 73.46% 0.62%
MSSC-JAE-Sphere 69.98% 1.11% 73.68% 0.79%

rcv1 MSSC 31.30% 5.40% 50.80% 2.90%
n = 10000 AE+MSSC 35.99% 5.47% 55.36% 4.70%
d = 2000 DC-Kmeans NA NA NA NA
k = 4 DCN 31.54% 4.58% 58.05% 4.74%

MSSC-JAE-Cosine 34.80% 10.26% 61.69% 9.27%
MSSC-JAE-Sphere 38.27% 5.55% 64.19% 6.09%

mnist MSSC 44.25% 0.02% 48.24% 0.05%
n = 70000 AE+MSSC 75.63% 0.54% 81.23% 1.83%
d = 784 DC-Kmeans 75.65% 0.02% 78.04% 0.02%
k = 10 DCN 76.96% 0.70% 83.83% 1.31%

MSSC-JAE-Cosine 80.86% 0.75% 85.04% 2.30%
MSSC-JAE-Sphere 82.81% 2.04% 86.85% 6.44%

fashion MSSC 51.24% 0.01% 53.99% 0.07%
n = 70000 AE+MSSC 55.48% 0.72% 53.04% 1.99%
d = 784 DC-Kmeans 51.64% 2.96% 47.61% 2.44%
k = 10 DCN 56.51% 0.58% 53.37% 1.18%

MSSC-JAE-Cosine 60.21% 1.15% 61.01% 2.58%
MSSC-JAE-Sphere 61.34% 0.67% 61.54% 3.25%

increase indicates the importance of using the appropriate distance measure in the
latent space.

In conclusion, both MSSC-JAE-Cosine and MSSC-JAE-Sphere are the improve-
ment over DCN and DC-Kmeans. In addition, MSSC-JAE-Sphere is better than
MSSC-JAE-Cosine, which demonstrates the importance of using the appropriate dis-
tance measure.

Deep Clustering 109

4.4 Conclusion

In this chapter, we tackle the deep clustering problems in two directions. The
first direction considers the usage of t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) in clustering. We proposed two clustering methods for high-dimensional
data based on DC Programming and DCA, named MSSC-2S and MSSC-JDR. MSSC-2S
is a straight-forward application of two high-efficiency DCA methods, Minimum Sum-
of-Squares Clustering and t-SNE, where both have proved their effectiveness in the
literature. MSSC-JDR follows the joint-clustering approach to By exploiting the par-
ticular structure of the problem, we have recast the joint-clustering problem as a DC
program and proposed MSSC-JDR – a DCA-Like algorithm. MSSC-JDR solves two convex
sub-problems at each iteration, both are relatively fast: one requires only elementary
operations on vectors, the remaining one is solving a sparse linear system. Both meth-
ods are applicable for many applications given an appropriate distance function. The
numerical results show that the proposed methods significantly improve the cluster-
ing quality in comparison with state-of-the-art methods in deep clustering, up to 38%
higher than the second-best method. Furthermore, MSSC-JDR significantly reduces the
running time of MSSC-2S (up to 14 times) while having similar clustering accuracy. We
are convinced that the proposed methods are efficient, fast, and scalable for clustering
high-dimensional data.

The second direction considers joint-clustering using auto-encoder. We proposed
an extension for deep joint-clustering problems by using cosine and spherical distance
measure, which is applicable when the derived optimization problems suffer from the
scaling of data’s representation in the latent space. Both distance measures are in-
variance to scaling since they compute the distance between projections of data points
onto the surface of the unit hypersphere Sm−1 instead of between the data points in
Rm. As an application, we considered the specific problem of deep joint-clustering
with MSSC and proposed two algorithms (MSSC-JAE-Cosine and MSSC-JAE-Sphere)
to solve the mentioned problem. The numerical results present the effectiveness of
proposed algorithms in comparison with state-of-the-art methods in joint-clustering
by K-means. The clustering accuracy is higher in comparison with the second-best
method (from 3.90% to 6.72%). In addition, MSSC-JAE-Sphere improves the cluster-
ing accuracy MSSC-JAE-Cosine by up to 2.5%, which indicates the importance of using
the appropriate distance measure in the latent space.

Each developed method has its advantages and disadvantages. The first method –
clustering based on t-SNE – works well in case we can define a distance function to
measure the similarity between data-points in the original space. On the other hand,
since the second approach based on the auto-encoder, it seeks the mapping function
solely based on input data, hence eliminating the needs of the similarity function.
However, the auto-encoder-based approach requires a massive amount of data to work
well, so in case we can gather or generate data [32], this is a preferable choice. Hence,
the choice is the trade-off between expert knowledge and data-driven approach: how
can we define the similarity function versus the amount of the data we have.

110 Deep Clustering

In conclusion, the proposed methods have demonstrated their effectiveness in both
terms of clustering accuracy and running time in comparison to the relevance methods.
In the future, we could extend MSSC-JAE-Sphere to consider other unit spheres other
than `2 such as `p ball (p ∈ {1,∞}). On another direction, we could consider the
combination between t-SNE and neural network for deep joint-clustering problems.
MSSC-JDR based on t-SNE is better than MSSC-JAE-Sphere in clustering accuracy,
nevertheless, MSSC-JDR requires a distance measure to capture the similarity between
data points in the original whereas MSSC-JAE-Sphere does not need. The combination
between them is interesting since it could take the advantages from both methods.

Chapter 5

Conclusion

This dissertation focus on three problems in machine learning on big data: group
variable selection in multi-class logistic regression, dimension reduction by t-SNE and
deep clustering. The principal methodologies of this dissertation are DC (Difference
of Convex functions) programming and DCA (DC Algorithm) and their advanced
variances, which are well-known powerful tools due to their effectiveness and efficiency
for non-smooth and non-convex optimization problems.

The first part rigorously studied the DC programming and DCA for the problem of
group variables selection in multi-class logistic regression. Using the `q,0 regularization,
the resulting optimization problem is non-convex. The `q,0-norm is approximated by
the piecewise exponential function and the capped-`1 function. We studied DCA for
this problem and developed DCA-based algorithms to solve the approximated problem
by two approaches based on recent advanced DC algorithms. The proposed algorithm
in the first approach, SDCA, is based on Stochastic DCA. SDCA is very inexpensive and
suitable for large-scale datasets. In the second approach, we developed two algorithms
based on DCA-Like and its accelerated version ADCA-Like. Both algorithms extend
DCA by relaxing the DCA’s convexity condition on the second DC component, while
still ensuring the convergence. Unlike standard DCA where we need to compute the
parameter µ greater or equal to the L-Lipschitz constant, which is difficult (or even im-
possible) in practice; DCA-Like iteratively updates the parameter µ and consequently
the decomposition of the objective function. The proposed algorithms are efficient: all
computations are explicit.

The numerical experiments have shown that all proposed algorithms significantly
improve the running time in comparison with standard DCA while having equivalent
classification accuracy and sparsity. They also give better results than the related
algorithms in the literature in both terms of classification accuracy and running time.
Among the proposed algorithms, choosing an appropriate algorithm depends on the
dataset’s size and the number of the selected variables. SDCA is more suitable for large
datasets, whereas ADCA-Like and DCA-Like are ideal if we prefer a more compact
subset of variables. We are convinced that proposed algorithms are efficient for the
problem of group variable selection in multi-class logistic regression.

111

112 Conclusion

In the second part, we studied DC programming and DCA for the t-SNE prob-
lem. The two proposed algorithms are based on DCA-Like and ADCA-Like, which
are inexpensive: the solution of the convex sub-problem can be explicitly computed.
We showed that the Majorization-Minimization algorithm, the best state-of-the-art
algorithm for t-SNE is nothing else but DCA-Like applied for t-SNE. Numerical ex-
periments were carefully conducted on several benchmark datasets for visualization.
The numerical results show that DCA-Like dramatically improves the running time
of standard DCA while giving a similar or better solution. Besides, ADCA-Likes im-
proves further the running time as well as the objective value of DCA-Like. Thus, we
can conclude that the two proposed methods are the best for the t-SNE problem.

Finally, the last part tackles the deep clustering problems in two directions. The
first direction considered the usage of t-SNE in clustering for large-scale datasets.
Two algorithms based on DC Programming and DCA, MSSC-2S and MSSC-JDR, have
been developed. MSSC-2S follows the standard “tandem analysis” by employing two
well-performance DCAs (for t-SNE and MSSC), whereas MSSC-JDR is an extension of
MSSC-2S by following the joint-clustering approach. We developed a fast and scalable
DCA-Like algorithm for MSSC-JDR. The numerical results show that both methods sig-
nificantly improve the clustering quality and running time in comparison with existing
methods. Furthermore, MSSC-JDR significantly reduces the running time of MSSC-2S

while having similar accuracy. Hence, our methods are efficient, fast and scalable
for clustering large-scale data. The second direction considers the problem of joint-
clustering with auto-encoder. We considered a class of methods that suffers from the
scaling problem in latent space; and proposed an extension by employing the cosine
distance and spherical distance, which are invariance to scaling. We applied the pro-
posed extension on a specific problem of joint-clustering with MSSC. The numerical
results show the superiority of our methods in comparison with existing methods.

Each developed clustering method has its advantages and disadvantages. The main
distinction between them are based on the distance function measures the similarity
of data points in the original space. The first method – clustering based on t-SNE –
works well in case we can define such function; whereas the second method – based on
auto-encoder – eliminates that requirement. However, the auto-encoder-based method
requires a massive amount to learn a good mapping function, so it is preferable if we
can gather a huge volume of data or generate more data [32]. Hence, the choice is the
trade-off between expert knowledge and data-driven approach: how can we define the
distance function versus the amount of the data we have.

The works in this dissertation raise the following topics that can be considered
in the near future. In terms of modeling, for the deep clustering problem, we could
extend MSSC-JAE-Sphere to consider other unit spheres other than `2 such as `p ball
(p ∈ {1,∞}). On another direction, we could consider the combination between
t-SNE and neural network for deep joint-clustering problems. MSSC-JDR based on t-
SNE is better than MSSC-JAE-Sphere in clustering accuracy. Nevertheless, MSSC-JDR
requires a distance measure to capture the similarity between data points in the orig-
inal, whereas MSSC-JAE-Sphere does not need since the reconstruction error in the
auto-encoder does not require external information. The combination between them is

Conclusion 113

interesting since it could take advantages of both methods. Furthermore, [32] considers
data augmentation in deep clustering improves the accuracy of the based model signif-
icantly. This technique further exploits the self-supervised nature of the auto-encoder,
which is a promising research direction for deep clustering. In terms of optimization,
it is possible to develop DCAs for the neural network in general, and deep clustering
problem in particular.

114 Conclusion

Appendix A

Appendix

A.1 Computation of prox(−zlj)/ρ‖.‖q
(ν/ρ)

Denote by Bq the unit ball for the dual norm of the `q norm. By Moreau decom-
position, we have

prox(−zlj)/ρ‖.‖q
(ν/ρ) = ν/ρ− (−zlj)/ρprojBq

(
1

−zlj
ν

)
, (A.1)

where projBq denotes the projection onto Bq and is computed as follows.

For q = 1, the unit ball of the `1 norm is the box B1 = {x : ‖x‖1 ≤ 1}. Hence, the
projection onto this box is given by

projB1

(
1

−zlj
ν

)
k

=

1 if 1

−zlj
νk > 1

1
−zlj

νk if | 1
−zlj

νk| ≤ 1

−1 if 1
−zlj

νk < −1.

(A.2)

From (A.1) and (A.2), we obtain

prox(−zlj)/ρ‖.‖q
(ν/ρ)k =

νk/ρ− (−zlj)/ρ if νk > −zlj
0 if |νk| ≤ −zlj
νk/ρ+ (−zlj)/ρ if νk < zlj.

This is also known as the elementwise soft thresholding given by

prox(−zlj)/ρ‖.‖q
(ν/ρ) =

(
|ν|/ρ− (−zlj)/ρ

)
+
◦ sign(ν),

where ◦ is the elementwise product.

115

116 Appendix

For q = 2, the unit ball of the `2 norm is the Euclidean unit ball B2 = {x : ‖x‖2 ≤
1}. Hence, the projection onto this ball is given by

projB2

(
1

−zlj
ν

)
=

ν
‖ν‖2 if 1

−zlj
‖ν‖2 > 1

1
−zlj

ν if 1
−zlj
‖ν‖2 ≤ 1.

(A.3)

It follows from (A.1) and (A.3) that

prox(−zlj)/ρ‖.‖q
(ν/ρ) =

{(
1− −zlj

‖ν‖2

)
ν/ρ if ‖ν‖2 > −zlj

0 if ‖ν‖2 ≤ −zlj.

For q =∞, the unit ball of the `∞ norm is the ball B∞ = {x : ‖x‖∞ ≤ 1}. Hence,
the projection onto this ball is given by

projB∞

(
1

−zlj
ν

)
=

(

1
−zlj
|ν| − δ

)
+
◦ sign(ν) if 1

−zlj
‖ν‖1 > 1

1
−zlj

ν if 1
−zlja
‖ν‖1 ≤ 1,

(A.4)

where δ satisfies the following equation

Q∑
k=1

(
1

−zlj
|νk| − δ

)
+

= 1. (A.5)

For computing δ in (A.5), some efficient algorithms are available. Among them, we
use the very inexpensive algorithm developed in [25]. From (A.1) and (A.4), we get

prox(−zlj)/ρ‖.‖q
(ν/ρ) =

ν/ρ−
(

1
−zlj
|ν| − δ

)
+
◦ sign(ν) if ‖ν‖1 > −zlj

0 if ‖ν‖1 ≤ −zlj.

A.2 Solving problem (4.13) by first order optimality

condition

The sub-problem (4.13) is a convex problem. Hence, we can effectively obtain the
solution by solving the system of equation ∇FS(u, z) = 0. It leads to

0 = ∇uGC(u, z)− ūCq (A.6)

0 = λ(∇zGC(u, z)− z̄Cq) + µz − z̄Eq +∇z

(∑
i,j

(−v̄Eqij)gij(z)

)
(A.7)

By expanding both (A.6) and (A.7), we obtained the following solution:

Eq (A.6) ⇔ nu− 1k×nz = ūC
q

⇔ u =
1

n
(ūC

q + 1k×nz) (A.8)

Appendix 117

Expanding Eq (A.7)

⇔ λ(∇zGC(u, z)− z̄Cq) + µz − z̄Eq +∇z

(∑
i,j

(−v̄Eqij)‖zi − zj‖2

)
= 0

⇔ λ(kz − 1n×ku− z̄Cq) + µz − z̄Eq + 2(L−v̄Eq−(v̄Eq)T)z = 0

⇔ λ(kz − 1n×ku) + µz + 2(L−v̄Eq−(v̄Eq)T)z = λz̄C
q + z̄E

q

⇔
(
(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)

)
z − λ1n×ku = λz̄C

q + z̄E
q

(A.8)⇔
(
(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)

)
z − λ

n
1n×k (ūC

q + 1k×nz) = λz̄C
q + z̄E

q

⇔
(
(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)

)
z − λk

n
1n×nz = λz̄C

q + z̄E
q +

λ

n
1n×kūC

q

⇔
(
λk

(
In −

1

n
1n×n

)
+ 2(L−v̄Eq−(v̄Eq)T) + µIn

)
z = λz̄C

q + z̄E
q +

λ

n
1n×kūC

q

⇔

(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)︸ ︷︷ ︸
Aq

− λk
n
1n×n︸ ︷︷ ︸
Bq

 z = λz̄C
q + z̄E

q +
λ

n
1n×kūC

q︸ ︷︷ ︸
Cq

⇔ (Aq − Bq)z = Cq (A.9)

A.3 Solving convex sub-problem (4.17)

Let FS2(z) denotes objective function of problem (4.17). Since the problem (4.17)
is convex, then by applying the first order optimality condition, we can obtained the
solution by solving ∇FS2(z) = 0, which is equivalent to

⇔ λ(∇zGC(uq,t, z)− z̄Cq) + µz − z̄Eq +∇z

(∑
i,j

(−v̄Eqij)gij(z)

)
= 0

⇔ λ(kz − 1n×ku
q,t) + µz + 2(L−v̄Eq−(v̄Eq)T)z = λz̄C

q + z̄E
q

⇔ λkz + µz + 2(L−v̄Eq−(v̄Eq)T)z = λz̄C
q + z̄E

q + λ1n×ku
q,t

⇔
(
(λk + µ)In + 2(L−v̄Eq−(v̄Eq)T)

)
z = λz̄C

q + z̄E
q + λ1n×ku

q,t

(A.10)

118 Appendix

Bibliography

[1] Aghabozorgi, S., Seyed Shirkhorshidi, A., and Ying Wah, T. (2015). Time-series
clustering – A decade review. Information Systems, 53:16–38.

[2] Aljalbout, E., Golkov, V., Siddiqui, Y., and Cremers, D. (2018). Clustering with
Deep Learning: Taxonomy and New Methods. arXiv:1801.07648 [cs, stat].

[3] Amaldi, E. and Kann, V. (1998). On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems. Theor. Comput. Sci., 209(1):237–
260.

[4] An(Homepage), L. T. H. (2005). DC Programming and DCA:
http://www.lita.univ-lorraine.fr/~lethi/index.php/en/research/

dc-programming-and-dca.html.

[5] Aytekin, C., Ni, X., Cricri, F., and Aksu, E. (2018). Clustering and Unsuper-
vised Anomaly Detection with `2 Normalized Deep Auto-Encoder Representations.
arXiv:1802.00187 [cs].

[6] Bagley, S. C., White, H., and Golomb, B. A. (2001). Logistic regression in the
medical literature: Standards for use and reporting, with particular attention to
one medical domain. Journal of Clinical Epidemiology, 54(10):979–985.

[7] Bagozzi, R. P. (1994). Advanced Methods of Marketing Research. Blackwell Busi-
ness.

[8] Boyd, C. R., Tolson, M. A., and Copes, W. S. (1987). Evaluating trauma care:
The TRISS method. Trauma Score and the Injury Severity Score. The Journal of
Trauma, 27(4):370–378.

[9] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge university
press.

[10] Bradley, P. S. and Mangasarian, O. L. (1998a). Feature selection via concave
minimization and support vector machines. In ICML, volume 98, pages 82–90.

[11] Bradley, P. S. and Mangasarian, O. L. (1998b). Feature selection via concave
minimization and support vector machines. In Machine Learning Proceedings of the
Fifteenth International Conference (ICML 1998), pages 82–90. Morgan Kaufmann.

119

120 Bibliography

[12] Burges, C. J. C. (2009). Dimension Reduction: A Guided Tour. FNT in Machine
Learning, 2(4):275–364.

[13] Cai, D., He, X., and Han, J. (2011). Locally Consistent Concept Factorization
for Document Clustering. IEEE Transactions on Knowledge and Data Engineering,
23(6):902–913.

[14] Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep Clustering
for Unsupervised Learning of Visual Features. In Ferrari, V., Hebert, M., Sminchis-
escu, C., and Weiss, Y., editors, Computer Vision – ECCV 2018, Lecture Notes in
Computer Science, pages 139–156. Springer International Publishing.

[15] Chambolle, A., Vore, R. A. D., Nam-Yong Lee, and Lucier, B. J. (1998). Nonlinear
wavelet image processing: Variational problems, compression, and noise removal
through wavelet shrinkage. IEEE Transactions on Image Processing, 7(3):319–335.

[16] Chang, W.-C. (1983). On Using Principal Components Before Separating a Mix-
ture of Two Multivariate Normal Distributions. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 32(3):267–275.

[17] Chen, D., Lv, J., and Zhang, Y. (2017). Unsupervised Multi-Manifold Clustering
by Learning Deep Representation. In Workshops at the Thirty-First AAAI Confer-
ence on Artificial Intelligence.

[18] Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006). Trading convexity for
scalability. In In ICML ’06: Proceedings of the 23rd International Conference on
Machine Learning, pages 201–208. ACM Press.

[19] Cox, D. (1958). The regression analysis of binary sequences (with discussion). J
Roy Stat Soc B, 20:215–242.

[20] Da Silva, G., Le, H. M., Le Thi, H. A., Lefieux, V., and Tran, B. (2020). Cus-
tomer Clustering of French Transmission System Operator (RTE) Based on Their
Electricity Consumption. In Le Thi, H. A., Le, H. M., and Pham Dinh, T., editors,
Optimization of Complex Systems: Theory, Models, Algorithms and Applications,
Advances in Intelligent Systems and Computing, pages 893–905. Springer Interna-
tional Publishing.

[21] Das, D., Ghosh, R., and Bhowmick, B. (2019). Deep Representation Learning
Characterized by Inter-Class Separation for Image Clustering. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 628–637.

[22] De Soete, G. and Carroll, J. D. (1994). K-means clustering in a low-dimensional
Euclidean space. In Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., and
Burtschy, B., editors, New Approaches in Classification and Data Analysis, Stud-
ies in Classification, Data Analysis, and Knowledge Organization, pages 212–219.
Springer Berlin Heidelberg.

Bibliography 121

[23] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood
from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22.

[24] Dhillon, I. S. and Modha, D. S. (2001). Concept Decompositions for Large Sparse
Text Data Using Clustering. Machine Learning, 42(1):143–175.

[25] Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient
projections onto the l 1-ball for learning in high dimensions. In Proceedings of the
25th International Conference on Machine Learning, pages 272–279. ACM.

[26] Fard, M. M., Thonet, T., and Gaussier, E. (2018). Deep k-Means: Jointly clus-
tering with k-Means and learning representations. arXiv:1806.10069 [cs, stat].

[27] Genkin, A., Lewis, D. D., and Madigan, D. (2007). Large-scale Bayesian logistic
regression for text categorization. Technometrics, 49(3):291–304.

[28] Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., and Huang, H. (2017). Deep
clustering via joint convolutional autoencoder embedding and relative entropy mini-
mization. In Proceedings of the IEEE International Conference on Computer Vision,
pages 5736–5745.

[29] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, pages 249–256.

[30] Goldin, D. Q. and Kanellakis, P. C. (1995). On similarity queries for time-series
data: Constraint specification and implementation. In Montanari, U. and Rossi,
F., editors, Principles and Practice of Constraint Programming — CP ’95, Lecture
Notes in Computer Science, pages 137–153. Springer Berlin Heidelberg.

[31] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

[32] Guo, X. (2018). Deep Embedded Clustering with Data Augmentation. In ACML,
page 16.

[33] Guo, X., Gao, L., Liu, X., and Yin, J. (2017). Improved deep embedded clustering
with local structure preservation. In International Joint Conference on Artificial
Intelligence (IJCAI-17), pages 1753–1759.

[34] Hinton, G. E. and Roweis, S. T. (2003). Stochastic neighbor embedding. In
Advances in Neural Information Processing Systems, pages 857–864.

[35] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality of
Data with Neural Networks. Science, 313(5786):504–507.

[36] Hiriart-Urruty, J.-B. and Lemarechal, C. (1993). Convex Analysis and Mini-
mization Algorithms. Grundlehren Der Mathematischen Wissenschaften, Convex
Analysis and Minimization Algorithms. Springer-Verlag, Berlin Heidelberg.

122 Bibliography

[37] Huang, P., Huang, Y., Wang, W., and Wang, L. (2014). Deep Embedding Network
for Clustering. In 2014 22nd International Conference on Pattern Recognition, pages
1532–1537.

[38] Ji, P., Zhang, T., Li, H., Salzmann, M., and Reid, I. (2017). Deep Subspace
Clustering Networks. In NIPS.

[39] Kim, J., Kim, Y., and Kim, Y. (2008). A Gradient-Based Optimization Algorithm
for LASSO. Journal of Computational and Graphical Statistics, 17(4):994–1009.

[40] King, G. and Zeng, L. (2001). Logistic Regression in Rare Events Data. Political
Analysis, 9:137–163.

[41] Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs].

[42] Le, H. M., Le Thi, H. A., and Nguyen, M. C. (2015). Sparse semi-supervised
support vector machines by DC programming and DCA. Neurocomputing, 153:62–
76.

[43] Le Tan, D.-K., Le, H., Hoang, T., Do, T.-T., and Cheung, N.-M. (2018). DeepVQ:
A deep network architecture for vector quantization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 2579–
2582.

[44] Le Thi, H. A. (1997). Contribution à l’optimisation non convexe et l’optimisation
globale: Théorie, algorithmes et applications. Habilitation à Diriger des Recherches,
Université de Rouen.

[45] Le Thi, H. A., Belghiti, M. T., and Pham Dinh, T. (2007). A new efficient
algorithm based on DC programming and DCA for clustering. Journal of Global
Optimization, 37(4):593–608.

[46] Le Thi, H. A., Le, H. M., Nguyen, V. V., and Pham Dinh, T. (2008). A DC
programming approach for feature selection in support vector machines learning.
Advances in Data Analysis and Classification, 2(3):259–278.

[47] Le Thi, H. A., Le, H. M., and Pham Dinh, T. (2014a). New and efficient
DCA based algorithms for minimum sum-of-squares clustering. Pattern Recogni-
tion, 47(1):388–401.

[48] Le Thi, H. A., Le, H. M., and Pham Dinh, T. (2015a). Feature selection in
machine learning: An exact penalty approach using a Difference of Convex function
Algorithm. Mach Learn, 101(1):163–186.

[49] Le Thi, H. A., Le, H. M., Pham Dinh, T., and Van Huynh, N. (2013). Binary
classification via spherical separator by DC programming and DCA. J Glob Optim,
56(4):1393–1407.

Bibliography 123

[50] Le Thi, H. A., Le, H. M., Phan, D. N., and Tran, B. (2017). Stochastic DCA for the
Large-sum of Non-convex Functions Problem and its Application to Group Variable
Selection in Classification. In Proceedings of the 34th International Conference on
Machine Learning , volume 70, pages 3394–3403.

[51] Le Thi, H. A., Le, H. M., Phan, D. N., and Tran, B. (2018a). A DCA-Like
Algorithm and its Accelerated Version with Application in Data Visualization. In
arXiv:1806.09620 [Cs, Math].

[52] Le Thi, H. A., Le, H. M., Phan, D. N., and Tran, B. (2018b). Stochastic DCA for
sparse multiclass logistic regression. In Le, N.-T., van Do, T., Nguyen, N. T., and
Le Thi, H. A., editors, Advanced Computational Methods for Knowledge Engineering,
pages 1–12.

[53] Le Thi, H. A., Le, H. M., Phan, D. N., and Tran, B. (2019a). Novel DCA
Based Algorithms for Minimizing the Sum of a Nonconvex Function and Compos-
ite Functions. Applications in Machine learning. Submitted & Available on arvXiv
[arXiv:1806.09620].

[54] Le Thi, H. A., Le, H. M., Phan, D. N., and Tran, B. (2019b). Stochastic DCA
for minimizing a large sum of DC functions with application to Multi-class Logistic
Regression. Submitted & Available on arvXiv [arXiv:1911.03992].

[55] Le Thi, H. A. and Moeini, M. (2014). Long-Short Portfolio Optimization Under
Cardinality Constraints by Difference of Convex Functions Algorithm. J Optim
Theory Appl, 161(1):199–224.

[56] Le Thi, H. A. and Nguyen, M. C. (2014). Self-organizing maps by difference of
convex functions optimization. Data Min Knowl Disc, 28(5):1336–1365.

[57] Le Thi, H. A. and Nguyen, M. C. (2017). DCA based algorithms for feature
selection in multi-class support vector machine. Ann Oper Res, 249(1):273–300.

[58] Le Thi, H. A., Nguyen, M. C., and Pham Dinh, T. (2014b). A DC Programming
Approach for Finding Communities in Networks. Neural Computation, 26(12):2827–
2854.

[59] Le Thi, H. A. and Pham Dinh, T. (1997). Solving a Class of Linearly Constrained
Indefinite Quadratic Problems by D.C. Algorithms. Journal of Global Optimization,
11(3):253–285.

[60] Le Thi, H. A. and Pham Dinh, T. (2005). The DC (Difference of Convex Func-
tions) Programming and DCA Revisited with DC Models of Real World Nonconvex
Optimization Problems. Annals of Operations Research, 133(1):23–46.

[61] Le Thi, H. A. and Pham Dinh, T. (2009). Minimum sum-of-squares clustering by
DC programming and DCA. In International Conference on Intelligent Computing,
pages 327–340. Springer.

124 Bibliography

[62] Le Thi, H. A. and Pham Dinh, T. (2018). DC programming and DCA: thirty
years of developments. Mathematical Programming, pages 1–64.

[63] Le Thi, H. A., Pham Dinh, T., Le, H. M., and Vo, X. T. (2015b). DC approxima-
tion approaches for sparse optimization. European Journal of Operational Research,
244(1):26–46.

[64] Le Thi, H. A., Pham Dinh, T., and Thiao, M. (2016a). Efficient approaches for `2-
`0 regularization and applications to feature selection in SVM. Applied Intelligence,
45(2):549 – 565.

[65] Le Thi, H. A. and Phan, D. N. (2016). DC Programming and DCA for Sparse
Optimal Scoring Problem. Neurocomput., 186(C):170–181.

[66] Le Thi, H. A. and Phan, D. N. (2017). DC Programming and DCA for Sparse
Fisher Linear Discriminant Analysis. Neural Comput. Appl., 28(9):2809–2822.

[67] Le Thi, H. A., Vo, X. T., and Pham Dinh, T. (2016b). Efficient Nonnegative
Matrix Factorization by DC Programming and DCA. Neural Comput, 28(6):1163–
1216.

[68] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[69] Li, H. and Lin, Z. (2015). Accelerated proximal gradient methods for nonconvex
programming. In Advances in Neural Information Processing Systems, pages 377–
387.

[70] Liao, J. G. and Chin, K.-V. (2007). Logistic regression for disease classification
using microarray data: Model selection in a large p and small n case. Bioinformatics,
23(15):1945–1951.

[71] Liu, Y. and Shen, X. (2006). Multicategory ψ-Learning. Journal of the American
Statistical Association, 101(474):500–509.

[72] Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137.

[73] Lovász, L. and Plummer, M. D. (2009). Matching Theory. American Mathematical
Soc.

[74] Maaten, L. v. d. (2014). Accelerating t-sne using tree-based algorithms. Journal
of machine learning research, 15(1):3221–3245.

[75] MacQueen, J. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pages 281–297. The Regents of the
University of California.

Bibliography 125

[76] Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long, J. (2018). A Survey
of Clustering With Deep Learning: From the Perspective of Network Architecture.
IEEE Access, 6:39501–39514.

[77] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Has-
sabis, D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529–533.

[78] Mori, Y., Kuroda, M., and Makino, N. (2016). Joint Dimension Reduction and
Clustering. In Mori, Y., Kuroda, M., and Makino, N., editors, Nonlinear Principal
Component Analysis and Its Applications, SpringerBriefs in Statistics, pages 57–64.
Springer Singapore, Singapore.

[79] Nair, V. and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10, pages 807–814, USA. Omni-
press.

[80] Nguyen, T. M. T. (2018). DCA Based Approaches for Mathematical Programs
with Equilibrium Constraints. PhD thesis, Université de Lorraine.

[81] Nocedal, J. (1980). Updating Quasi-Newton Matrices with Limited Storage. Math-
ematics of Computation, 35(151):773–782.

[82] Paparrizos, J. and Gravano, L. (2015). K-Shape: Efficient and Accurate Clus-
tering of Time Series. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1855–1870. ACM Press.

[83] Parikh, N. and Boyd, S. (2014). Proximal algorithms. Found. Trends Optim.,
1(3):127–239.

[84] Pham Dinh, T., Le, H. M., Le Thi, H. A., and Lauer, F. (2014). A Difference of
Convex Functions Algorithm for Switched Linear Regression. IEEE Transactions
on Automatic Control, 59(8):2277–2282.

[85] Pham Dinh, T. and Le Thi, H. A. (1997). Convex analysis approach to dc pro-
gramming: Theory, algorithms and applications. Acta Mathematica Vietnamica,
22(1):289–355.

[86] Pham Dinh, T. and Le Thi, H. A. (1998). A D. C. Optimization Algorithm for
Solving the Trust-Region Subproblem. SIAM Journal of Optimization, 8(2):476–505.

[87] Pham Dinh, T. and Le Thi, H. A. (2014). Recent Advances in DC Programming
and DCA. In Nguyen, N. T. and Le Thi, H. A., editors, Transactions on Compu-
tational Intelligence XIII, Lecture Notes in Computer Science, pages 1–37. Springer
Berlin Heidelberg.

126 Bibliography

[88] Pham Dinh, T. and Souad, E. B. (1986). Algorithms for Solving a Class of
Nonconvex Optimization Problems. Methods of Subgradients. In Hiriart-Urruty,
J. B., editor, North-Holland Mathematics Studies, volume 129 of Fermat Days 85:
Mathematics for Optimization, pages 249–271. North-Holland.

[89] Phan, D. N., Le, H. M., and Le Thi, H. A. (2018). Accelerated Difference of Con-
vex functions Algorithm and its Application to Sparse Binary Logistic Regression.
In Twenty-Seventh International Joint Conference on Artificial Intelligence, pages
1369–1375.

[90] Phan, D. N., Le Thi, H. A., and Pham Dinh, T. (2017). Sparse covariance matrix
estimation by DCA-Based Algorithms. Neural Computation, 29(11):3040–3077.

[91] Rakotomamonjy, A., Flamary, R., and Gasso, G. (2016). DC Proximal Newton
for Nonconvex Optimization Problems. IEEE Transactions on Neural Networks and
Learning Systems, 27(3):636–647.

[92] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., and Keogh, E. (2012). Searching and mining trillions of time series sub-
sequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD ’12,
page 262, Beijing, China. ACM Press.

[93] Rockafellar, R. T. (1970). Convex Analysis. Princeton, NJ.

[94] Rogovschi, N., Kitazono, J., Grozavu, N., Omori, T., and Ozawa, S. (2017). T-
Distributed stochastic neighbor embedding spectral clustering. In 2017 International
Joint Conference on Neural Networks (IJCNN), pages 1628–1632.

[95] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. Nature, 323(6088):533.

[96] Shah, S. A. and Koltun, V. (2018). Deep Continuous Clustering. arXiv:1803.01449
[cs].

[97] Shaol, X., Ge, K., Su, H., Luo, L., Peng, B., and Li, D. (2018). Deep Discrimina-
tive Clustering Network. In 2018 International Joint Conference on Neural Networks
(IJCNN), pages 1–7, Rio de Janeiro. IEEE.

[98] Shewchuk, J. R. (1994). An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Technical report, Carnegie Mellon University, Pitts-
burgh, PA, USA.

[99] Song, C., Liu, F., Huang, Y., Wang, L., and Tan, T. (2013). Auto-encoder Based
Data Clustering. In Progress in Pattern Recognition, Image Analysis, Computer Vi-
sion, and Applications, Lecture Notes in Computer Science, pages 117–124. Springer,
Berlin, Heidelberg.

[100] Souvenir, R. and Pless, R. (2005). Manifold clustering. In Tenth IEEE Interna-
tional Conference on Computer Vision (ICCV’05) Volume 1, pages 648–653 Vol. 1,
Beijing, China. IEEE.

Bibliography 127

[101] Steinbach, M., Ertöz, L., and Kumar, V. (2004). The Challenges of Clustering
High Dimensional Data. In Wille, L. T., editor, New Directions in Statistical Physics:
Econophysics, Bioinformatics, and Pattern Recognition, pages 273–309. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[102] Strehl, A. and Ghosh, J. (2002). Cluster Ensembles - A Knowledge Reuse Frame-
work for Combining Multiple Partitions. Journal of Machine Learning Research,
3:583–617.

[103] Subasi, A. and Erçelebi, E. (2005). Classification of EEG signals using neural
network and logistic regression. Comput. Methods Programs Biomed., 78(2):87–99.

[104] Tian, K., Zhou, S., and Guan, J. (2017). DeepCluster: A General Clustering
Framework Based on Deep Learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 809–825. Springer.

[105] Van Der Maaten, L. (2009). Learning a parametric embedding by preserving
local structure. RBM, 500(500):26.

[106] van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal
of Machine Learning Research, 9(Nov):2579–2605.

[107] Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality
Reduction: A Comparative Review. J Mach Learn Res, 10(66-71):13.

[108] Vichi, M. and Kiers, H. A. (2001). Factorial k-means analysis for two-way data.
Computational Statistics & Data Analysis, 37(1):49–64.

[109] Vincent, M. and Hansen, N. R. (2014). Sparse group lasso and high dimensional
multinomial classification. Comput. Stat. Data Anal., 71:771–786.

[110] Vladymyrov, M. and Carreira-Perpinan, M. (2012). Partial-Hessian strategies
for fast learning of nonlinear embeddings. arXiv preprint arXiv:1206.4646.

[111] Vo, X. T., Bach, T., Le Thi, H. A., and Pham Dinh, T. (2017). Ramp Loss
Support Vector Data Description. In Nguyen, N. T., Tojo, S., Nguyen, L. M., and
Trawiński, B., editors, Intelligent Information and Database Systems, volume 10191,
pages 421–431. Springer International Publishing, Cham.

[112] Wang, S., Chang, T.-H., Cui, Y., and Pang, J.-S. (2019). Clustering by Orthogo-
nal Non-negative Matrix Factorization: A Sequential Non-convex Penalty Approach.
In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5576–5580, Brighton, United Kingdom. IEEE.

[113] Warren Liao, T. (2005). Clustering of time series data—a survey. Pattern Recog-
nition, 38(11):1857–1874.

[114] Wilson, N. K., Kent, D. G., Buettner, F., Shehata, M., Macaulay, I. C., Calero-
Nieto, F. J., Sánchez Castillo, M., Oedekoven, C. A., Diamanti, E., Schulte, R.,
Ponting, C. P., Voet, T., Caldas, C., Stingl, J., Green, A. R., Theis, F. J., and

128 Bibliography

Göttgens, B. (2015). Combined Single-Cell Functional and Gene Expression Analysis
Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell, 16(6):712–
724.

[115] Witten, D. M. and Tibshirani, R. (2011). Penalized classification using Fisher’s
linear discriminant. Journal of the Royal Statistical Society: Series B, 73(5):753–772.

[116] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A Novel Image
Dataset for Benchmarking Machine Learning Algorithms. arXiv:1708.07747 [cs,
stat].

[117] Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding
for clustering analysis. In International Conference on Machine Learning, pages
478–487.

[118] Xu, W., Liu, X., and Gong, Y. (2003). Document Clustering Based on Non-
negative Matrix Factorization. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion Retrieval,
SIGIR ’03, pages 267–273, New York, NY, USA. ACM.

[119] Yang, B., Fu, X., and Sidiropoulos, N. D. (2017a). Learning from hidden traits:
Joint factor analysis and latent clustering. IEEE Transactions on Signal Processing,
65(1):256–269.

[120] Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2017b). Towards K-means-
friendly Spaces: Simultaneous Deep Learning and Clustering. In International Con-
ference on Machine Learning, pages 3861–3870.

[121] Yang, J., Parikh, D., and Batra, D. (2016). Joint Unsupervised Learning of Deep
Representations and Image Clusters. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5147–5156.

[122] Yang, Z., King, I., Xu, Z., and Oja, E. (2009). Heavy-tailed symmetric stochastic
neighbor embedding. In Advances in Neural Information Processing Systems, pages
2169–2177.

[123] Yang, Z., Peltonen, J., and Kaski, S. (2015). Majorization-minimization for
manifold embedding. In Artificial Intelligence and Statistics, pages 1088–1097.

[124] Yankov, D. and Keogh, E. (2006). Manifold Clustering of Shapes. In Sixth
International Conference on Data Mining (ICDM’06), pages 1167–1171, Hong Kong,
China. IEEE.

[125] Yin, P., Lou, Y., He, Q., and Xin, J. (2015). Minimization of `1−2 for Compressed
Sensing. SIAM J. Sci. Comput., 37(1):A536–A563.

[126] Yuille, A. L. and Rangarajan, A. (2002). The Concave-Convex Procedure
(CCCP). In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances
in Neural Information Processing Systems 14, pages 1033–1040. MIT Press.

Bibliography 129

[127] Zeng, H. and Cheung, Y.-m. (2014). Learning a mixture model for clustering with
the completed likelihood minimum message length criterion. Pattern Recognition,
47(5):2011–2030.

[128] Zha, H., He, X., Ding, C., Gu, M., and Simon, H. D. (2002). Spectral Relaxation
for K-means Clustering. In Dietterich, T. G., Becker, S., and Ghahramani, Z.,
editors, Advances in Neural Information Processing Systems 14, pages 1057–1064.
MIT Press.

[129] Zhang, P., Gong, M., Zhang, H., and Liu, J. (2017). DRLnet: Deep Difference
Representation Learning Network and An Unsupervised Optimization Framework.
In IJCAI.

[130] Zhang, T., Ji, P., Harandi, M., Hartley, R., and Reid, I. (2019a). Scalable Deep
k-Subspace Clustering. In Jawahar, C., Li, H., Mori, G., and Schindler, K., editors,
Computer Vision – ACCV 2018, Lecture Notes in Computer Science, pages 466–481.
Springer International Publishing.

[131] Zhang, T., Ji, P., Harandi, M., Huang, W., and Li, H. (2019b). Neural Col-
laborative Subspace Clustering. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 7384–7393. PMLR.

[132] Zhao Zhang, Chow, T. W. S., and Mingbo Zhao (2013). M-Isomap: Orthogonal
Constrained Marginal Isomap for Nonlinear Dimensionality Reduction. IEEE Trans.
Cybern., 43(1):180–191.

	Titre
	Remerciements
	Publications
	Contents
	Résumé
	Abstract
	Introduction générale
	Chapter 1 Methodology
	1.1 DC programming and DCA
	1.1.1 Fundamental convex analysis
	1.1.2 DC optimization
	1.1.3 DC Algorithm (DCA)

	1.2 Stochastic DCA
	1.3 DCA-Like and Accelerated DCA-Like
	1.3.1 DCA for the problem
	1.3.2 DCA-Like for solving the problem
	1.3.3 Accelerated DCA-Like Algorithm for problem

	Chapter 2 Group Variable Selection in Multi-class Logistic Regression
	2.1 Introduction
	2.2 Standard DCA for the group variable selection in multi-class logistic regression
	2.3 SDCA for the group variable selection in multi-class logistic regression
	2.3.1 Numerical experiment
	2.3.1.1 Datasets
	2.3.1.2 Comparative algorithms
	2.3.1.3 Experiment setting
	2.3.1.4 Experiment 1
	2.3.1.5 Experiment 2
	2.3.1.6 Experiment 3

	2.4 DCA-Like and ADCA-Like for the group variable selection in multi-class logistic regression
	2.4.1 Numerical experiment
	2.4.1.1 Experiment setting
	2.4.1.2 Comments on numerical results

	2.5 Comparison between proposed algorithms
	2.6 Conclusion

	Chapter 3 t-distributed Stochastic Neighbor Embedding
	3.1 Introduction
	3.2 Standard DCA for t-SNE problem
	3.3 DCA-Like and ADCA-Like for t-SNE problem
	3.4 Numerical experiment
	3.5 Conclusion

	Chapter 4 Deep Clustering
	4.1 Introduction and related works
	4.2 Two-step and joint-clustering by t-SNE and MSSC
	4.2.1 Our contributions
	4.2.2 Two-step clustering by t-SNE and MSSC
	4.2.3 Joint-clustering by t-SNE and MSSC
	4.2.3.1 Problem formulation and solution methods
	4.2.3.2 DC Decomposition for the Problem

	4.2.4 Numerical experiment
	4.2.4.1 Experiment settings and Datasets
	4.2.4.2 Experiment 1: Hyper-parameters of MSSC-JDR and MSSC-2S
	4.2.4.3 Experiment 2: Comparasion between MSSC-2S, MSSC-JDR and standard MSSC
	4.2.4.4 Experiment 3: Comparison with NMF and VolMin-based factorization joint-clustering algorithms
	4.2.4.5 Experiment 4: Compare with joint-clustering algorithms using auto-encoder

	4.3 An approach for the scaling problem in a class of joint-clustering algorithms by auto-encoder
	4.3.1 Auto-encoder
	4.3.2 Scaling problem of joint-clustering by auto-encoder
	4.3.3 Proposed solution
	4.3.3.1 Spherical distance
	4.3.3.2 Application for deep joint-clustering with MSSC

	4.3.4 Numerical experiment
	4.3.4.1 Datasets
	4.3.4.2 Comparative algorithms
	4.3.4.3 Experiment setting
	4.3.4.4 Experiment results

	4.4 Conclusion

	Chapter 5 Conclusion
	Appendix
	Bibliography

