Thèse soutenue

Voie chimique pour concevoir les hétérojonctions des nanomatériaux plasmiques-semi-conducteurs pour des applications en photocatalyse

FR  |  
EN
Auteur / Autrice : Issraa Shahine
Direction : Jean-Jacques GaumetSuzanna Akil
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 26/04/2019
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine ; 2018-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de chimie et physique - Approche multiéchelle des milieux complexes (2012-.... ; Metz)
Jury : Président / Présidente : Stéphane Roux
Examinateurs / Examinatrices : Nadine Millot, Grégory Barbillon, El-Eulmi Bendeif
Rapporteurs / Rapporteuses : Nadine Millot, Grégory Barbillon

Résumé

FR  |  
EN

L’ingénierie de nanomatériaux hybrides semi-conducteurs/plasmoniques représente une technologie durable en raison de l’efficacité parfaite du couplage pour améliorer, rénover et enrichir les propriétés des composants intégrés. Ce couplage a pour résultat la variation des propriétés fonctionnelles du système, grâce auquel les plasmons de surface générés par les métaux peuvent améliorer la séparation des charges, l’absorption de la lumière et la luminescence du semi-conducteur. Ce phénomène permet de fortes interactions avec d'autres éléments photoniques tels que les émetteurs quantiques. Ces fonctionnalités aux multiples facettes découlent de l'interaction synergique exciton-plasmon entre les unités liées. Ainsi, les nanomatériaux hybrides conviennent à diverses applications, notamment : conversion de l'énergie solaire, dispositifs optoélectroniques, diodes électroluminescentes (LED), photocatalyse, détection biomédicale, etc. Les nanostructures Au-ZnO suscitent un intérêt croissant dans ces applications où le couplage de ZnO à de nanoparticules d’or (GNPs) favorise la réponse du système dans le domaine du visible grâce à leur résonance plasmon de surface (SPR). En fonction de la taille de deux nanomatériaux, de la distance qui les sépare et leurs rapports massiques dans un échantillon, les propriétés des particules hybrides peuvent varier. Dans ce contexte, nous nous sommes concentrés sur la construction de nano-cristaux (NCs) de ZnO purs de dimensions contrôlables, puis incorporés dans des solutions de GNPs par une simple voie chimique. Ce travail est divisé en deux parties : la première consiste à effectuer une synthèse de nanocristaux de ZnO (NCs) purs présentant d'excellentes propriétés de photoluminescence dans l’UV. Ceci a été réalisé par une synthèse à basse température, aboutissant à des structures rugueuses et amorphes. La synthèse a été suivie d'un traitement post-thermique afin de cristalliser les nanoparticules obtenues. Une étude structurale et optique poussée a été établie à la suite de la synthèse (SEM, TEM, DRX, photoluminescence). Les activités photocatalytiques des ZnO NCs ont été étudiées en mesurant leur capacité à dégrader le bleu de méthylène (MB). De plus, la relation entre les structures en ZnO, la luminescence et les propriétés photocatalytiques a été explorée en détail. Dans la deuxième étape, les ZnO NCs obtenus ont été couplés ajoutés à des nanoparticules d'or de tailles et fractions volumiques variables. Le rôle effectif des GNPs concernant leur morphologie, leur contenu et leur effet SPR sur la photoémission des nanostructures de ZnO est souligné par le transfert de charge et / ou d'énergie entre les constituants du système hybride. De plus, l’activité photocatalytique du système hybride a été examinée. Comme débouché et perspective de ce travail de thèse, l'intégration des ZnO NC dans une couche nanoporeuse de polymère (PMMA) a été réalisée et caractérisée afin d'obtenir un substrat de large surface à base de ZnO. Les ZnO NCs assemblés dans du PMMA pourraient être des substrats prometteurs en tant que catalyseurs pour la croissance de nanofils de ZnO, de nanomatériaux métalliques et de matériaux hybrides.