Thèse soutenue

Topologie des lissages de singularités non-isolées de surfaces complexes

FR  |  
EN
Auteur / Autrice : Octave Curmi
Direction : Patrick Popescu-Pampu
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 17/06/2019
Etablissement(s) : Université de Lille (2018-2021)
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire Paul Painlevé

Résumé

FR  |  
EN

Cette thèse s’intéresse à la topologie des lissages des singularités non-isoléesde surfaces complexes. La question est celle de la description de la topologie de la variété,appelée fibre de Milnor, qui survient lors de ce procédé de lissage. Devant la difficulté dedécrire la totalité de cette topologie, beaucoup de recherches se sont concentrées sur le bordde la fibre de Milnor. Dans le cas des singularités isolées, il est connu depuis les travaux deMumford (1961), que ce bord est une variété graphée, isomorphe au bord de la singularité.Différents résultats (Michel & Pichon 2003, 2014, Némethi & Szilárd 2012) ont par lasuite prouvé que dans le cas des singularités réduites non-isolées, le bord de la fibre de Milnorest encore une variété graphée, en imposant à l’espace total du lissage d’être lui-mêmelisse. Fernández de Bobadilla & Menegon-Neto (2014) ont quant à eux élargi le contexte,considérant le cas d’une surface non réduite dans un espace total à singularité isolée. Dansce travail, on poursuit l’extension de ce résultat à un plus large contexte, autorisant l’espacetotal du lissage à présenter des singularités non-isolées, tout en imposant à la surface d’êtreréduite. Notre preuve s’inspire de celle de Némethi et Szilard, permettant comme chez euxde produire une méthode pour le calcul de cette variété. Ceci rend praticable le calcul effectifd’une grande quantité d’exemples, représentant un progrès dans la quête de la compréhensiondes variétés pouvant apparaître comme bords de fibres de Milnor.Nous appliquons en particulier la méthode aux singularités Newton-non-dégénéréesdéfinies sur des germes toriques tridimensionnels quelconques. Nous généralisons de cettemanière un théorème de Oka (1986), en exprimant le bord de la fibre de Milnor en termesdu polyèdre de Newton de la singularité.