Thèse soutenue

Production de molécules plateformes pour la valorisation des déchets organiques solides : étude de processus physiques et biologiques impactant la qualité du mélange d'acides organiques

FR  |  
EN
Auteur / Autrice : Laura Digan
Direction : Etienne PaulClaire Dumas
Type : Thèse de doctorat
Discipline(s) : Genie des procedes et de l'environnement
Date : Soutenance le 08/10/2019
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'ingénierie de Systèmes Biologiques et des Procédés - Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés / LISBP
Jury : Président / Présidente : Hélène Roux-de Balmann
Examinateurs / Examinatrices : Pierre Fontanille, Eric Trably
Rapporteurs / Rapporteuses : Jean-Philippe Delgenes, Hassen Benbelkacem

Résumé

FR  |  
EN

La consommation de ressources pétrolières, épuisables et non renouvelables, conduit à rechercher de nouvelles voies de production pour l’industrie chimique. De plus, la production d’Ordures Ménagères Résiduelles (OMR) continue d’augmenter à l’échelle mondiale. La fermentation acidogène des OMR permet de répondre au double objectif de traiter ces déchets et réduire leur quantité tout en produisant des molécules plateformes biosourcées (acides organiques) d’intérêt pour la chimie.La teneur en solides élevée des OMR et le souci de limiter les coûts de procédé justifient le choix du réacteur à lit percolant ou LBR: il s’agit d’un procédé de fermentation discontinue en voie solide dans lequel une phase liquide est recirculée au sein d’un lit statique de déchets solides. De plus, la mise en œuvre de la fermentation en culture mixte vise à apporter de la diversité microbienne, donc de la robustesse face aux variations de conditions environnementales, et permet de s’affranchir de la nécessité de stériliser le milieu. Par souci de reproductibilité, le principal substrat d’étude a été une reconstitution d’OMR.La première partie de ce travail concerne la compréhension des processus biologiques et chimiques et de leur interaction, au cours de la fermentation acidogène en réacteur batchs séquentiels. L’impact de différents facteurs sur l’hydrolyse et la production de métabolites ont été étudiés: l’ajout d’un inoculum exogène au départ, l’acclimatation de la population microbienne initialement présente vis-à-vis des conditions environnementales, le pH. Il a ainsi été confirmé que le pH joue un rôle clé dans la solubilisation du substrat, la production de métabolites et le spectre de produits. L’analyse de l’évolution des communautés microbiennes a permis de corréler la sélection de certaines familles de bactéries aux performances observées. La fermentation a pu être effectuée avec l’utilisation unique du consortium microbien indigène et l’ajout d’un inoculum extérieur n’a pas contribué à améliorer les performances atteintes. En revanche, la réutilisation de communautés microbiennes, acclimatées aux conditions opératoires par les batchs séquentiels, a été déterminante pour augmenter les productions de métabolites. Ces conclusions ont été comparées à des résultats obtenus à forte teneur en solides.La teneur en solides a une influence considérable sur la réaction de fermentation. Toutefois, sa seule considération n’est pas suffisante car le lit de déchets solides constitue un milieu poreux multiphasique complexe au sein duquel la répartition de l’eau et les phénomènes de transfert sont aussi essentiels. La seconde partie de ce travail visait donc à caractériser le lit de déchets en LBR sur le plan physique et hydrodynamique, en conditions abiotiques. Pour cela, des OMR reconstituées, mais aussi réelles, ont été utilisées. En réalisant des cycles de percolation et drainage avant et après compaction des lits de déchets, la structure des massifs et la distribution de l’eau dans les compartiments ont été déterminées. L’application d’un modèle à double porosité classique pour représenter ces cycles a mis en évidence l’existence d’une fraction d’eau immobile dans la macroporosité. Aussi, un modèle amélioré a été proposé pour reproduire de manière plus adéquate ces dynamiques d’écoulement d’eau dans le massif. Des coefficients de transfert d’eau entre les compartiments ont alors pu être estimés via ce nouveau modèle.Les travaux pluridisciplinaires menés au sein de cette thèse se sont intéressés à deux aspects complémentaires de la fermentation acidogène en LBR et apportent aussi de nouvelles perspectives. Par exemple, la stratégie de recirculation, le contrôle de pH au sein de ce milieu complexe, mais aussi la validation sur des déchets réels sont autant de sujets à explorer afin de pouvoir mettre en œuvre la production optimale et reproductible des molécules plateformes par le procédé étudié, en accord avec les utilisations postérieures visées.