Thèse soutenue

Projection au sens de Wasserstein 2 sur des espaces structurés de mesures

FR  |  
EN
Auteur / Autrice : Léo Lebrat
Direction : Frédéric de GournayJonas Kahn
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 19/12/2019
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Toulouse - Institut de Mathématiques de Toulouse
Jury : Président / Présidente : Jerome Bolte
Examinateurs / Examinatrices : Frédéric de Gournay, Jonas Kahn, Bruno Levy, Gabriele Steidl, Filippo Santambrogio, Frank Barthe, Quentin Merigot
Rapporteur / Rapporteuse : Bruno Levy, Gabriele Steidl

Résumé

FR  |  
EN

Cette thèse s’intéresse à l’approximation pour la métrique de 2-Wasserstein de mesures de probabilité par une mesure structurée. Les mesures structurées étudiées sont des discrétisations consistantes de mesures portées par des courbes continues à vitesse et à accélération bornées. Nous comparons deux types d’approximations pour ces courbes continues : l’approximation constante par morceaux et linéaire par morceaux. Pour chaque méthode, des algorithmes rapides et fonctionnant pour une discrétisation fine ont été développés. Le problème d’approximation se divise en deux étapes avec leurs propres défis théoriques et algorithmiques : le calcul de la distance de Wasserstein 2 et son optimisation par rapport aux paramètres de structure. Ce travail est initialement motivé par la génération de trajectoires d’IRM en acquisition compressée, toutefois nous donnons de nouvelles applications potentielles pour ces méthodes.