Thèse soutenue

Couplage AIG/MEG pour l'analyse de détails structuraux par une approche non intrusive et certifiée
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marie Tirvaudey
Direction : Jean-Charles PassieuxLudovic Chamoin
Type : Thèse de doctorat
Discipline(s) : Genie mecanique, mecanique des materiaux
Date : Soutenance le 27/09/2019
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut Clément Ader - Laboratoire de Mécanique et Technologie - Institut Clément Ader / ICA - Laboratoire de Mécanique et Technologie / LMT
Jury : Président / Présidente : Serge Prudhomme
Examinateurs / Examinatrices : Jean-Charles Passieux, Ludovic Chamoin, Eric Florentin, Thomas Elguedj, Mickael Abbas, Robin Bouclier, Valentine Rey
Rapporteurs / Rapporteuses : Eric Florentin, Thomas Elguedj

Résumé

FR  |  
EN

Dans le contexte industriel actuel, où la simulation numérique joue un rôle majeur, de nombreux outils sont développés afin de rendre les calculs les plus performants et exacts possibles en utilisant les ressources numériques de façon optimale. Parmi ces outils, ceux non-intrusifs, c’est-à-dire ne modifiant pas les codes commerciaux disponibles mais permettant d’utiliser des méthodes de résolution avancées telles que l’analyse isogéométrique ou les couplages multi-échelles, apparaissent parmi les plus attirants pour les industriels. L’objectif de cette thèse est ainsi de coupler l’Analyse IsoGéométrique (AIG) et la Méthode des Éléments Finis (MEF) standard pour l’analyse de détails structuraux par une approche non-intrusive et certifiée. Dans un premier temps, on développe un lien global approché entre les fonctions de Lagrange, classiquement utilisées en éléments finis et les fonctions NURBS bases de l’AIG, ce qui permet d’implémenter des analyses isogéométriques dans un code industriel EF vu comme une boîte noire. Au travers d’exemples linéaires et non-linéaires implémentés dans le code industriel Code_Aster de EDF, nous démontrons l’efficacité de ce pont AIG\MEF et les possibilités d’applications industrielles. Il est aussi démontré que ce lien permet de simplifier l’implémentation du couplage non-intrusif entre un problème global isogéométrique et un problème local éléments finis. Ensuite, le concept de couplage non-intrusif entre les méthodes étant ainsi possible, une stratégie d’adaptation est mise en place afin de certifier ce couplage vis-à-vis d’une quantité d’intérêt. Cette stratégie d’adaptation est basée sur des méthodes d’estimation d’erreur a posteriori. Un estimateur global et des indicateurs d’erreur d’itération, de modèle et de discrétisation permettent de piloter la définition du problème couplé. La méthode des résidus est utilisée pour évaluer ces erreurs dans des cas linéaires, et une extension aux problèmes non-linéaires via le concept d’Erreur en Relation de Comportement (ERC) est proposée.