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Résumé
Les bénéfices engendrés par les études statistiques sur les données person-
nelles des individus sont nombreux, que ce soit dans le médical, l’énergie ou
la gestion du trafic urbain pour n’en citer que quelques-uns. Les initiatives
publiques de smart-disclosure et d’ouverture des données rendent ces études
statistiques indispensables pour les institutions et industries tout autour du
globe. Cependant, ces calculs peuvent exposer les données personnelles des
individus, portant ainsi atteinte à leur vie privée. Les individus sont alors de
plus en plus réticents à participer à des études statistiques malgré les protec-
tions garanties par les instituts. Pour retrouver la confiance des individus, il
devient nécessaire de proposer des solutions de user empowerment, c’est-à-
dire permettre à chaque utilisateur de contrôler les paramètres de protection
des données personnelles les concernant qui sont utilisées pour des calculs.

Ce manuscrit développe donc un nouveau concept d’anonymisation per-
sonnalisé, basé sur la généralisation de données et sur le user empowerment.

En premier lieu, ce manuscrit propose une nouvelle approche mettant en
avant la personnalisation des protections de la vie privée par les individus,
lors de calculs d’agrégation dans une base de données. De cette façon les
individus peuvent fournir des données de précision variable, en fonction de
leur perception du risque. De plus, nous utilisons une architecture décentral-
isée basée sur du matériel sécurisé assurant ainsi les garanties individuelles
de respect de la vie privée et de confidentialité des calculs tout au long des
opérations d’agrégation.

En deuxième lieu, ce manuscrit étudie la personnalisations des garanties
d’anonymat lors de la publication de jeux de données anonymisés. Nous
proposons l’adaptation d’heuristiques existantes ainsi qu’une nouvelle ap-
proche basée sur la programmation par contraintes. Des expérimentations
ont été menées pour étudier l’impact de la personnalisation des contraintes
d’anonymat sur la qualité des données. Ces contraintes ont été construites et
simulées de façon réaliste en se basant sur des résultats d’études sociologiques.

Mots clés : Protection de la vie privée et des données, Anonymat, Big Data,
Matériel sécurisé, Programmation par contraintes.
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Abstract
The benefit of performing Big data computations over individual’s microdata
is manifold, in the medical, energy or transportation fields to cite only a few,
and this interest is growing with the emergence of smart-disclosure initia-
tives around the world.However, these computations often expose microdata
to privacy leakages, explaining the reluctance of individuals to participate
in studies despite the privacy guarantees promised by statistical institutes.
To regain indivuals’trust, it becomes essential to propose user empowerment
solutions, that is to say allowing individuals to control the privacy parameter
used to mke computations over their microdata. This work proposes a novel
concept of personalized anonymisation based on data generalization and user
empowerment. Firstly, this manuscript proposes a novel approach to push
personalized privacy guarantees in the processing of database queries so that
individuals can disclose different amounts of information (i.e. data at differ-
ent levels of accuracy) depending on their own perception of the risk. More-
over, we propose a decentralized computing infrastructure based on secure
hardware enforcing these personalized privacy guarantees all along the query
execution process. Secondly, this manuscript studies the personalization of
anonymity guarantees when publishing data. We propose the adapation of
existing heuristics and a new approach based on constraint programming.
Experiments have been done to show the impact of such personalization on
the data quality. Individuals’privacy constraints have been built and realis-
tically using social statistic studies.

Keywords: Privacy-preserving, Data privacy and security, Anonymity, Big
Data, Secure hardware, Constraint Programming.
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Chapter 1

Introduction (Version
Française)

1.1 Motivations

Les données font aujourd’hui partie intégrante de notre vie. Cette om-
niprésence des données a donné naissance à une nouvelle science pour les
gérer, la science des données. Celle-ci est centrale à la méthodologie de
nombreux domaines, allant du médical à la sociologie. Elle permet, entre
autre, d’avoir une meilleure compréhension des données, ou même la créa-
tion de nouvelles connaissances. Ces deux bénéfices peuvent être obtenus à
l’aide d’études statistiques et de techniques de visualisation des données. En
médecine, par exemple, il n’est pas rare d’utiliser des études statistiques pour
mettre en évidence des corrélations, permettant de découvrir des causes de
maladies et ainsi, mieux les traiter. Avec l’avènement du Web et de l’internet
des objets (IoT), de nouvelles techniques telles que la fouille de données (ou
data mining) et l’apprentissage automatique (ou machine learning) ont été
élaborées pour traiter les jeux de données massifs appelés Big Data.

Parallèlement, la divulgation intelligente (ou Smart-disclosure) consiste à
ce que des entreprises et administrations fournissent aux individus les don-
nées les concernant, dans un format ouvert. Cela leur permet de les aider
dans les décisions qu’ils prennent et, par exemple, réduire leur consomma-
tion énergétique. Ce concept est largement encouragé, voire imposé, dans
des règlements tels que le RGPD [75] et mis en place par divers consortiums

1



2 CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

industriels ou institutionnels. Citons par exemple :
• le blue button1 aux USA, permet aux patients de télécharger leur dossier

médical. D’autres industries s’en sont inspirées créant le green button
pour la consommation énergétique et le red button pour les données
scolaires.

• le Midata2, au Royaume-Uni, facilite l’échange des données avec des
organismes, par les individus, en échange de connaissances.

• MesInfos3, en France, accorde la possibilité aux individus de récupérer
leurs données auprès des organismes les ayant collectées et leur donne
accès à de nouveaux services. Par exemple, dans le cadre de données
bancaires, un individu pourrait obtenir des relevés bancaires intelligents
indiquant sur chaque dépense, les factures, les différents achats faits,
. . .

D’autre part, l’ouverture des données (Open Data) vise à rendre les données
utilisables et consultables par tous en les publiant dans un format ouvert.
L’ouverture des données est mise en avant par des consortiums tels que le
World Wide Web Consortium4 (W3C) et des fondations telles que l’Open
Knowledge International5. La divulgation intelligente et l’ouverture des don-
nées promettent un déluge de données amplifiant par la même occasion le
Big Data. À l’aide de ces deux concepts, les individus se rendent compte de
la quantité de données collectées par les divers organismes et des problèmes
de vie privée que cela engendre.

À une époque où nous enregistrons tout, la protection de la vie privée est
devenu une problématique majeure, comme le démontrent les nombreuses et
récentes fuites massives de données personnelles qui ont scandalisé le public.
Avec les évolutions technologiques et théoriques dans des domaines tels que
l’apprentissage automatique, il est possible de faire de plus en plus de déduc-
tions à partir d’un ensemble de données. Ces nouvelles déductions rendent
les fuites de données de plus en plus impactantes, fragilisant tout autant la
vie privée des individus concernés. Les techniques d’anonymisation se sont
répandues pour protéger l’identité des individus concernés. Ces techniques

1https://www.healthit.gov/patients-families/your-health-data
2https://www.gov.uk/government/news/
3http://mesinfos.fing.org/
4https://www.w3.org/Consortium/
5https://okfn.org/

https://www.healthit.gov/patients-families/your-health-data
https://www.gov.uk/government/news/the-midata-vision-of-consumer-empowerment
http://mesinfos.fing.org/
https://www.w3.org/Consortium/
https://okfn.org/


1.1. MOTIVATIONS 3

se basent sur la modification des données pour cacher les individus et ont
pour effet, une perte de précision des données appelée perte d’information.
En général, plus les données personnelles sont anonymisées, plus la perte
d’information est importante. Lorsqu’une anonymisation est trop impor-
tante, les données anonymes en deviennent inutilisables et, au contraire, une
faible anonymisation ne permet pas de protéger les individus. L’objectif des
méthodes d’anonymisation est alors de trouver le bon compromis entre perte
d’information et anonymat.

Des attaques de désanonymisation ont quand même lieu lorsque des méth-
odes d’anonymisation sont mal utilisées. Par exemple, American Online
(AOL) a publié en Août 2006, les historiques de recherches de leurs clients
après y avoir appliqué des méthodes d’anonymisation. AOL avait publié
les historiques avec un identifiant numérique unique pour chaque utilisateur,
méthode couramment appelée pseudonymisation. Les recherches d’un même
individu étaient liées à un même identifiant et certaines de ces recherches
pouvaient elles-mêmes contenir des informations personnelles. Cela a permis
de re-identifier bon nombre d’utilisateurs. Thelma Arnold6, par exemple, a
pu être re-identifiée à cause de son amour pour ses chiens, servant maintenant
d’exemple emblématique aux problèmes d’anonymisation des historiques de
recherche.

La communauté scientifique s’est largement mobilisée autour de la défi-
nition de modèles et d’algorithmes d’anonymisation dans l’objectif de rendre
la tâche de réidentification plus difficile, tout en minimisant l’impact sur la
précision des données. Cependant, le problème de la personnalisation de
cette protection est un sujet jusqu’ici peu traité. Il fait pourtant écho au
principe de user empowerment récemment promulgué dans différentes légis-
lations telles que le RGPD. Actuellement, bon nombre de sites proposent une
personnalisation des paramètres de confidentialité. En effet, des études mon-
trent que différents individus n’attendent pas d’être protégés de la même
façon. Certains admettent pouvoir être peu protégés afin d’améliorer les
études statistiques faites et, parallèlement, les services proposés. D’autres
estiment qu’une faible protection réduirait trop leurs libertés. Les avis dif-
fèrent donc d’un individu à l’autre et aussi en fonction des données à protéger.

Les gouvernements et le publique portent de plus en plus d’intérêt en-
vers la protection de la vie privée. Un exemple récent prouvant l’intérêt du
publique est le scandale lié à Cambridge Analytica et Facebook. Cambridge

6NewYork Times: A Face Is Exposed for AOL Searcher No. 4417749

https://www.nytimes.com/2006/08/09/technology/09aol.html
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Analytica avait utilisé une application sur Facebook visant à récolter les
données des utilisateurs à des fins de recherche. Malgré que le consentement
des utilisateurs était demandé, la façon dont est formé Facebook a permis
à Cambridge Analytica de, non seulement, collecter les données des consen-
tants, mais aussi celles de leur cercle social. Des organisations politiques
les avaient utilisées dans le but d’influencer l’opinion publique que ce soit
pour les élections présidentielles des USA7, pour le Brexit8 ou encore, pour
les élections présidentielles du Mexique9. M. Zuckerberg a dû s’excuser et
passer une audition devant le Sénat américain pour répondre des nombreuses
atteintes à la vie privée dont Facebook est l’auteur.

D’autre part, l’Union Européenne pousse la protection de la vie privée
en promulguant différentes lois limitant les droits des organismes sur les
données des utilisateurs. Les institutions privilégiant la protection de la
vie privée des individus y voient une manière de développer de nouvelles
perspectives technologiques, sociales et économiques. Par exemple, avec le
droit à la portabilité, le RGPD [75] propose de faire de la protection de
la vie privée un argument de vente de services. Le droit à la portabilité des
données permet aux utilisateurs de transférer leurs données personnelles d’un
responsable de traitement à un autre. Un responsable de traitement est une
personne ou un organisme qui décide de quelle façon sont traitées les données.
Le droit à la portabilité donnant la possibilité aux individus de changer
de responsable de traitement, un responsable de traitement peut proposer
divers services pour obtenir plus de données. Par exemple, il peut proposer
de meilleures protections de la vie privée aux individus. Le responsable de
traitement peut ensuite effectuer des études sur les données anonymisées ou
en obtenant l’accord des individus afin de revendre de la connaissance qu’elles
engrangent. L’obtention des données par un responsable de traitement se
faisant sur la confiance que les individus lui accordent, proposer des solutions
de user empowerment est important pour gagner cette confiance.

Actuellement, la façon dont les traitements sont effectués est loin d’être
satisfaisante. Par exemple, lorsque l’on souhaite obtenir le salaire moyen par
région, un certain nombre d’étapes vont avoir lieu. Un institut de statistique

7TheGuardian: Ted Cruz using firm that harvested data on millions of unwitting Face-
book users

8TheGuardian: Revealed: the ties that bound Vote Leave’s data firm to controversial
Cambridge Analytica

9NewYork Times: Mexico’s Hardball Politics Get Even Harder as PRI Fights to Hold
On to Power

https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.theguardian.com/uk-news/2018/mar/24/aggregateiq-data-firm-link-raises-leave-group-questions
https://www.theguardian.com/uk-news/2018/mar/24/aggregateiq-data-firm-link-raises-leave-group-questions
https://www.nytimes.com/2018/06/24/world/americas/mexico-election-cambridge-analytica.html
https://www.nytimes.com/2018/06/24/world/americas/mexico-election-cambridge-analytica.html
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(e.g. l’INSEE), considéré comme un tiers de confiance, collecte tout d’abord
les données. Pour cela, il diffuse une requête permettant aux participants de
fournir leurs données en indiquant les garanties d’anonymat qui seront satis-
faites. Dans un deuxième temps, les utilisateurs vont soit fournir ces données
en consentant à répondre à la requête, soit ne rien fournir en cas de non con-
sentement dû à de trop faible garanties d’anonymat. Enfin, l’institut agrège
les données et les anonymise afin de pouvoir publier son étude statistique.
Cette approche présente deux inconvénients importants :

• Les garanties d’anonymat sont proposées par l’institut et les individus
sont anonymisés uniformément. Deux cas peuvent apparaître lors du
choix de ce critère uniforme. Dans le premier cas, l’institut peut fournir
des garanties d’anonymat trop faibles pour une partie de la popula-
tion qui ne souhaitera pas participer à l’étude menée par l’institut.
Ce manque de participants induit une réduction de la précision de
l’étude et les connaissances apportées par cette étude seront moin-
dres. Dans le deuxième cas, l’institut fournira de fortes garanties
d’anonymat permettant d’obtenir la totalité des participations. Cepen-
dant, la perte d’information sera élevée. Les participants acceptant de
faibles garanties seront de fait, anonymisés plus que nécessaire.

• Les instituts ou organismes opérant ce genre de collectes et de cal-
culs sont souvent considérés de confiance. Les calculs et les données
sont centralisés rendant le bénéfice d’une attaque, le coût d’une erreur,
l’impact d’une faille plus important. Le cas du piratage Yahoo10 en
est un parfait exemple. Alors que Yahoo est une compagnie ayant les
capacités pour sécuriser les données, un groupe de pirates avait réussi
en 2014 à récupérer des informations personnelles de plus d’un milliard
de comptes. Leur attaque était peut être coûteuse à effectuer mais le
bénéfice en était tout aussi élevé. En général, les données personnelles
collectées par un organisme sont stockées sur un serveur centralisé et,
malheureusement, toute attaque sur une solution centralisée génère un
bénéfice tel qu’elle est toujours rentable, augmentant ainsi sa proba-
bilité. À défaut de pouvoir empêcher tout piratage, utopie surréaliste
arguée par bon nombre de compagnies, il devient nécessaire de réduire
le ratio bénéfice/coût de ces attaques pour dissuader les pirates.

10https://www.bbc.co.uk/news/world-us-canada-37447016

https://www.bbc.co.uk/news/world-us-canada-37447016
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Le premier objectif de ce manuscrit est de proposer un nouveau con-
cept d’anonymisation permettant aux individus de spécifier des contraintes
d’anonymat personnalisées. Des solutions algorithmiques doivent également
être proposées pour garantir l’applicabilité de ces contraintes, palliant ainsi le
premier inconvénient présenté ci-dessus. Ce concept représente une solution
de user empowerment pouvant être utilisé par les responsables de traitement
et les instituts de statistiques.

Le deuxième objectif de ce manuscrit est de proposer une architecture
décentralisée pour éparpiller les données et réduire l’impact d’une potentielle
fuite de données. Ce système devra être capable d’effectuer des calculs sur
les données de façon sécurisée. Les utilisateurs auront plus de contrôle sur
leurs données. Il sera possible de les contacter pour participer à une étude
statistique à laquelle il décideront d’y participer ou non. Dans le cas où un
individu participe, les données ne seront pas fournies à l’entité demandeuse
mais l’analyse sera effectuée de manière sécurisée et distribuée au sein de
cette architecture.

1.2 Plan général du manuscrit
Ce manuscrit se décompose en cinq parties. Le chapitre 3 présente les
principales approches de l’état de l’art relatives aux sujets étudiés par ce
manuscrit. Premièrement, ce chapitre présente un ensemble d’études faites
montrant la différence d’opinion que les individus ont sur la protection de la
vie privée. Puis, les méthodes d’anonymisation des données dans l’objectif
de les publier tout en respectant le vie privée des individus, sont présentées.
Le k−anonymat présente des caractéristiques nécessaires au user empower-
ment. Tout d’abord, le k−anonymat permet l’anonymisation de données
sans restreindre les opérations applicables sur ces données. Ensuite, la com-
préhension de ce concept d’anonymisation est à la portée de n’importe quel
individu, caractéristique importante du user empowerment. C’est pourquoi,
ce manuscrit se focalise sur le k−anonymat et les différentes heuristiques per-
mettant de l’appliquer, sont présentées par le chapitre 3. Il décrit aussi les
systèmes proposant de faire des calculs sur les données personnelles sans pour
autant affecter la vie privée des individus concernés par ces données. Finale-
ment, ce chapitre expose les différentes métriques permettant de mesurer la
perte d’information induite par l’anonymisation d’un jeu de données et, ce
faisant, la qualité des données.
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Le chapitre 4 introduit une première contribution. En premier lieu, ce
chapitre décrit un moyen d’incorporer des garanties d’anonymat personnal-
isées permettant aux utilisateurs de participer à des études statistiques en
fonction de leur opinion sur la protection qu’ils veulent et sur les garanties
de protection assuré par une requête. Ce chapitre se base sur l’utilisation
d’une architecture permettant à un organisme d’effectuer des calculs sur les
données personnelles sans que cet organisme puisse voir des résultats inter-
médiaires et tout en assurant que le résultat de ces calculs soit en accord
avec les contraintes d’anonymat fournies par les utilisateurs. Finalement, ce
chapitre effectue des expérimentations sur un jeu de données réelles et de
grande taille montrant l’efficacité de l’approche présentée dans ce chapitre.

Le chapitre 5 expose une autre contribution basée sur une pratique com-
mune, la publication de jeux de données anonymisés. Tout d’abord, ce
chapitre formalise le concept de k−anonymat personnalisé. Ensuite, il pro-
pose une adaptation des algorithmes existants pour produire un k−anonymat
personnalisé rendant l’application de ce nouveau concept plus aisée. Il pro-
pose aussi une discussion sur la différence d’opinion que les individus ont sur
les contraintes d’anonymat qu’ils estiment être raisonnables. Cette opinion
étant corrélée au vécu des individus, il peut être difficile d’estimer l’intérêt
du k−anonymat personnalisé dans certains scénarios. Ce chapitre permet
d’identifier les cas d’usages pour lesquels l’intérêt de la méthode est partic-
ulièrement important. Enfin, il propose une série d’expériences révélant les
avantages, l’impact de la corrélation et les limites de l’approche proposée
dans ce chapitre.

Le chapitre 6 présente une nouvelle approche, basée sur la programma-
tion par contraintes, pour calculer le k−anonymat personnalisé optimal.
Cette nouvelle approche peut s’adapter facilement aux différents concepts
d’anonymisation de données (e.g. k−anonymat, `−diversité, . . . ) induisant
de nouvelles perspectives. Le chapitre expérimente cette nouvelle approche
sur des jeux de données de faible taille correspondant à un ensemble re-
streint de scénarios mais néanmoins réels. Enfin il discute des limites de
cette nouvelle méthode indiquant les principales améliorations à effectuer
pour augmenter sa capacité en terme de taille de jeux de données.

Enfin, le chapitre 7 conclut. Il résume les différentes contributions faites
dans ce manuscrit et expose les perspectives offertes par ces mêmes contri-
butions.
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Contributions
Ce manuscrit présente un certain nombre de contributions. Ces contributions
sont résumées et listées ci-dessous :

• la présentation d’un nouveau concept d’anonymat permettant aux in-
dividus de spécifier le degré d’anonymat qu’ils souhaitent. Ce nouveau
concept a été expérimenté sur des scénarios réalistes montrant une ré-
duction de la perte d’information dans la plupart des scénarios. Des
heuristiques existantes ont été adaptées à ce nouveau concept et util-
isées pour ces expérimentations. De plus, ces expérimentations mon-
trent aussi que la corrélation entre les contraintes d’anonymat des in-
dividus et leurs caractéristiques (e.g. leur âge, . . . ), améliore la qualité
des données.

• l’élaboration d’un algorithme permettant la collecte et le calcul dis-
tribué de requêtes avec des garanties d’anonymat personnalisées sur de
larges quantités de données. Cet algorithme prend en compte les dif-
férentes sémantiques possibles liées à la personnalisation de l’anonymat.

• la création d’une nouvelle méthodes pour anonymiser un jeu de données
avec l’aide de la programmation par contraintes. Les contraintes, ex-
primées sous forme d’un modèle, permettent d’obtenir une solution op-
timale d’anonymisation personnalisé. Plusieurs critères d’optimisation
communs aux techniques de clustering ont été utilisés et évalués ex-
périmentalement.



Chapter 2

Introduction (English Version)

2.1 Motivations
Nowadays, data are a main part of our society. This data ubiquity gave birth
to a new science, the data science. Data science is central to many science
fields’ methodology, ranging from medicine to sociology. It allows scientists
to get a better understanding of data shape and allows new knowledge to
be created. This two benefits are obtained with the help of statistic studies
and data visualization methods. In the medical field, for example, the use of
statistic studies is generally a good way to highlight correlations which show
causes of illnesses and how to improve their treatment. With the advent of
the Web and the Internet of Things (IoT), new methods such as data mining,
and machine learning have been studied to scale to Big Data.

At the same time, Smart-disclosure consists to allow users to obtain data
in an open format that companies and administrations collect on them. The
goal is to help users to make their decisions. For example, they can use
a detail of their energy consumption to reduce it. The concept of smart-
disclosure is widely pushed forward, or enforced by regulations such as the
GDPR [75], and proposed by industry-led or institutional consortia. We can
cite some Smart-disclosure initiatives :

• the blue button1, in USA, allows patients to get their medical records.
The blue button has inspired others smart-disclosure concept such as
the green button for the energy consumption and the red button, for
education data.

1https://www.healthit.gov/patients-families/your-health-data

9

https://www.healthit.gov/patients-families/your-health-data
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• the Midata2, in UK, facilitates the share of data by users with compa-
nies in exchange of knowledge.

• MesInfos3, in France, lets users to get data from companies collecting
those and gives them access to new services. For example, they can use
bank data to obtain smart bank statement, linking to each expenses
the invoice, the list of purchases, . . .

On the other hand, the Open Data aims to leave data usable and searchable
for all by publishing them in an open format. The open data is pushed
forward by consortia such as the World Wide Web Consortium4 (W3C) and
foundation such as the Open Knowledge International5. The smart-disclosure
and the open data promise a deluge of data increasing even more, benefits
from Big Data. Both concepts help users to realize the amount of data
collected by companies and various organizations, and the resulting privacy
issues.

At a time every data are collected, privacy-preserving has become a major
issue as demonstrated by the many recent data leaks scandalizing the public.
Due to technological and theoretical development such as machine learning,
more and more inferences can be made from a dataset. These inferences
are making data leaks more impacting, weakening the privacy of concerned
individuals. Anonymisation methods have become a common practice to pro-
tect individuals’ identity. These methods are based on data distortions and
lead to a loss of data accuracy called information loss. Generally, the more
data are anonymised, the more information loss is generated. An excessive
anonymisation leads to anonymised data without utility, and contrariwise, a
low anonymisation does not protect individuals. The goal of anonymisation
methods is to propose a trade off between information loss and privacy.

Deanonymisation attacks still occur because of anonymisation misuses.
For example, in August 2006, American Online (AOL) had published their
client search data after using some anonymisation methods. AOL had pub-
lished search data with a unique identifier for each of their users, a methods
called pseudonymisation. Searches of the same individual were linked to the
same identifier and some of these searches could contain personal information.

2https://www.gov.uk/government/news/
3http://mesinfos.fing.org/
4https://www.w3.org/Consortium/
5https://okfn.org/

https://www.gov.uk/government/news/the-midata-vision-of-consumer-empowerment
http://mesinfos.fing.org/
https://www.w3.org/Consortium/
https://okfn.org/
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This allowed people to re-identify many users. Thelma Arnold6, for example,
have been re-identified because of her love for her dogs, now serving as an
iconic example of the difficulties of anonymising search data.

The definition of anonymisation models and algorithms has been a main
concern for number of scientists in order to make re-identification harder
while minimizing the impact of anonymisation on data utility. However,
the personalisation of individuals protection is a topic that has not been
developed enough. Yet, it echos user empowerment concepts that are pushed
forward by legislators such as the GDPR. Currently, number of websites offer
the personalisation of confidentiality parameters. Indeed, some studies show
that different individuals do not expect to be protected the same way. Some
agree to be less protected to improve statistics and services. In the other
hand, others believe that a low protection would lead to the loss of their
freedoms. Therefor, opinions differ from one individual to another and also
according to the data involved.

Governments and the public show more and more interest about privacy.
A recent example about this interest is the scandal of Cambridge Analytica
and Facebook. Cambridge Analytica used an application on Facebook which
goal was to collect data for research purpose. Even if users’ consent were
asked, the way Facebook is built, allowed Cambridge Analytica to collect data
from consenting but also and mostly data from users in the social circle of
consenting users. Those data were used by political organizations to influence
public opinion whether for the US presidential elections7, for the Brexit8, or
for Mexico’s presidential elections9. Mr Zuckerberg had to apologize and was
heard by the US Senate to respond to the many violations of privacy that
Facebook is responsible.

On the other hand, the European Union enforces privacy of individuals
by enacting number of laws to limit data misuses by organisms collecting
Europeans data. Institutions that ensures privacy preservation, see it as a
way to develop new technological, social and economic opportunities. For
example, the GDPR [75], introduces the right to data portability which can

6NewYork Times: A Face Is Exposed for AOL Searcher No. 4417749
7TheGuardian: Ted Cruz using firm that harvested data on millions of unwitting Face-

book users
8TheGuardian: Revealed: the ties that bound Vote Leave’s data firm to controversial

Cambridge Analytica
9NewYork Times: Mexico’s Hardball Politics Get Even Harder as PRI Fights to Hold

On to Power

https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.theguardian.com/uk-news/2018/mar/24/aggregateiq-data-firm-link-raises-leave-group-questions
https://www.theguardian.com/uk-news/2018/mar/24/aggregateiq-data-firm-link-raises-leave-group-questions
https://www.nytimes.com/2018/06/24/world/americas/mexico-election-cambridge-analytica.html
https://www.nytimes.com/2018/06/24/world/americas/mexico-election-cambridge-analytica.html
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be use to make privacy-preserving methods a selling argument. The right
to data portability allows users to transfer their data from a data controller
to another. The data controller is a person or an organism in charge of
choosing the way data are processed. For example, it can ensure better
privacy protections to attract more individuals. Then, the data controller
can compute statistics on anonymised data and sell knowledge it generates.
To get data from individuals, the data controller should increase the trust
of individuals. This trust can be increased by proposing user empowerment
solutions for example.

The way micro-data is anonymised and processed today is far from being
satisfactory. Let us consider how a national statistical study is managed,
e.g. computing the average salary per geographic region. Such a study is
usually divided into 3 phases: (1) the statistical institute (assumed to be
a trusted third party) broadcasts a query to collect raw micro-data along
with anonymity guarantees (i.e., a privacy parameter like k in the case of
k−anonymity or ε in the case of differential privacy) to all users ; (2) each
user consenting to participate transmits her micro-data to the institute ; (3)
the institute computes the aggregate query, while respecting the announced
anonymity constraint.

This approach has two important drawbacks:

1. The anonymity guarantee is defined by a querier (i.e. the statistical
institute), and applied uniformly to all participants. If the querier
decides to provide little privacy protection, it is likely that many users
will not want to participate in the query leading the study to a loss of
accuracy. On the contrary, if the querier decides to provide a high level
of privacy protection, many users will be willing to participate, but the
quality of the results will drop. Indeed, higher privacy protection is
always obtained to the detriment of the quality and thus utility of the
sanitized data.

2. The querier is assumed to be trusted. Although this could be a realis-
tic assumption in the case of a national statistics institutes, this means
it is impossible to outsource the computation of the query. Moreover,
micro-data centralization exacerbates the risk of privacy leakage due
to piracy (Yahoo and Apple recent hack attacks are emblematic of the
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weakness of cyber defenses10), scrutinization and opaque business prac-
tices. This erodes individuals trust in central servers, thereby reducing
the proportion of citizen consenting to participate in such studies, some
of them unfortunately of great societal interest.

The first goal of this manuscript is to propose a new anonymity concept
which allows individuals to specify anonymity constraints. Algorithms are
also presented to guarantee these constraints while anonymising individuals
to overcome the first drawback. This new concept is a user empowerment
solution which can be used by data controller and statistics institutions.

The second goal of this manuscript is to propose a decentralize archi-
tecture to scatter the data and so, decrease the impact of a data leak. This
system would be able to securely compute statistics. In this system user
would have control over their own data. They would be able to choose to
participate to statistics studies or not. In the case the individual is willing
to participate in statistics, the querier would be able to see its data but only
aggregation computed securely by the architecture.

2.2 Outline of the manuscript

This manuscript is divided into five parts. The chapter 3 presents the dif-
ferent approaches of the state of the art related to the main subject of this
manuscript. Firstly, this chapter shows studies highlighting the difference of
individuals’ opinions about privacy. Then, the chapter shows different meth-
ods of data anonymisation for the purpose of data publishing without privacy
leak. The k−anonymity, one of these methods, allows data anonymisation
without restricting computations we can make over it. It is also a concept
understandable by any individual which is an important feature to propose
user empowerment solution. That is why this manuscript focuses on the
k−anonymity and the different existing heuristics to apply it are presented
by the section 3. Then, the chapter exhibits different systems which allow
computations over data such as statistics without lowering the privacy of in-
dividuals. Finally, the chapter presents a set of metrics made to compute the
information loss induced by data anonymisation and, so, the data quality.

10Yahoo ’state’ hackers stole data from 500 million users - BBC News.
https://www.bbc.co.uk/news/world-us-canada-37447016

https://www.bbc.co.uk/news/world-us-canada-37447016
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The chapter 4 introduces a first contribution. Firstly, it describes a way
to add personalised anonymity guarantees allowing users to participate to
statistics studies depending on their opinion about the security they want and
the guarantees ensured by the query. This chapter is based on an architecture
which allow an organisation to make computations over users personal data
without access to any intermediate result while ensuring that users privacy
constraints are satisfied regarding the result. Finally, this chapter shows
experiments made on a real and big dataset exhibiting the efficiency of the
approach.

The chapter 5 shows another contribution based on a common approach,
Privacy-Preserving Data Publishing (PPDP). Firstly, it defines the person-
alised k−anonymity concept. Then, it presents adaptation of heuristics made
for the k−anonymity to produce personalised k−anonymous datasets. Then,
it proposes a discussion about the difference of opinions individuals got about
anonymity constraints they consider to be reasonable. Since this opinion is
correlated to their lived experiences it may be difficult to estimate the bene-
fits from such an approach. This is why the chapter also identifies use cases
in which the personalised k−anonymity is particularly profitable. Finally,
it proposes a set of experiments revealing the benefits, the impact of data
correlations and the limits of the methods presented by this chapter.

The chapter 6 presents a new methods to compute optimal personalised
k−anonymity using constraint programming. This new method easily fit to
number of data anonymisation concepts (e.g. k−anonymity, `−diversity, . . . )
leading to new perspectives. The chapter experiments this new approach
on small datasets corresponding to a limited set of scenarios and yet real.
Finally, it discusses the limits of this approach and shows the main steps to
improve to increase the scalability of the approach.

Finally, the chapter 8 concludes. It summarizes the different contributions
presented in this manuscript and exhibits the resulting perspectives.

Contributions
This manuscript presents some contributions. These contributions are sum-
marized and listed below:

• the presentation of a new anonymity model allowing individuals to
specify the anonymity level they wish. This new concept has been
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tested on realistic scenarios showing an improvement of data quality
in most of the scenarios. Existing heuristics have been adapted to
this new approach and evaluated through a multitude of experiments.
These experiments also show that the correlation between individuals
anonymity constraints and their own characteristics (e.g. age, weight,
. . . ) is improving the overall data quality.

• the development of an algorithm that can make distributed computa-
tions of query with personalized anonymity guarantees on large datasets.
This algorithm take into account the different semantics related to per-
sonalised anonymity.

• the creation of a new anonymisation methods based on constraint pro-
gramming. Constraints are expressed as models and make it possible to
compute optimal personalised anonymity solution. Some optimisation
criteria commonly used by clustering methods are used and experimen-
tally evaluated.
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Chapter 3

State of the art

This chapter presents background knowledge and related work on the sub-
jects studied by this thesis.

The first part presents statistic and psychological studies showing the
variation of individuals’ opinions about privacy. It shows how much the
personalisation of privacy-preserving methods is important for individuals
and offers great user empowerment perspectives.

The second part introduces Privacy Preserving Data Publishing (PPDP)
methods. Two main approaches are discussed. The partition-based approach
(i.e. k−anonymity based methods) is presented first, and the differential pri-
vacy concept second. Since this thesis focuses on partition-based approaches,
a state of the art of k−anonymity algorithms is presented. Related works
on the personalisation of the two approaches are presented at the end of this
part.

After that, we talk about privacy-preserving in interactive query systems.
We present existing solutions to ensure good privacy preservation while an-
swering interactive queries. Some computing architectures reaching this goal
are presented in this part.

Finally, we focus on metrics used to measure data quality and information
loss of modified data produced by PPDP methods. We present metrics used
from two different domains which share similarities: clustering techniques for
data mining and anonymisation methods.

17
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General
privacy
concern

Data
about
offline
iden-
tity

Data
about
online
iden-
tity

Data
about
personal
profile

Data about
professional
profile

Data
about
sexual and
political
identity

High con-
cern

53.7 % 39.6 % 25.2 % 0.9 % 11.9 % 12.1 %

Medium
concern

35.5 % 48.3 % 41.2 % 16.8 % 50.8 % 25.8 %

Low concern 10.7 % 12.1 % 33.6 % 82.3 % 37.3 % 62.1 %

Table 3.1: Privacy concern from [2]

3.1 Individual’s Privacy Concern

The GDPR [75] tries to push user empowerment initiatives. The right to data
portability enacted in this new regulation allows users to obtain their personal
data from a data controller and transfer them to another data controller. It
gives them the possibility to choose a data controller which matches their
expectations. Thus it is expected that a user will gain much more control
over his data. It is important to note that users’ expectations (i.e. privacy
concerns) are different from one to another. To understand privacy concerns
behaviour, a number of researchers have studied the privacy concerns of
individuals concerning different types of data. This section is dedicated to
existing studies on privacy concerns.

Privacy concern is a topic that has been studied for a long time. H. Jeff
et al. have presented a state of the art [79] of studies presented before 2000.
Some of studies from this paper date back to 1972. Since global privacy
concern evolves with time, we will give more interest to recent studies. A
study by A. Acquisti and J. Grossklags [2] about different kinds of data
used shows that even for the same person, privacy concern is something that
depends of the usage of personal data. Table 3.1 shows results presented
on [2].

Table 3.1 represents the privacy attitude of people depending on the cate-
gory of personal information. For example, the category Data about personal
profile shows the privacy concern for profiling information such as age, weight
or isolated piece of personal information. On the other side, the General
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privacy concern category shows the privacy concern that subjects’ studied
generally expressed. Acquisti et al. could identify four groups of persons
differing by their privacy concerns. One group showed a high concern about
privacy, and two groups showing a moderate concern have been merged into
one group. The last group expressed a low privacy concern. In their study, A.
Acquisti and J. Grossklags identified that individuals were more concerned
about privacy when identifying information was requested than with profile
information such as age or weight. People also showed a higher concern when
the pieces of information queried were connected together rather than with
isolated pieces of information.

Another important result demonstrated by their paper, is the correlation
between data and privacy concern. They asked the importance people express
for privacy and then ask for privacy concern information. Obviously, people
showing higher importance to privacy showed also higher privacy concern
than people finding privacy less important. However they also noted that in
the same group, some people saying privacy was important tend to express
lower privacy concern. They found that privacy attitudes appear correlated
with income; people with low income tend to be less concerned about privacy.
As income is correlated with different pieces of personal information (e.g. age,
sex), privacy concern can also be correlated to a set of personal information.
This being said, it is important to note that actions of an individual are often
contradictory with their opinion about privacy concern.

Another study presented by E. Van den Broeck et al. [13] shows that age
was correlated with privacy concern. They identified a variation of privacy
concern between three different groups. The group with the highest privacy
concern was composed of middle-aged adults (i.e. 40–65 years old). Young
adults (i.e. 25–40 years old) expressed a lower privacy concern than middle-
aged adults. The lowest privacy concern was expressed by the emerging adult
(i.e. 18–25). Figure 3.1 illustrates the results of this study by plotting normal
distribution with mean and standard deviation given in their paper [13].

H. K. Tsoi and L. Chen studied the influence of nationality by looking
at the differences between Hong Kong people and French people in term of
privacy concerns [87] in social network sites. They showed that french and
Hong Kong users expressed different degrees of privacy concern. Following
this idea, it is easy to suppose there exists a correlation between privacy
concern and the nationality. They also measured the trust of users in social
network site exhibiting a correlation between this trust and privacy concern.
By generalizing this last information, it is easy to suppose that increasing
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Figure 3.1: Privacy concern by age groups

the trust of users in data controllers would lead to increasing the amount of
data users would be willing to share.

Since privacy concern varies highly between people, it is important to
give users the possibility to express their opinion and to take into account
their difference. Privacy concern is correlated with many different factors,
such as quality of life, nationality, income, age and certainly other factors
not yet studied (e.g. having faced a serious illness, a divorce or losing one’s
job).

From the viewpoint of the authorities trying to acquire data for statistical
studies, it is important to note that, trying to respect the different opinions
may facilitate individuals to consent to their participation in statistical stud-
ies. This would lead to an increase in the amount of collected data and, in
consequence to an increase in accuracy of a statistical study, which can be
viewed as one of the motivations of this thesis.

3.2 Privacy-Preserving Data Publishing

Privacy-Preserving Data Publishing (PPDP) has been a hot topic for the
last twenty years. The objective of PPDP techniques is to publish data while
ensuring the privacy of individuals. Individuals must be protected against an
attacker who is going to lead a de-anonymisation attack. The attacker tries to
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Identifier Quasi-identifier Sensitive
Name ZIP Age Sex Condition
A 14025 25 F Cancer
B 14025 32 M Cancer
C 14020 35 M Heart Disease
D 14110 38 F Cancer
E 14100 39 M Viral Infection
F 14110 44 F Viral Infection
G 14110 70 M Heart Disease
H 14020 70 M Viral Infection
I 14025 50 F Cancer

Table 3.2: Fictitious pseudonymised medical table

link sensitive information such as medical data or salary to a physical person.
To prevent the attacker from inferring sensitive information of individuals,
two main approaches have emerged:

• partition-based approaches

• differential privacy approaches

3.2.1 Related work on partition-based privacy-preserving
methods

Before 2002, pseudonymisation was the most used approach to protect pri-
vacy. Pseudonymisation consists in replacing data which directly identifies
an individual (i.e. first and last name) by a pseudonym. The pseudonym can
be reverted to its original value with the help of another piece of information
(e.g. a secret key in case of encryption). Table 3.2 illustrates a fictitious
medical table that has been pseudonymised : The names of people involved
have been replaced by pseudonyms.

In 2002, L. Sweeney presented an attack on the pseudonymisation ap-
proach [83]. This attack was based on the use of different databases to
link pieces of information together. She bought the voter registration list
of Cambridge Massachusetts for twenty dollars and got a pseudonymised
dataset from the Group Insurance Commission (GIC) which was given for
free to researchers. This last dataset was supposed to be anonymous due to
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pseudonymisation. By crossing the two datasets, she managed to identify
the governor of Massachusetts, William Weld in the GIC dataset and recover
his medical information. She needed only three attributes to re-identify the
governor: ZIP code, sex and birth date. Those kind of attacks are known
as background knowledge attacks due to the fact that the attacker has some
knowledge of the value of some attributes of an individual (other than identi-
fiers). To overcome the weakness of pseudonymisation, L. Sweeney proposed
a new way to protect people from re-identification : k−anonymity [83].
K−anonymity is a partition based approach to anonymise a dataset. It
consists of generalization and suppression of different attributes values. In
PPDP, we can distinguish three kind of data: identifiers, quasi-identifiers
and sensitive data.

Definition 1 (Identifier, Quasi-identifier and Sensitive data). We denote by
identifier data that directly identifies a physical individual (e.g. First Name,
Last Name, ID Number). We denote by quasi-identifiers a set of attributes
that can identify some individuals when grouped together (e.g. ZIP code,
birth date, sex). Finally, we denote by sensitive information an attribute
whose value we do not want to be able to link back to a physical person (e.g.
salary, medical diagnosis).

K−anonymity aims to regroup records with similar quasi-identifiers into
groups of size k. Records of a same group are generalized to share the same
quasi-identifier. We call it an equivalence class.

Definition 2 (Equivalence class). Let D be a set of personal data records.
An equivalence class e is a set of records such as e ⊆ D and two records are
in the same equivalence class iff they have similar quasi-identifiers.

Table 3.3 illustrates the previous fictitious medical dataset as a k−anony-
mous table (i.e. with k = 3). Identifiers have been shown to simplify the
explanation but obviously k−anonymity removes them. The goal of creating
equivalence classes is that if an attacker has background knowledge about
some users in the database, he can find in which group those users are but
cannot infer their sensitive information. For example, in table 3.3, if the
attacker knows that Bob is a 32 years old male with zipcode 14025, the
attacker can only say that Bob has a 66% chance to have a cancer, and a
33% chance to have heart disease.
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Identifier Quasi-identifier Sensitive
Name ZIP Age Sex Condition
Alice 1402* [25, 35] * Cancer
Bob 1402* [25, 35] * Cancer

Charlie 1402* [25, 35] * Heart Disease
Diana 141** [38, 44] * Cancer
Eric 141** [38, 44] * Viral Infection
Fany 141** [38, 44] * Viral Infection
Gregor 14*** [45, 70] * Heart Disease
Henry 14*** [45, 70] * Viral Infection
Irene 14*** [45, 70] * Cancer

Table 3.3: Fictitious 3−anonymous medical data table

One of the weaknesses of k−anonymity is that there is no control over
the sensitive attributes. If all individuals of an equivalence class have can-
cer, an attacker identifying that a user is in this equivalence class would
know that this user has cancer. This attack is called the homogeneity at-
tack. A. Machanavajjhala et al. have proposed another concept based on
the k−anonymity approach to prevent homogeneity : `−diversity [61]. The
`−diversity approach is similar to k−anonymity but ensures in addition that
all equivalence classes have at least ` distinct sensitive values. In our exam-
ple, table 3.3 is also 2−diverse because any equivalence class contains at least
two distinct sensitive values. A. Machanavajjhala et al. proposes different
instantiations of `−diversity (e.g. based on entropy) to fit different problems
(e.g. in case a sensitive value is much more frequent than others).

The `−diversity approach also has weaknesses. In our example, let the
cancer be 50% of the diseases of our database and 25% for viral infection
and heart disease. We know for sure that Bob does not have a viral infection
which leads to a leak of information. The ideal protection of a user is to be in
an equivalence class containing 50% of cancers, 25% of heart disease and 25%
of viral infection because it will give no extra information than knowing a
user is in the database. This is the goal of t−closeness, an approach proposed
by N. Li et al. [58]. The t−closeness approach constructs equivalence classes
which have similar frequency of sensitive values to the whole database. This
concept involves much higher degradation of data due to the fact that many
correlations exist between quasi-identifier and sensitive values. For example,
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heart disease may be correlated to age [46] and living near the location of a
nuclear incident may lead to a population with more cancers. Some disease
are also correlated to the sex of an individual (e.g. breast cancer). Trying
to keep the same frequency of sensitive values in all equivalence classes leads
to the loss of such correlation information, which is usually of paramount
importance in statistical studies. This is why it is important to find the right
trade off between privacy and data quality.

Having restriction on the frequency of sensitive attributes is a way to
prevent an attacker from conducting frequency attacks but may also make
it possible to use another attack, the minimality attack. The minimality
attack, presented by R.C. Wong et al. [93], uses the fact that some gener-
alizations are done to satisfy constraints on the sensitive attribute. Let us
take the `−diversity as example. In the table 3.3, if we aim for 3−diversity,
only the third equivalence class (with Gregor, Henry and Irene) satisfies this
constraint. The first and second equivalence class need others generalizations
to ensure they have 3 distinct sensitive values. An attacker could use this
information to re-identify users. To illustrate it with a simpler example, let
us use the example proposed in their paper [93]. Table 3.4 shows a dataset
which will be generalized to achieve 2−diversity. In this table, we have two
groups of people with the same quasi-identifier and the same sensitive value.
To achieve 2−diversity, the two groups will be merged into one group with
the same quasi-identifier. If the attacker knows that there were two peo-
ple with q1 quasi-identifier and three with q2 as quasi-identifier, the attacker
can recreate the table 3.4 which does not satisfy the 2−diversity condition.
To override this weakness, they proposed another partition-based concept,
m−confidentiality. The minimality attack uses background knowledge rep-
resented by another anonymised table and links probabilistically sensitive
values to records. The m−confidentiality approach aims to reduce the accu-
racy of these probabilities. In fact, it consists in adding randomness to other
partition-based approaches (i.e. not trying to obtain optimal solutions). To
illustrate their approach, they made an algorithm which builds an `−diverse
table. This table can be specialized to produce another `−diverse table (i.e.
because it is not optimal).

Many concepts exist and they all aim to protect individuals against dif-
ferent attack models [29]. There are two families of attack models against
partition-based privacy preserving methods: linkage attacks and probabilis-
tic attacks [29]. We can distinguish three levels of linkage attacks: record
linkage, attribute linkage and table linkage. They differ by the knowledge the
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Quasi-identifier Sensitive
q1 Viral Infection
q1 Viral Infection
q2 Cancer
q2 Cancer
q2 Cancer

Table 3.4: Minimality attack example [93]

attacker has.
Record linkage is the attack that the k−anonymity approach tries to

prevent. The attacker knows that the record of a physical individual is in
the anonymised data table. He also knows the quasi-identifiers of this in-
dividual. The record linkage attack consists in using this information to
re-identify which record corresponds to the person targeted (without taking
sensitive values into account). Since there are k persons with the same quasi-
identifiers, the attacker cannot tell which is the targeted individual among
the k.

The attribute linkage attack aims to infer the sensitive values of an in-
dividual without re-identifying precisely which record corresponds to that
person’s record. For example, the homogeneity attack does not identify the
record but permits to stick a sensitive values to a physical person. The
`−diversity aims to prevent the attribute linkage attack. The two first link-
age attacks are based on the fact that the attacker knows that the targeted
record is in the anonymised table.

The third model, table linkage, assumes that the attacker does not know if
the targeted record is in the anonymised table. The attacker has a knowledge
from a public database P . Let D ⊆ P be a dataset with D∗ an anonymisation
table. The attacker can make an assumption about the fact that a record
from P is present in D∗. To prevent the attacker from completing such
a table linkage attack, M. E. Nergiz and C. Clifton proposed a new privacy
model, δ−presence which limits the confidence of the assumption made by the
attacker. The attacker should not infer a probability out of certain bounds
given in equation 3.1.

δmin ≤ Pr [r ∈ D | D∗,P ] ≤ δmax (3.1)

with δ = (δmin, δmax).
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The second family of attacks (i.e. probabilistic attacks) aims to improve
the knowledge about sensitive information of a record. Let us take the exam-
ple from `−diversity. The attacker could deduce that Bob has a 66% chance
to have cancer and 33% to have heart disease. Assume the attacker knows
that there is 50% of cancer in the dataset, the anonymised table would give
knowledge which differs from his original belief. That is what t−closeness [58]
tries to prevent.

3.2.2 Related work on k−anonymity algorithms
Since most partition-based models are based on k−anonymity, this section
presents a set of algorithms to achieve k−anonymity. Those algorithms differ
in their objective : some try to improve a metric of information loss when
others try to decrease processing time required to produce the anonymised
dataset.

The first k−anonymity algorithm was proposed by L. Sweeney and P.
Samarati and was called MinGen [77]. It was actually done before k−anony-
mity was formalized. It was a theoretical algorithm. The goal of MinGen
was to produce every generalization of the dataset to anonymise and select
the generalization which grants k−anonymity with the lowest information
loss. This algorithm gives, obviously, an optimal solution but is not feasible
due to the number of possible generalizations of a dataset. This is due to the
fact that Optimal k−anonymity is an NP-hard problem [72].

Another algorithm, the Datafly algorithm, was also presented by L.
Sweeney [82] based on her previous works. Instead of focusing on an op-
timal solution, she proposed to use a heuristic. The Datafly algorithm com-
putes frequencies of quasi-identifier attributes. Then it generalizes attributes
which have the most distinct values until no value has less than k occurrences.
This algorithm produces a lot of information loss. Together with the Datafly
heuristic, L. Sweeney also proposed the µ−Argus algorithm. It is a supervised
k−anonymity algorithm which is inspired by the Datafly heuristic. It gener-
alizes any attributes values with a frequency lower than k and then stores all
quasi-identifiers which do not appear k times as isolated records. The data
holder can then choose to remove these isolated records or to generalize them
to produce new equivalence classes. Since the data holder chooses how to
generalize isolated records, it can generate a big amount of information loss.

The Bottom-up algorithm, presented by K. Wang et al. [90], is a heuristic
based on taxonomy trees (also called Taxonomy Encoded Anonymity index).
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The taxonomy tree of an attribute a is a tree whose leaves are the different
values of a in the dataset and the parent of each nodes is the generalization
of the node. Their heuristic works as follows: it first creates a list of possible
generalizations which modify the lowest cardinality of equivalence classes,
and call them critical generalizations. Then it chooses one of the critical
generalizations generating the lowest information loss. For example, let e
be the only equivalence class containing one record (i.e. being the smallest
equivalence class). The heuristic builds the list ` = {ga, gb, gc} with ∀gi ∈ `
applying gi increases the cardinality of e. The generalization chosen will be
the one minimizing the information loss. For instance, if a generalized record
does not share the same quasi-identifier with any other record, increasing
its equivalence class cardinality consists in generalizing this record to make
it share the same quasi-identifier of at least another record. The heuristic
is called Bottom-up due to the fact that it begins from the bottom of tax-
onomy trees (i.e. leaves nodes) and climb up with generalization to the top
of trees (i.e. the root) so long as the anonymised solution does not satisfy
the k−anonymity constraint. It displays feasible processing time when used
with few attributes but explodes when anonymising a dataset with a large
number of attributes (due to the fact that it lists all generalizations even if
many are pruned by the critical generalizations only strategy).

In contrast to the Bottom-up heuristic, the Top-Down Specialization
heuristic, presented by B. C. M. Fung [28], starts from the root and goes
towards the leaves. The algorithm begins with all values completely general-
ized and de-generalizes (i.e. specializes) attributes while k−anonymity is sat-
isfied. To identify in which order attributes are de-generalized, it makes use
of a ratio (i.e. called a score) of an information loss metric over an anonymity
metric (based on the number of each attribute’s values before and after spe-
cialization). The Top-Down Specialization heuristic shows more feasibility
than the Bottom-up algorithm.

The KACA algorithm was presented by J. Li et al. [57]. It is based on
clustering techniques. It first considers all tuples as a one cardinality equiv-
alence class and merges equivalence classes two by two until k−anonymity is
reached. To select the two equivalence classes to merge, it takes a random
one which has a cardinality lower than k and merges it with the equivalence
class generating the lowest distortion. The distortion is a sum of predefined
weights of generalizations needed to make that merge possible then ampli-
fied (i.e. with a product) by the cardinality of each equivalence class. This
heuristic creates a lot of information loss and has high resources consumption.
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Figure 3.2: Comparison of pruned lattices merge vs complete generalization
lattice

Some papers have presented improvement of the KACA algorithm such as
the Top-Down KACA [98] which uses the Top-down Specialization heuristics
to partition the dataset then uses the KACA heuristic on those partitions.
The high information loss generated by the KACA algorithm is due to the
fact that it constructs clusters which have too many tuples. A. Gionis et
al. proposed a fix to that problem by moving records from the edge of big
clusters to another cluster [38].

K.LeFevre et al. proposed the Incognito heuristic [53]. It is a lattice-based
heuristic which improves the MinGen heuristic. Possible generalizations can
be seen as a lattice with the upper bound as a fully generalized dataset and
lower bound as original dataset. The Incognito heuristic works as follows :
it creates a generalization lattice for a subset of quasi-identifier attributes
(e.g. selecting only two attributes for example). It then prunes the lattice
removing nodes which do not satisfy the k−anonymity requirement (i.e. for
the targeted attributes). When it has generated different lattices for quasi-
identifier attributes subsets, it merges lattices into one and again prunes
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nodes which do not satisfy k−anonymity. This heuristics iterates on the
merging of lattices and offers a better feasibility than MinGen. Since the
generation of lattices takes a large amount of memory resources, K.LeFevre
et al. use databases to save lattices. This induces a high processing time
cost due to I/O operation on hard disk which are much slower than random
access memory. Figure 3.2 shows the merging of pruned lattices vs unpruned
lattice. This figure represents the generalization of three attributes A, B and
C with Xi the ith generalization of attribute X. Attributes A and B can
be generalized only once (e.g. the sex attribute) and the C attribute can be
generalized two times (e.g. different granularity of age intervals). Figure 3.2a
shows the three attribute couple lattice generalizations pruned – e.g. having
no generalization over A and B does not satisfy k−anonymity since node
A0, B0 has been pruned so A0, B0, Ci does not appear. Figure 3.2b shows
the merge of the three lattices which is relatively less impressive than the
complete lattice representing all possible generalizations shown by figure 3.2c.

K. LeFevre et al. also presented a new partition-based algorithm called
Mondrian [54]. It is an algorithm which starts with a unique equivalence
class containing all records from the database. We can see it as a top-down
heuristic which cuts big equivalence classes in half on the widest attribute.
So, the first equivalence class is partitioned into two equivalence classes on
an attribute A. The intersection of the two equivalence classes is empty.
Each equivalence class is then partitioned again into two equivalence classes.
The process continues until each equivalence class has a size lower than 2 · k.
It is a divide-and-conquer strategy which shows a high scalability due to its
complexity in O (n · log n). It also generates a high information loss quantity
due to the fact that equivalence classes cardinality are almost always greater
than k (i.e. between k and 2 · k).

J. Domingo-Ferrer and V. Torra proposed the MDAV algorithm based on
micro-aggregation [21]. The concept of micro-aggregation is to build equiv-
alence classes then choosing symbolic attribute values (i.e. an aggregation)
to represent equivalences classes. It uses mean values to represent contin-
uous attributes and median to represent categorical attributes. To make
equivalence classes, it uses a centroid based clustering technique. It begins
by computing the centroid c of the dataset then designates two centroids
opposed to c and the farthest from c. It completes the two clusters (i.e.
equivalence classes) by adding nearest records to the designated centroids.
When clusters have enough records (i.e. more than k), they are published
and the process is reiterated until all records are published. The MDAV
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(a) MDAV (b) Greedy k−member clustering

Figure 3.3: Difference in the creation of equivalence class between MDAV
and Greedy k−member clustering heuristics

heuristic shows good processing time and also low information loss.
Another heuristic similar to the MDAV algorithm has been presented by

J.-W. Byun et al. and is called the k−Member Greedy. Instead of computing
a centroid of the dataset, it takes a random record and builds a cluster from
its farthest record r. Also it does not assign r as the centroid of the cluster.
It takes an information loss metric which can give the information loss of
a cluster and puts records which generate the least information loss to this
cluster. When the cluster has enough elements, it is published and the records
from this equivalence class are removed from the dataset. This process is
reiterated until all records are published. It generates less information loss
than the MDAV heuristic but also has greater processing time. It is due
to the fact that the MDAV heuristic compares any record to the centroid
which gives a complexity in O(n2) for the MDAV heuristic while k−Member
Greedy computes the information loss of the cluster using each record, which
for most information loss metrics has a complexity in O(|c|) with c the cluster
(i.e. the k parameter of the k−anonymity). k−Member Greedy anonymises
a dataset in O(n2 ·k) operations. Figure 3.3 illustrates the difference between
MDAV and k−Member Greedy heuristics. The red dots represent the first
element placed in the cluster (i.e. chosen as the cluster’s centroid for the
MDAV heuristic).

TheGrading, Centering Clustering and generalization (GCCG) algorithm
presented by S. Ni et al. [71] is also a centroid-based clustering heuristic to
achieve k−anonymity. Like the MDAV heuristic, it selects a centroid to build
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equivalence classes by adding near centroid records in it. Instead of selecting
the furthest record from the dataset centroid as equivalence class centroid,
it sorts the dataset by scoring all entries. The record with the highest score
is then chosen as the next centroid. The score of an attribute for a record is
the ratio of this value over the attribute domain for categorical value and the
proportion of the ratio to k for continuous attributes. This aims to begin with
the densest equivalence classes and finish with equivalence classes composed
of outliers.

It is important to note that all the algorithms described here were built to
produce k−anonymous datasets with the assumption of a uniform k. They
were not built with the idea of a personalised security parameter k (possibly
one per record), which is an approach that we investigate in this thesis.

3.2.3 Related work on differential privacy
PPDP methods have a common weakness, publishing multiple anonymised
datasets permits to infer individual’s information. It is due to the fact that
databases are entities which evolve over time. Anonymising a database in
different points in time would mostly generate two different anonymised ta-
bles. Crossing those tables would permit to reduce record generalizations,
inducing a privacy loss. The principal weaknesses of partition-based concepts
come from the fact that this privacy loss is difficult to evaluate. Another ap-
proach, differing from the partition-based approaches and which is able to
evaluate privacy loss of multiple anonymisations, is differential privacy.

In 2006, C. Dwork proposed a definition of ε−differential privacy [22] to
build a new family of anonymisation concepts. The idea of differential privacy
is to ensure that the result of a query on a dataset is indistinguishable from
the result on a neighbor dataset (i.e. a dataset which differs from at most
one record).

Definition 3 (Differential privacy (from [22])). A randomized function K
ensures ε−differential privacy if for all D1,D2 differing from at most one
entry, and all S ⊆ Range(K)

Pr [K(D1) = S]
Pr [K(D2) = S] ≤ eε (3.2)

C. Dwork also proposed a mechanism based on the addition of (Laplacian)
noise to the result of a query. Figure 3.4 illustrates this differentially private
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Figure 3.4: Representation of the differentially private mechanism based on
the Laplacian noise (i.e. Lap(|D|, ε = 1))

mechanism. The addition of Laplacian noise consists in selecting a random
number from the Laplacian distribution and adding it to the result of a
query. In the example, the Laplacian distribution is represented by the curve
centered on the dataset D. Assume a querier asks for a computation of
the cardinality of the dataset D (i.e. called a count(*)). The dataset D−1
represent a neighbor dataset ofD with a record less and the datasetD+1 is the
neighbor with a record more. Since |D| is equal to 1008, the Laplacian noise
is centered on 1008 and a random number is selected from this distribution as
result of the query. Using a Laplacian distribution with 1

ε
as scale parameter,

grants an ε−differential privacy protection to this function. The mechanism
used on figure 3.4 ensures 1−differential privacy for the count(∗) operation. A
lower ε would give better privacy (i.e. consisting of flattening the Laplacian
distribution curve), but would worsen the quality of the result (i.e. error
margins would be greater).

When computing a different function (i.e. instead of cardinality), the
same Laplacian noise would not give the same security. This is due to the
sensitivity of a function (i.e. called L1-sensitivity).

Definition 4 (L1−sensitivity of a function (from [22])). For f : D → Rd,
with d a positive integer. The L1-sensitivity of a function f , noted ∆f , is
defined as follows:

∆f = max
D1,D2

‖D1 −D2‖1 (3.3)

with D1 and D2 two neighbor datasets and ‖·‖1 denoting the norm `1.

For example, the L1−sensitivity of the cardinality computation is ∆f = 1
by definition. The Laplacian noise with b as scale parameter ensures a
∆f
b
−differential privacy. C. Dwork also showed that the composition of differ-

entially private mechanisms weakened the privacy of individuals, which lead
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to the introduction of the concept of privacy budget. The privacy budget
refers to the preciseness of the information allowed to leak (i.e. represented
by ε). Using a differentially private mechanism with ε1 as security parameter
consumes some of the privacy budget leaving ε−ε1 budget. This is due to the
sequential composition theorem presented by F. McSherry and K. Talwar [63]
and recalled by the theorem 5.

Theorem 5 (Sequential Composition (from [63])). LetM = {M1, . . . ,Mn}
be a set of privacy mechanisms each providing εi−differential privacy guaran-
tee, the sequential application ofMi on a dataset D provides (∑n

i=1 εi)−differ-
ential privacy guarantee.

In our example, the querier asks for a computation of cardinality. If the
privacy budget allowed is ε = 1 then adding a Laplacian noise with scale
parameter b = 1 would totally consume the privacy budget leaving no more
possibility to run other queries. In practice, ε is partitioned in such a way
to allow a predefined number of queries. Once the budget is consumed, it is
no longer possible to ask any queries. Another way to view mutiple queries
is that one is able to evalute the risk linked to their publication by summing
the εi of each release.

From the differential privacy definition 3 a vast amount of concepts have
emerged to propose different ways to apply differential privacy [100] by reduc-
ing the amount of noise added to the result or reducing how much privacy
budget is consumed. Most of differential privacy mechanism propositions
stick with a relaxation of the original definition of differential privacy.

Using exponential noise (e.g. Laplacian noise, Gaussian noise) to achieve
differential privacy shows some weaknesses. It gives the same noise to low
cardinality databases and high cardinality databases with a different impact
on the two. Because of the privacy budget consumption the exponential
noise mechanism also behaves badly with large set of queries. That is why
R. Aaron and R. Tim proposed a system to “factorize” similar queries [76].
Their idea is to find queries that can be computed (or at least estimated)
with the result of another query. For example, let us assume that a querier
wants to compute the query Q1 counting a number of diseases in the interval
[a, b] of age, and a query Q2 similar to Q1 with a different granularity of age
[a, c] with b < c. An estimation of the result r2 of Q2 could be an operation
on the result r1 of Q1 such as r2 = r1 · b−ac−a . Only r1 would be noisy having the
effect to decrease the number of queries and so, reducing the privacy budget
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consumption. Then, r2 becomes an estimation of the query Q2 based on the
result of Q1.

Instead of reducing the number of queries to decrease the privacy con-
sumption, another way is to partition the dataset and apply differential pri-
vacy on the partitions. Since the partitions are distinct subsets from the
dataset, another composition theorem can be used, the parallel composition
theorem. The parallel composition theorem has been presented by F.D. Mc-
Sherry [64] and is recalled by theorem 6.

Theorem 6 (Parallel Composition (from [64])). LetM = {M1, . . . ,Mn} be
a set of privacy mechanisms each providing εi−differential privacy guarantee,
and D1, . . . ,Dn be disjoint subsets of the dataset D, the application ofMi (Di)
with i = 1 . . . n provides maxni=1(εi)−differential privacy guarantee.

F.D. McSherry proposed, with the PINQ platform, to give analysts the
possibility to specify how partitions are made (e.g. to make histogram stud-
ies). Partitioning the dataset to publish histograms feels natural when deal-
ing with range queries and since the histograms are built on disjoint subsets,
the parallel composition theorem can be used. However partitioning the
dataset by some variable attribute such as age, would give many partitions
with a more or less large cardinality. As said before, the exponential mech-
anism to achieve differential privacy is not scalable (leading to high noise in
low cardinality group). J. Xu et al. propose a mechanism to restructure the
dataset merging some bins together [97] (i.e. in histograms, a bin or bucket
is an interval in which values are represented by the same bar). They showed
two propositions of algorithms. One merging bins after separately adding
noise on them and the other merging bins before adding noise.

Managing small datasets

Because of the non adaptation of the Laplacian noise to small values, an-
swering noisy queries with a small result leads to a large relative error. X.
Xiao et al. proposed an iterative mechanism which reduces the amount of
noise added to small answers, they call it iReduct [96]. The idea of their
algorithm is to partition the privacy budget while keeping some in reserve.
For a given set of queries, the algorithm computes the result of queries and
applies the noise (i.e. using Laplacian noise) on them. Since it has kept some
privacy budget in reserve, the algorithm selects queries with low results and
rescales the privacy budget allocated to them by using the privacy budget in
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reserve. For instance, let Q = {Q1, . . . , Qn} be a set of n queries and ε be the
privacy budget allowed for the answer. This privacy budget is partitioned
into n + 1 parts {ε1, . . . , εn} being privacy budget allocated for queries and
εr being the privacy budget in reserve. For εi ∈ {ε1, . . . , εn}, εi should be
lower than εr to allow multiple re-scaling of the privacy budget. A Laplacian
noise ensuring an εi−differential privacy is applied on the answer of query
Qi (the noisy answer is noted Q∗i ). The algorithm selects a subset Q′ ⊂ Q
of query answers with lowest results such as ∀q′ ∈ Q′,∀q ∈ Q/Q′, q′∗ < q∗.
The privacy budget in reserve εr is then partitioned and the parts are added
to the privacy budget allocated to queries in subset Q′. We call this process
noise re-scaling and the partionning of εr does not necessarily consume the
whole privacy budget in reserve and the rest will be used in next iterations.
The noisy result of each selected query is re-computed again with the new
privacy budget. In next iterations, previously selected queries should not be
selected again for noise re-scaling. This process continues until the whole
privacy budget in reserve is totally consumed. It is important to note that
consuming the whole privacy budget in the first iteration consists in apply-
ing a simple Laplacian noise. To resume, the iReduct algorithm increases the
noise of high value results and decreases the noise of small value results.

All previous methods were based on the use of Laplacian noise. Another
differentially private mechanism has been proposed by F. McSherry and K.
Talwar at the same time of the sequential composition theorem [63]. They
showed how to design a differentially private mechanism by proposing a gen-
eral approach called the Exponential Mechanism. Here is the definition of
the exponential mechanism:

Definition 7 (Exponential mechanism (from [63])). For any function
f : (Dn,R) → R and base measure µ over R, the exponential mechanism
(noted E εf (d)) gives (2 · ε ·∆f)−differential privacy for the dataset d:

E εf (d) :=Choose r with a probability proportional to
exp (ε · f(d, r)) · µ(r)

(3.4)

with R being a range of output.

The goal of exponential mechanism is to maximize f(d, r) while ensuring
differential privacy. The function f can be seen as a utility measure for query
q and so, the r ∈ R = Range(q) solution has exponentially more chance to
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be the one with the highest utility. Note that the Laplacian noise mechanism
can be captured with the exponential mechanism.

All previous methods aim to answer a set of queries while ensuring dif-
ferential privacy. Since those methods are limited to a given set of queries,
other studies aim to make a synthetic dataset built upon the original one
while ensuring differential privacy. For example, N. Mohammed et al. [68]
suggest to use partition-based anonymity methods (e.g. TopDown special-
ization) to build partitions of the dataset, then add Laplacian noise to the
count of each partition. Note that they do not try to reach k−anonymity.
Following a given specialization number s, their algorithm, DiffGen, special-
izes an attribute. This attribute is selected with a probability based on the
exponential mechanism and a score. Their score is based on two metrics, one
is the information gain, the other is a classifier metric that aims to keep the
highest number of records with the same class1 in a group (i.e. an equiva-
lence class). When s specializations have been done, the DiffGen algorithm
publishes the count of each group after adding some Laplacian noise. As
specified, before, the Laplacian noise does not get along with small numbers
and so, they exhibit the fact that a too high number of specializations reduces
the cardinality of partitions increasing the impact of the noise. It also de-
creases the accuracy of the classification metric (i.e. losing some information
on the classifier attribute).

J. Zhang et al. presented the PrivBayes algorithm based on a Bayesian
network. This algorithm synthesizes a dataset from a noisy Bayesian network.
It works as follows: first, PrivBayes constructs a Bayesian network using the
differentially private exponential mechanism. To build the Bayesian network,
it computes the mutual information I of attribute associations (X,Π) with
Π as the parent of X as follows :

I(X,Π) =
∑
x

∑
π

Pr [X = x,Π = π] log Pr [X = x,Π = π]
Pr [X = x] · Pr [Π = π]

The exponential mechanism is applied using mutual information as the util-
ity function (i.e. f in the definition of exponential mechanism) to select the
pair (X,Π) as edge on the Bayesian network. When a pair is identified, the

1A class is an attribute which is important to keep the less generalized. For example, in
the adult dataset from the census bureau database [59] the attribute income is a boolean
which indicates if a user has an income lower or greater than 50K. It is a classification of
individuals in the data set and so, it is called a classifier attribute.
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algorithm removes X from its domain (i.e. a same attribute cannot be se-
lected twice as X value). Then, it computes the distribution of each pair
(X,Π) of the Bayesian network and adds a Laplacian noise to those distri-
butions. Finally, the algorithm builds a synthetic dataset following the noisy
Bayesian network built firstly and the noisy distributions built secondly.

3.2.4 Related works on personalisation of privacy-preserving
methods

All previously presented concepts lack the possibility to empower users. Since
the GDPR [75] tries to push user empowerment initiatives, giving the pos-
sibility to users to push their own perception of the risk is an important
feature. Existing partition-based techniques are uniform, they focus on a
fixed security parameter. It provides the same privacy guarantees to users,
even if these users do not aim for the same privacy goal. This section presents
studies which are directly related to the personalisation of privacy-preserving
methods. Those methods aim to provide the possibility to use existing pri-
vacy preserving approaches with a variable security parameter providing dif-
ferentiated protection to each user.

In 2005, B. Gedik et al. proposed a way for users to personalise the
k−anonymity concept by specifying different k in a mobile network [35] called
the Clique-Cloak algorithm. Their proposition focused on location based ser-
vice system and real-time queries which induces a non measurable privacy
loss due to the multiple k−anonymous datasets published. Their idea is
based on a trusted third party server which is a bridge between users and
the location based service (LBS) servers. Users specify bounds on the maxi-
mum degradation of their location (i.e. a box), the security parameter of the
k−anonymity (i.e. the number of people in the box) and a constraint of time.
The system creates a graph representing each user as a node. Two nodes are
linked if they are each in the box of the other. To ensure that users privacy
constraints are satisfied, the Clique-Cloak algorithm only sends cliques of
size greater or equal to the maximum user constraint. Any “box” sent to
the LBS ensures max(ki)−anonymity with max(ki) the highest constraint
from each user in the clique. This concept can work in populated cities but
is much less efficient in low populated campaign (i.e. or with a much larger
box).

Another algorithm, the Casper algorithm, has been proposed by M. F.
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Mokbel et al. [69]. The idea of the Casper algorithm is to use a pyramid
where each layer represents different granularities of the projection of users
on a map. Pyramid layers are cut into cells of different sizes in function of
the layer. The pyramid is kept up-to-date on a trusted third party server.
Users send updates of their location and when a user wants to query the LBS
server, the trusted server sends the user cell on the layer with sufficient users
(i.e. greater than the user constraint).

The PrivacyGrid algorithm, presented by B. Bamba et al. [7], ensures
personalized k−anonymity for LBSs and also proposed a way to ensure per-
sonalized `−diversity. Their idea is similar to the Casper algorithm but it
does not keep layers of the pyramid up-to-date, it uses a map instead. It
computes the smallest area which satisfies each user constraint and sends it
to the LBS service.

These solutions are all based on a trusted third party which ensures user
privacy constraints, and focus on location data. The application of these
solutions aims at providing a service to users. The data quality is not a high
priority since each user’s mobile can sanitize answers from LBSs. They also
focus on real-time queries (i.e. users sends a query and expects to get answers
in a short lapse of time) which magnifies the weakness of privacy methods
(i.e. repeating different anonymisations induces a loss of privacy).

Another way to personalise k−anonymity was first proposed by X. Xiao
et al. [95] and consists in personalising the generalization of sensitive at-
tributes. Users specify how their sensitive attributes will be shared (e.g. if
users want to be in a group of similar diseases or on the contrary with dis-
tant diseases). A taxonomy tree for the sensitive attribute is needed. Users
specify a node on the taxonomy tree (called a guarding node) to indicate
they do not want to be associated to any leaf values of the sub-tree with
guarding node as root. Other papers based on the (α, k)−anonymity [92]
were proposed by also personalizing how sensitive attributes are shared [78,
60]. The paper [60] adds the principle of guarding node proposed by X.
Xiao et al. [95] to α−deassociation. The α−deassociation concept consists
in specifying a frequency threshold α and a sensitive value s. This sensitive
value will not be more frequent than α in each equivalence class (note that α
should not be lower than the frequency of s on the whole dataset). The data
holder specifies a threshold αs for each sensitive value and users can specify
a guarding node. On the other hand, the paper [78] proposes to users, a
way of specifying the sensitivity of their sensitive attribute. Those solutions
induce a loss of quality of the sensitive attribute and do not fit with PPDP
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where there could be zero or multiple sensitive attributes.
On the other hand, ideas to personalise differential privacy were also pro-

posed. Z. Jorgensen et al. proposed an algorithm based on a sampling mech-
anism [45]. Each user can alter the probability to participate to the query
by modifying their epsilon. To ensure that all users receive at least minimal
security, the privacy budget is partitioned. The first part is dedicated to
the sampling mechanism (i.e. the personalisable part) and the second part is
dedicated to another differentially private mechanism (e.g. Laplacian noise
mechanism).

More recently, N. Li et al. proposed a new personalised differentially
private mechanism [56]. The idea is to partition users by their personalized
security parameter εi. A differentially private mechanism is applied to each
partition with the security parameter common to users inside it. Due to the
parallel composition theorem 6 their solution offers an ε−differentially private
measure with ε equal to the highest εi users have chosen. When dealing
with personalized differential privacy, the general definition of differential
privacy makes no sense due to the parallel composition theorem and so, they
proposed another definition of personalized differential privacy which is based
on ε−differential privacy.

Geo-indistinguishability is a concept presented by Andrés M. E. et al. [5].
The concept adds a two dimensional Laplacian noise to users location. This
mechanism can be illustrated by a circle on the map with the user position
in. Users have the possibility to enlarge this circle which gives them a per-
sonalised differential privacy. Since it is an algorithm to hide each individual
from LBSs, the overall information loss is not essential.

3.3 Privacy-Preserving in Interactive Query
Systems

In previous sections, we presented existing PPDP methods, which allow the
release of anonymised datasets. Except for differential privacy, the PPDP
approach is not adapted for interactive queries. As their name suggests,
interactive queries offer a way to interact directly with a database. The con-
cept of private databases is emerging and a large amount of studies proposing
different paradigms and systems to achieve privacy-preserving data computa-
tions have been done [16]. In this section we show different privacy-preserving
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Figure 3.5: Partitions of the database by granularity of time (from [27])

systems in which a querier (i.e. someone posting a query) can interact with
the database.

Like in PPDP methods, privacy-preserving can be ensured in interactive
query systems by using differential privacy. M. Hardt and G. N. Rothblum
introduce the private multiplicative weights (PMW) mechanism [41]. The
database (or data universe) is viewed as a histogram with a weight on each bin
(remember that bins are intervals on which bars of histogram are computed).
The initial weights are equal to 1

N
with N being the number of bins (i.e.

a uniform distribution). When a query needs to be answered, PMW uses
weights to compute the result and adds Laplacian noise to it. If the noisy
result is too far from the real result (i.e. computed on the original database),
weights of bins targeted by the query are adjusted to better approximate the
real result. When another query needs to be computed, PMW checks if the
previous noisy answer can be used to answer this new query (i.e. the previous
answer is near the new noisy answer). If so, the previous answer is given and
no privacy budget is consumed. Otherwise, weights are adjusted again. Note
that the PMW mechanism can answer a large amount of queries.

The Diffix system [27] presented by P. Francis et al. can be considered
as an SQL proxy. Their objective is that an analyst should be able to send
an SQL query to the system. The Diffix system adds Gaussian noise on the
result of each query. To prevent the privacy budget to be consumed, they use
sticky noise. The PRNG (pseudo-random number generator) uses a seed to
produce a sequence of random numbers. They call sticky noise the fact that
the seed used by the PRNG is parameterised by the query (i.e. the seed is the
hash of a concatenation of table column names, condition values, condition
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operators and a secret salt). The Diffix system, also takes into account the
evolution of the database through time. They cut the database in different
granularities of time (see their example figure 3.5). In the figure, the a, . . . , s
represent time intervals (e.g. day by day for 1−day layer) called epochs. Let
Q be the query at a time t, since this query happens during the epoch s, the
answer will be computed from the state of the database at the end of the
day r (i.e. the state at the end of the epoch before the query). To ensure
any modification of the database has a small impact on the noise added by
previous security mechanism, the Diffix system adds noise with b, e, j and s
epochs as seeds. This has the effect to reduce the modification of the noise
when the database is updated and so, makes it difficult for an attacker to
average out the noise.

Another approach uses fully homomorphic encryption. A homomorphic
encryption is an encryption which allows computations on the cipher text
without decrypting it. Those computations on cipher texts permit the arith-
metic addition and multiplication of plain texts. For instance, let c1 and c2
be two cipher texts of respective plaint texts m1 and m2 encrypted by the
well known Paillier encryption scheme [73]:

c1 = (1 +N)m1rN1 mod N2 (3.5)

with r1 as a random number and N the product of two big prime numbers.
The Paillier scheme is said to be additively homomorphic because of the fact
that the product of cipher texts permits to achieve the cipher of plain texts
addition:

c1 · c2 = (1 +N)m1+m2(r1 · r2)N mod N2

= Encrypt(m1 +m2)
(3.6)

The difference between fully homomorphic encryption and non fully homo-
morphic encryption is that the fully homomorphic encryption can do both
arithmetic operations (+ and ×, thus producing a ring morphism) when ho-
momorphic encryption can only do one of them (thus producing a group
morphism). In our example, the Paillier scheme can only produce the ad-
dition of plain texts without decrypting cipher texts and so, is said to be
additively homomorphic. C. Gentry proposed the first fully homomorphic
encryption [36] scheme based on ideal lattices. Y. Gahi et al. proposed a
secure database management system (DBMS) [30] using this fully homomor-
phic encryption scheme. Their idea is that a client can make use of a cloud
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provider to delegate computations over its data. The problem is that the
client does not want the cloud provider to infer data the client sent to it.
The client sends encrypted data using the Gentry encryption system and
then asks the cloud provider to make the arithmetic additions and multipli-
cations needed. They show that a multiplication between two 16-bit integers
took 23 minutes on their 1.7GHz processor and that an SQL select operation
needed more than 300k multiplications for a database containing 10 records.
Obviously, this explains why despite many improvements, fully homomorphic
encryption systems are still not suitable today to delegate computations on
encrypted data to a cloud provider.

On the other hand, the CrypDB system [74], presented by R.A. Popa,
uses different homomorphic encryption schemes (i.e. non fully homomorphic)
which are much more feasible. They introduce the term of onions which de-
sign an encapsulation of encryption schemes. An onion has multiple layers of
encryption. A first layer (RND) consists to use a block cipher such as AES in
CBC mode. The DBMS should be able to decrypt this layer. However other
layers should not be decrypted by the DBMS. Each encryption system per-
mits the use of different operations such as join, equality, additions, . . . Since
different encryption systems may be inconsistent with others the CrypDB
system replicates data in different onions. Distinct onions aim to be able to
compute distinct operations. The use of onions may not be feasible due to
the massive replication of data to allow the different operations.

Even if non fully homomorphic encryption systems offer more feasibility,
they have a significant cost. S. Bajaj and R. Sion have presented TrustedDB [6]
which is based on a secure cryptographic coprocessor (SCPU). The TrustedDB
system is made of an untrusted server hosting the database. They consider
the fact that some personal information may be private and other may be
public. The untrusted server contains a SCPU which possesses couples of
private, public keys and a symmetric key. The SCPU contains different
applications organised in layers (e.g. a query parser, query dispatch, . . . ).
Couples of private, public keys are used to provably assert any procedure of
the SCPU to remote parties (i.e. it ensure remote parties that the SCPU
does what it should). Private data is encrypted with the symmetric key and
stored together with plain text public data. Queries received by the host
server are forwarded to the SCPU which decrypts the queries and dispatches
queries to a deeper layer (i.e. the module which compute queries) for private
queries (i.e. requiring computations on private data) or out of the SCPU
for public queries. Query answers are encrypted with the client public key
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by the SCPU to ensure only the client can understand the result. To sum
up, TrustedDB is a system where an untrusted host server supervised by a
trusted SCPU which can make secure computations.

Q.C. To et al. proposed a novel approach with the desire to avoid the
use of trusted third party. They proposed the Trusted Cells architecture [85]
where personal data is fully distributed and managed under user’s control
thanks to their personal devices. The objective of the Trusted Cells archi-
tecture is to use a large amount of trusted devices with low resources. Their
characteristics are similar to smart-cards and to go beyond this limit, an un-
trusted cloud is used. They also proposed a protocol to compute SQL queries
while ensuring the cloud does not infer any personal information.

3.4 Data Quality and Information Loss Met-
rics

The goal of personalised privacy is to increase individuals control over their
own data and the trust they have on data controllers. However, such an
approach may improve the data utility of a category of persons while wors-
ening the impact of anonymisation on the data utility for another category
of persons. This is why it is important to be able to measure the impact on
data utility. This section aims to provide an overview of the different metrics
of data quality and information loss.

Since the goal of partition-based privacy-preserving techniques is to group
similar data together, anonymisation can be taken such as a clustering prob-
lem. In PPDP and clustering a vast amount of metrics to compute informa-
tion loss (i.e. dissimilarity) or to evaluate data quality (i.e. similarity) exist.
This section shows a study of different metrics used in clustering problems
and in partition-based PPDP techniques to evaluate the quality (resp. the in-
formation loss) of a solution or the similarity (resp. dissimilarity) of different
records.

3.4.1 Metrics in Clustering Techniques
The goal of clustering algorithms is to optimize a function while grouping
similar records together. One of the most well known functions to optimize
is to minimize the maximum diameter of clusters [39] (i.e. the diameter of
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Figure 3.6: Minimizing the diameter

Figure 3.7: Maximizing the space between clusters

a cluster is denoted by the maximum distance between two objects of the
cluster). Figure 3.6 illustrates the disadvantage of this metric when used
to make 3−anonymity. Due to the fact that outliers (i.e. people which are
not similar to others), symbolized by dots, generates a high cluster diameter,
denser region may generate lower clusters. In figure 3.6, the region with
crosses is much denser than the cluster grouping dots, but the metric does not
make any difference between grouping all crosses in one cluster or separating
them in two clusters (due to the fact that the diameter of one cluster would
not be greater than the diameter of outliers cluster).

Another metric is based on the distance between clusters. The goal of
this metric is to maximize the minimum distance (i.e. the split) between
clusters (i.e. single-link clustering). The minimum distance between two
clusters is the lowest distance between two objects from each cluster. The
problem of this metric is that close objects may be in the same cluster because
their distance is too small. The figure 3.7 shows this problem. First, as
the diameter metric, crosses are merged in the same cluster because of their
proximity. Second, squares are merged with crosses because crosses are much
closer than dots. Maximizing the split criterion leads to create the lowest
number of clusters.

All these problems come from the fact that most of clustering algorithms
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need to know the precise number of clusters to obtain in advance. These
algorithms try to optimize previous metrics (i.e. also called optimization
criteria) by keeping a given number of clusters. This is contrary to the goal
of k−anonymity which tries to create the highest number of clusters (i.e.
equivalence classes) with a lowest cardinal (i.e. with k as lower bound) in
general.

Another well known metric is the Within Cluster Sum of Squares (i.e.
WCSS). This metric considers the distance of each record in a cluster to the
centroid of this cluster. Equation 3.7 shows how this metric is computed:

|C|∑
i=1

∑
j∈ci

dist(j, µi)2 (3.7)

with ci the ith cluster in the set of clusters C and µi the centroid of the
cluster ci. This metric is used by the well known K−means algorithm [62].
This metric may be hard to compute for categorical attributes since the
mean between categorical attribute must be defined beforehand. One idea
for example is to follow the approach of J. Domingo-Ferrer and V. Torra [21],
who define the mean of categorical values as the most frequent value. To
overcome this weakness, it is possible to compute the Within-Cluster Sum
of Dissimilarities (i.e. WCSD) which is the sum of pairwise distances in a
cluster as illustrated by the following equation 3.8:

|C|∑
i=1

1
2
∑
x,y∈ci

dist(x, y) (3.8)

3.4.2 Quality Metrics for Anonymisation Techniques
Metrics of PPDP methods share some similarities with clustering optimiza-
tion criteria such as the use of Manhattan or Euclidian distances. They also
are dissimilar since their goal is different. We can distinguish two kinds of
metrics in PPDP:

• metrics that evaluate the quality of a solution like the discernability
metric [8], the normalized average equivalence class size metric [54] or
information loss [14]. These metrics aim to provide information on the
quality of a k−anonymous solution.
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• metrics that evaluate the information loss on a specific attribute type
(e.g. numerical, categorical). A vast amount of metrics exist for numer-
ical attributes (e.g. based on the distance of anonymised value from the
original, on the correlation or on the covariance [18]). Metrics about
information loss on categorical attributes are fewer (e.g. based on en-
tropy, on contingency tables or on taxonomy trees).

The normalized average equivalence class size metric CAV G was proposed
by K. LeFevre et al. [54]:

CAV G(D∗) = |D|
|E| · k

(3.9)

with D∗ the anonymised version of dataset D and E the set of equivalence
classes. This metric aims to show the distance from a quasi-optimal solution
(i.e. a solution with only equivalence class of cardinality equal to k) and
the anonymised solution tested. This metric considers the suppression of a
record equivalent to putting a record to an equivalence class of cardinality
greater or equal to k.

The discernability metric DM has been proposed by R. J. Bayardo and
R. Agrawal [8]:

DM(D∗) =
∑

E∈E s.t.|E|≥k
|E|2 +

∑
E∈E s.t.|E|<k

|E| · |D| (3.10)

The goal of this metric is to minimize the size of each equivalence class and
to give a penalty to equivalence classes which do not satisfy the k parameter.
The problem of this metric is that it does not consider the distance between
records which can lead to group records with high dissimilarity.

A metric based on the surface of an equivalence class was proposed by
J.-W. Byun et al. [14]:

IL(e) = |e| ·
(∑

A

distA(e)
distA(D)

)
(3.11)

with distA(e) the greatest distance on the attribute A between two records
on the equivalence class e. This metric aims to evaluate the surface of equiv-
alence classes as rectangles (i.e. each side represents the domain of the equiv-
alence class on an attribute). Figure 3.8a illustrates the metric. The infor-
mation loss of the anonymised solution consists in summing the information
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(a) Surface-based infor-
mation loss

(b) Diameter-based information
loss

Figure 3.8: Differences between SBIL and DBIL metrics

of each equivalence class. We will call it SBIL (Surface Based Information
Loss) in the rest of this paper to avoid misunderstanding with information
loss (IL).

The last metric, SBIL, uses computations of information loss on at-
tributes. It is a sum of information loss over each attribute. We propose
another information loss metric which is based on clustering metrics. We use
the diameter of an equivalence class to evaluate how much information loss is
generated by the anonymisation and call it the DBIL metric (i.e. diameter-
based information loss). The advantage of such a metric is that it just needs
the distance between records to be computed (which is a constraint of cluster-
ing techniques). The DBIL metric is defined by the following equation 3.12:

DBIL(D∗) =
∑
e∈E
|e| · diameter(e) (3.12)

Information loss of numerical attributes can be expressed by multiple met-
rics. J. Domingo-Ferrer et al. [18] proposed a set of metrics to compute the
information loss based on the distance of anonymised values from the origi-
nal, on the Pearson correlation or on the covariance. Those metrics must be
computed on the anonymised dataset and are made for modification of origi-
nal values and not generalizing values by intervals. The most used metrics to
evaluate information loss of continuous remains the Euclidean (or Euclidean
squared to avoid the non-negligible cost of square root computation) and
Manhattan distance.

To evaluate the information loss on categorical attributes, the use of Shan-
non entropy was first mentioned by P. Kooiman et al. [44]. An entropy based
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Figure 3.9: The EBIL metric weakness: the proximity of different attribute
values

metric was then formalized by J. Domingo-Ferrer et al. [18]:

EBIL(A,D∗) =
∑
r∈D∗

H(A|A′r) (3.13)

with A a variable in the original dataset and A′r the value of this attribute for
the record r in the anonymised dataset. The EBIL metrics was designed for
categorical attributes and for global recoding. We can generalize this metric
for local recoding with the following equation:

EBIL(A,D∗) =
∑
r∈D∗

H(A|r ∈ er) (3.14)

with er the equivalence class of the record r. The equation 3.14 can be
computed by using the value distribution of A in each equivalence class. This
metric aims to make equivalence classes with an unbalanced ratio of value for
a given attribute (i.e. a value should appear much more than others in the
same equivalence class). This is due to the fact that the probability a record
r is associated to a sensitive value s when knowing r is in the equivalence
class e can be computed as follows:

Pr [sensitive(r) = s | r ∈ e] = |{i ∈ e | sensitive(i) = s}|
|e|

(3.15)

with sensitive(r) the sensitive value of r. Since the entropy is maximised
when the probabilities are uniform, it is maximised when the frequencies of
sensitive values in the equivalence class are uniform. The problem of the
EBIL metric is that it does not take into account the proximity of different
values. This explains why this solution is not used with continuous attributes.
The figure 3.9 shows two sets of equivalence classes made in a one dimensional
dataset with a continuous attribute. The EBIL metric does not identify any
difference of information loss between the two sets of equivalence classes when
the dashed set is intuitively better (i.e. when computing 2−anonymity).
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Another example would be the nationality categorical attribute : it would
generate less information loss to generalize Spanish and French people to-
gether than with North Americans due to the proximity of Spain and France.

Another way to measure the information loss of generalized categorical
attributes is the use of contingency tables. Some contingency tables are
computed following given criteria on the original dataset and the anonymised
one. The distances between the contingency tables are then used to show
the information loss:

CTBIL(D,D∗) =
∑
t∈T

∑
c≤|t|
| xc − x′c | (3.16)

with T the set of contingency table and xc (resp. x′c) the value of the cell c
in the contingency table computed for D (resp. D∗). This metric may need
the computation of a high number of contingency tables and does not take
into account the proximity of some value just like the EBIL metric.

Another information loss metric for categorical attribute is based on tax-
onomy trees. The idea of taxonomy trees is to specify how to generalize
information. The figure 3.10 shows an example of a taxonomy tree (on the
workclass attribute of the adult dataset). The leaf of the tree represents
original values and each parent of a node represents the generalization of the
node. The root of the tree is the fully generalized value. The information
loss can be computed by using the height of the smallest subtree contain-
ing all values. A metric to capture that is used in [14], we will call it the
taxonomy-based information loss (TBIL):

TBIL(A, e) = h(ΛA(e))
h(TA) (3.17)

with ΛA(e) the smallest subtree containing any value of the equivalence class
e on the attribute A, TA the taxonomy tree of the attribute A and h(t) the
height of the tree t. In the example figure 3.10, if an equivalence class e
contains workclass values such as State-gov and Local-gov, the information
loss would be computed as follows:

TBIL(workclass, e) = h(gov)
h(Tworkclass)

= 1
3 (3.18)

The problem of this metric is that a taxonomy tree must be specified for
each attribute to compute TBIL and the proximity between attributes values
must also be specified.
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Figure 3.10: Workclass taxonomy tree

3.4.3 Disclosure risk metrics
It is important to note that even if previous metrics aim to measure the in-
formation loss induced by anonymisation methods, they do not measure how
much anonymised individuals are. In their article [21], J. Domingo-Ferrer
and V. Torra proposed to compute the quality of an anonymised dataset
with the help of a score metric:

score(D∗) = IL (D∗) +DR (D∗)
2 (3.19)

with IL (D∗) the information loss generated by the anonymisation of the
dataset D and DR (D∗) a metric measuring the disclosure risk associate to
the anonymisation ofD. They used a disclosure risk metric defined in another
of their paper [20] based on the association of three different disclosure risk
metrics. The three metrics were built for different objectives. The first metric
is the Distance Linkage Disclosure (DLD) metric. The DLD metric can be
computed when the anonymisation methods used modify original values (i.e.
from D) to others (also called masking). The DLP represents the proportion
of masked values that can be linked to their original value. A link appear
when the nearest value v from the masked value v′ in the original dataset
really is the original value of v′ (i.e. no other masked value are nearest to
v than v′). The second metric is the Probabilistic Linkage Disclosure risk
(PLD) metric. The PLD metric is computed by making pairs of original
and masked values using linear sum assignment problem. The percentage of
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X Y CDRX(Y )
Condition Age∗ 0.25
Condition Age 0.85

Age Age∗ 0.54

Table 3.5: Value of CDR metric on table 3.3 using different set of attributes

correct pairs represent the value of PLD metric. While linear sum assignment
problem can be used with masking methods, generalization methods can also
permit the computation of linkage probability the same way we have done
on our example table 3.3 to show `−diversity weaknesses. The third metric
is the Interval Disclosure (ID) metric. Let v′ being a masked value, the ID
metric represents the size of the interval the original value of v′ belongs (i.e.
the smallest interval of values that are equal to v′ after masking)

While those disclosure metrics may not fit generalization-based methods,
other disclosure metrics have been proposed. In their paper, Louis-Philippe
Sondeck et al. [80] proposed the Combined Discrimination Rate (CDR), an
entropy-based metric. This metric aims to measure the capacity of a set of
generalized attributes to refine the sensitive attribute (i.e. the refinement
corresponds to how much a sensitive attribute is associated to a set of gen-
eralized attributes). They define it as follows:

CDRX(Y ) = 1− H(X | Y )
H(X) (3.20)

with X the sensitive attribute and Y a set of attributes. Note that
1 ≤ |Y | ≤ |A| with A the set of attributes in D. In our example table 3.3,
the result of the CDR metric is illustrated by table 3.5.

In the table 3.5, an attribute A is denoted A∗ if it is the generalized version
of A, e.g. Age∗ is the generalization of the Age attribute and is represented by
intervals. Let us remember that the table 3.3 is the k−anonymous version
of table 3.2, so Age∗ (resp. Age) is corresponding to the attribute Age in
table 3.3 (resp. table 3.2). To explain the result of CDRX(Y ), let us take
X = Condition and Y = Age∗. Firstly, the Cancer condition is associated
to four persons, the Heart Disease condition to two persons and the Viral
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Infection condition to three persons, leading us to the following conclusion:

H(X) =−
[4
9 · log 4

9 + 2
9 · log 2

9 + 3
9 · log 3

9

]
H(X) =1.53

(3.21)

On the other hand, there are two people with an age lesser or equal to 35
with the Cancer condition and one with the Heart Disease condition which
give us the following result:

H(X|Age∗ = [25, 35]) =−
[2
9 · log 2

3 + 1
9 · log 1

3

]
H(X|Age∗ = [25, 35]) =0.31

(3.22)

Combining H(X|Age∗ = [25, 35]) with H(X|Age∗ = [38, 44]) and
H(X|Age∗ = [45, 70]), we obtain that CDRCondition (Age∗) = 0.25. The
lower CDR is the lower the attribute X can be deduce from the value of Y .
The CDR metric can be used as a disclosure risk metric. It is important to
note that using an identifier as Y value lead to CDRX (Y ) = 1, so in our
example, CDRCondition (ZIP,Age) = 1. Since the CDR metric does not
take into account the potential proximity of different sensitive values, another
metric was proposed from the same authors [81], the Semantic Discrimina-
tion Rate (SeDR). The SeDR consider the fact that sensitive values may have
a similar semantic meaning. For example, a throat cancer is more similar to
a lung cancer than a flu. The idea of the SeDR metric is to compute the
CDR metric over the semantic of sensitive values. For example, let a medical
dataset made of the following sensitive values set: S1 = {throat cancer, lung
cancer, breast cancer, Alzheimer, Parkinson, Huntington, flue, varicella}.
The SeDR metric could be computed on the following set: S2 = {cancer,
neurodegenerative disease, other disease}. The anonymised dataset would
contain value from S1 but the SeDR metric could be used by computing the
CDR metric considering sensitive values as their semantic meaning in S2.

Despite the important interest disclosure metrics give to produce a great
tradeoff data utility/privacy-preserving, we consider the use of these metrics
differing from the concept of k−anonymity. The use of these metrics to create
an anonymised dataset would be another anonymity concept.
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3.5 Conclusion

Many methods and different approaches have been proposed to protect in-
dividuals privacy. Partition-based methods and differential privacy mech-
anisms are two distinct approaches offering different characteristics. Many
legislators such as the GDPR [75] are pushing user empowerment initiatives
bringing new perspectives. Despite this interest, a small number of privacy-
preserving methods have been proposed to give to individuals the oppor-
tunity to personalise their security. While partition-based approaches lack
from the possibility to measure the data leak induced by the publication of
anonymised datasets, the differential privacy approach lacks from the com-
putations allowed on anonymised dataset, i.e. the differencial privacy aims
to produce an anonymised dataset for a set of queries while partition-based
approaches aim to produce a general anonymised dataset letting the possi-
bility to answer any query. Also, to add user empowerment, it is necessary
that users are able to undestand their options. Since fixing the differential
privacy parameter is a cumbersome and not intuitive task, out of reach of
lambda individuals, using partition-based approaches is a better solution to
propose to users the personalisation of their protection. Note that some
partition-based approaches can be seen as differential privacy mechanisms
such as the stochastic t−closeness (an extension of t−closeness) as shown by
J. Domingo-Ferrer and J. Soria-Comas [19].

Many partition-based approaches have been researched. However, most
of them compute the same protection for all individuals. Many studies have
proven that individuals do not share the same opinion about privacy. Some
persons prefer a high preservation of their privacy while others accept a low
protection. Partition-based approaches lacks from user empowerment, not
letting individuals express their will. The k−anonymity approach is the
most close to bring personalisation in practice. While algorithms comput-
ing optimal k−anonymity show no feasibility due to the fact that optimal
k−anonymity is NP-Hard [72], others are heuristics which try to get close
to optimal k−anonymity. While their significant number permits to adapt
the computation of k−anonymity to the desired use case (i.e. need of more
or less scalability and data quality), most of them propose a uniform com-
putation of k−anonymity leading to a lack of individuals personalisation.
The few amount of user empowerment propositions we can actually find in
the state of the art of k−anonymity methods are not satisfactory. For in-
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stance, some of them propose the modification of sensitive information which
keeps them away from the primary objective of k−anonymity that is to say
keeping sensitive information unspoiled while making it impossible to link
it to a physical individual. Other user empowerment solutions propose to
let users choosing the k they are willing. Although these approaches are
interesting, they only deal with spatiotemporal data. Spatiotemporal data
are the main interest of many studies. Indeed, with the development of lo-
cation based services, the collect of spatiotemporal plays an important role
to deduce knowledges such as points of interest (POIs) detection or super-
market traffic flow. Even if many anonymisation methods of spatiotemporal
data exist to preserve individuals’ privacy, other studies show the possibil-
ity to de-anonymise such anonymisation. For example, S. Gambs et al. [31]
propose a way to de-anonymise these data using Mobility Markov Chains
(MMCs) originally presented on an article from the same authors [32]. A
MMC is associated to an individual and is composed of a set of POIs and a
set of probabilities of moves from a POI i to another one j the individual can
made. This set of probalities may be represented by a matrix. Their idea is
to use the association of two metrics they defined and which aim to mesure
the distance from two MMCs. They tried to use the MMC associated to an
individual to find if he appears within a set of anonymous MMCs. Although
MMCs are structures that must be trained, the set of anonymous MMCs has
not necessary be trained with the same dataset of the MMC the attacker
know. They showed that they could identify the user highlighting the weak-
ness of spatiotemporal data anonymisation methods. Even if spatiotemporal
data are the main interest of many studies, spatiotemporal data are far from
covering the whole domain of data science. Despite this interest, no one
to the best of our knowledge has studied the computation of k−anonymity
with individual personalisation on common data attributes (i.e. categorical,
ordinal, nominal, numerical, . . . ).

On the other hand, the way micro-data are managed today involves the
use of a trusted third party. However, with the advent of cloud computing,
outsourcing costly operations to a third party is common. While, in practice,
computations over micro-data are often done under a confidentiality clause,
data leakages happen pretty often. Some solutions propose to outsource com-
putations to an untrusted third party while ensuring this third party cannot
access to any sensitive data using different methods such as homomorphic
encryption systems or secure cryptoprocessor. A major drawback from these
approaches are their lack of scalability. Other approaches try to restrict data
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computations to the least third parties. While some use a complex system
to ensure responses to queries do not leak personal data, another uses a
large amount of trusted devices sharing smart-card characteristics coupled
to a performent untrusted server infrastucture to compute costly operations
without leaking any personal information to the untrusted third party. How-
ever, this approach lacks from guarantees of privacy-preservation on answers
to queries it gives.

The previous approaches try to fit Big Data use cases. In spite of the
popularity of the Big Data concept, there is some use cases which do not fall
under the Big Data domain. In those cases, small datasets are much more
common and cannot be anonymised the same way as Big Data datasets. In-
deed these small datasets turn optimal k−anonymity computations feasible.
Even so, optimal k−anonymity methods do not propose any personalisation
of k−anonymity.

This manuscript focuses on three major objectives:

• Proposing a way to securely compute queries while ensuring that user
privacy constraints are satisfied during the process.

• Offering the possibility to empower users when a trusted institute aims
to publish a k−anonymous dataset.

• Suggest a method to compute optimal k−anonymity under users secu-
rity personalisations.
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Chapter 4

Personalised k−Anonymity
Through SQL

In this chapter we present an approach in which users specify their individual
anonymity constraints. In the other hand, a querier declares privacy guar-
antees through SQL query when willing to achieve a statistics study. This
permits to users to automatically determine their participation regarding
those guarantees. In this approach, the querier can also define data gen-
eralisation processes giving higher guarantees to fit more users constraints.
Our approach is built upon an asymmetric architecture based on trusted
hardware and allows SQL computations without any privacy leak.

57
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4.1 Introduction
The way microdata is anonymised and processed today is far from being
satisfactory. Let us consider how a national statistical study is managed,
e.g. computing the average salary per geographic region. Such a study is
usually divided into 3 phases: (1) the statistical institute (assumed to be
a trusted third party) broadcasts a query to collect raw microdata along
with anonymity guarantees (i.e., a privacy parameter like k in the case of
k−anonymity or ε in the case of differential privacy) to all users ; (2) each
user consenting to participate transmits her microdata to the institute ; (3)
the institute computes the aggregate query, while respecting the announced
anonymity constraint.

This approach has two important drawbacks:

1. The anonymity guarantee is defined by the querier (i.e. the statistical
institute), and applied uniformly to all participants. If the querier de-
cides to provide little privacy protection (e.g. a small k in the k−anony-
mity model), it is likely that many users will not want to participate in
the query. On the contrary, if the querier decides to provide a high level
of privacy protection, many users will be willing to participate, but the
quality of the results will drop. Indeed, higher privacy protection is
always obtained to the detriment of the quality and thus utility of the
sanitized data.

2. The querier is assumed to be trusted. Although this could be a realis-
tic assumption in the case of a national statistics institutes, this means
it is impossible to outsource the computation of the query. Moreover,
microdata centralization exacerbates the risk of privacy leakage due to
piracy (Yahoo and Apple recent hack attacks are emblematic of the
weakness of cyber defenses1), scrutinization and opaque business prac-
tices. This erodes individuals trust in central servers, thereby reducing
the proportion of citizen consenting to participate in such studies, some
of them unfortunately of great societal interest.

The objective of this chapter is to tackle these two issues by reestablish-
ing user empowerment, a principle called by all recent legislations protecting

1Yahoo ’state’ hackers stole data from 500 million users - BBC News.
https://www.bbc.co.uk/news/world-us-canada-37447016

https://www.bbc.co.uk/news/world-us-canada-37447016
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the management of personal data [75]. Roughly speaking, user empower-
ment means that the individual must keep the control of her data and of its
disclosure in any situation. More precisely, this chapter makes the following
contributions:

• propose a query paradigm incorporating personalized privacy guaran-
tees, so that each user can trade her participation in the query for
privacy protection matching her personal perception of the risk,

• present and discuss possible semantics of personalized privacy queries,

• propose efficient algorithms to manage the collection and distributed
computation of queries over large quantities of data

• provide a secure decentralized computing framework guaranteeing that
the individual keeps her data in her hands and that the query issuer
never gets cleartext raw microdata and sees only a sanitized aggregated
query result matching all personalized privacy guarantees,

• conduct a performance evaluation and large scale implementation on
a real dataset demonstrating the effectiveness and scalability of the
approach.

The rest of the chapter is organized as follows. Section 4.2 presents re-
lated works and background materials allowing to precisely state the problem
addressed. Section 4.3 details how to manage personalized queries in SQL.
Section 4.4 covers a discussion of the semantics of this model. Section 4.5
discusses the complex algorithmic issues that arise due to the use of per-
sonalized anonymity. Section 4.6 shows the results of our implementation,
demonstrating the efficiency of the approach in real case scenarios. Finally,
Section 4.7 concludes.

4.2 Background Informations

4.2.1 Reference computing architecture
Concurrently with smart disclosure initiatives, the Personal Information
Management System (PIMS) paradigm has been conceptualized [1], and is
emerging in the commercial sphere (e.g. Cozy Cloud, OwnCloud, SeaFile).
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Figure 4.1: Trusted Cells reference architecture [4].

PIMS holds the promise of a Privacy-by-Design storage and computing plat-
form where each individual can gather her complete digital environment in
one place and share it with applications and other users, while preserving her
control over her data. The Trusted Cells architecture presented in [4], and
pictured in Figure 4.1, precisely answers the PIMS requirements by prevent-
ing data leaks during computations on personal data. Hence, we consider
Trusted Cells as a reference computing architecture in this chapter.

Trusted Cells is a decentralized architecture by nature managing com-
putations on microdata through the collaboration of two parties. The first
party is a (potentially large) set of personal Trusted Data Servers (TDSs)
allowing each individual to manage her data with tangible elements of trust.
Indeed, TDSs incorporate tamper resistant hardware (e.g. smartcard, secure
chip, secure USB token) securing the data and code against attackers and
users’ misusages. Despite the diversity of existing tamper-resistant devices,
a TDS can be abstracted by (1) a Trusted Execution Environment and (2)
a (potentially untrusted but cryptographically protected) mass storage area
where the personal data resides. The important assumption is that the TDS
code is executed by the secure device hosting it and thus cannot be tampered,
even by the TDS holder herself.

By construction, secure hardware exhibit limited storage and computing
resources and TDSs inherit these restrictions. Moreover, they are not nec-
essarily always connected since their owners can disconnect them at will. A
second party, called hereafter Supporting Server Infrastructure (SSI), is thus
required to manage the communications between TDSs, run the distributed
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query protocol and store the intermediate results produced by this protocol.
Because SSI is implemented on regular server(s), e.g. in the Cloud, it exhibits
the same low level of trustworthiness.

The resulting computing architecture is said asymmetric in the sense that
it is composed of a very large number of low power, weakly connected but
highly secure TDSs and of a powerful, highly available but untrusted SSI.

4.2.2 Reference query processing protocol
By avoiding delegating the storage of personal data to untrusted cloud provi-
ders, Trusted Cells is key to achieve user empowerment. Each individual
keeps her data in her hands and can control its disclosure. However, the
decentralized nature of the Trusted Cells architecture must not hinder global
computations and queries, impeding the development of services of great
interest for the community.

SQL/AA (SQL on Asymmetric Architecture) is a protocol to execute
standard SQL queries on the Trusted Cells architecture [86, 85]. It has
been precisely designed to tackle this issue, that is executing global queries
on a set of TDSs without recentralizing microdata and without leaking any
information.

Illustrated by figure 4.2, the protocol works as follows. Once an SQL
query is issued by a querier (e.g. a statistic institute), it is computed in
three phases: first the collection phase where the querier broadcasts the
query to all TDSs, TDSs decide to participate or not in the computation
(they send dummy tuples in that case to hide their denial of participation),
evaluate the WHERE clause and each TDS returns its own encrypted data
to the SSI. Second, the aggregation phase, where SSI forms partitions of
encrypted tuples, sends them back to TDSs and each TDS participating in
this phase decrypts the input partition, removes dummy tuples and computes
the aggregation function (e.g. AVG, COUNT). Finally the filtering phase, where
TDSs produce the final result by filtering out the HAVING clause and send the
result to the querier. Note that the TDSs participating in each phase can
be different. Indeed, TDSs contributing to the collection phase act as data
producers while TDSs participating to the aggregation and filtering phases
act as trusted computing nodes. The tamper resistance of TDSs is key in this
protocol since a given TDS belonging to individual i1 is likely to decrypt and
aggregate tuples issued by TDSs of other individuals i2, . . . , in. Finally, note
that the aggregation phase is recursive and runs until all tuples belonging to
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Figure 4.2: SQL/AA protocol [86, 85]
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a same group have been actually aggregated. We refer the interested reader
to [86, 85, 66] for a more detailed presentation of the SQL/AA protocol.

4.2.3 Problem Statement
In order to protect the privacy of users, queries must respect a certain de-
gree of anonymity. Our primary objective is to push personalized privacy
guarantees in the processing of regular statistical queries so that individu-
als can disclose different amount of information (i.e. data at different levels
of accuracy) depending on their own perception of the risk. For the sake
of simplicity, we consider SQL as the reference language to express statisti-
cal/aggregate queries because of its widespread usage. Similarly, we consider
personalized privacy guarantees derived from the k-anonymity and `-diversity
models because (1) they are the most used in practice, (2) they are recom-
mended by the European Union [25] and (3) they can be easily understood
by individuals2.

Hence, the problem addressed in this chapter is to propose a (SQL) query
paradigm incorporating personalized (k-anonymity and `-diversity) privacy
guarantees and enforcing these individual guarantees all along query process-
ing without any possible leakage.

4.3 Personalised Anonymity Guarantees in SQL

4.3.1 Modeling anonymisation using SQL
We make the assumption that each individual owns a local database hosted
in her personal TDS and that these local databases conform to a common
schema which can be easily queried in SQL. For example, power meter data
(resp., GPS traces, healthcare records, etc) can be stored in one (or several)
table(s) whose schema is defined by the national distribution company (resp.,
an insurance company consortium, the Ministry of Health, etc). Based on
this assumption, the querier (i.e., the statistical institute) can issue regular
SQL queries as shown by figure 4.3.

2The EU Article 29 Working Group mention these characteristics as strong incentives
to make these models effectively used in practice or tested by several european countries
(e.g. the Netherlands and French statistical institutes).
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SELECT <Aggregate function(s)>
FROM <Table(s)>
WHERE <condition(s)>
GROUP BY <grouping attribute(s)>
HAVING <grouping condition(s)>

Figure 4.3: Regular SQL query form

For the sake of simplicity, we do not consider joins between data stored
in different TDSs but internal joins which can be executed locally by each
TDS are supported. We refer to [85] for a deeper discussion on this aspect
which is not central to our work in this thesis.

Anonymity Guarantees are defined by the querier, and correspond to
the k and ` values that will be achieved by the end of the process, for each
group produced. They correspond to the commitment of the querier towards
any query participant. Different k and ` values can be associated to different
granularities of grouping. In the example pictured in figure 4.4, the querier
commits to provide k ≥ 5 and ` ≥ 3 at a (City,Street) grouping granularity
and k ≥ 10 and ` ≥ 3 at a (City) grouping granularity.

Anonymity Constraints are defined by the users, and correspond to
the values they are willing to accept in order to participate in the query.
Back to the example of figure 4.4, Alice’s privacy policy stipulates a minimal
anonymisation of k ≥ 5 and ` ≥ 3 when Consu attribute is queried.

According to the anonymity guarantees and constraints, the query com-
puting protocol is as follows. The querier broadcasts to all potential partici-
pants the query to be computed along with metadata encoding the associated
anonymity guarantees. The TDS of each participant compares this guaran-
tee with the individual’s anonymity constraints. This principle shares some
similarities with P3P3 with the matching between anonymity guarantees and
constraints securely performed by the TDS. If the guarantees exceed the indi-
vidual’s constraints, the TDS participates to the query by providing real data
at the finest grouping granularity. Otherwise, if the TDS finds a grouping
granularity with anonymity guarantees matching her constraints, it will par-
ticipate, but by providing a degraded version of the data, to that coarser level
of granularity (looking at figure 4.4, answering the group by city, street
clause is not acceptable for Bob, but answering just with city is). Finally,

3https://www.w3.org/P3P/

https://www.w3.org/P3P/
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Querier1
Q1 =
SELECT city, street
AVG(consu)
GROUP BY city, street
Q1.metadata

group by city, street:
anonymity: 5
diversity: 3

group by city:
anonymity: 10
diversity: 3

TDS Alice
policies:

aggregation on consu:
anonymity: 5
diversity: 2

TDS Bob
policies:

aggregation on consu:
anonymity: 6
diversity: 3

TDS Charlie
policies:

aggregation on consu:
anonymity: 5
diversity: 4

SSI
queries list:
Q1, . . .

connect connect
connect

Q1 Q1
Q1

(consuAlice,
cityAlice,
streetAlice)
D_FLAG=0

(consuBob,
cityBob)
D_FLAG=0

(dummy_consu,
dummy_city,
dummy_street)

D_FLAG=1

Q1

Figure 4.4: Example of collection phase with anonymity constraints

if no match can be found, the TDS produces fake data (called dummy tuples
in the protocol) to hide its denial of participation. Fake data is required to
avoid the querier from inferring information about the individual’s privacy
policy or about her membership to the WHERE clause of the query.

Figure 4.4 illustrates this behavior. By comparing the querier anonymity
guarantees with their respective constraints, the TDSs of Alice, Bob and
Charlie respectively participate with fine granularity values (Alice), with
coarse granularity values (Bob), with dummy tuples (Charlie).

The ODRL4 working group is looking at some issues similar to the ex-
pression of privacy policies. However, this paper does not discuss about how
users can express their privacy policy in a standard way.

4.3.2 The kiSQL/AA protocol
We now describe our new protocol, that we call kiSQL/AA to show that
it takes into account many different k values of the i different individuals.
kiSQL/AA is an extension of the SQL/AA protocol [86, 85] where the en-

4https://www.w3.org/community/odrl/

https://www.w3.org/community/odrl/
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city street AVG(salary) COUNT(*) COUNT
(DISTINCT salary)

Le Chesnay Dom. Voluceau 1500 6 4
Le Chesnay ****** 1700 9 6
Bourges Bv. Lahitolle 1600 3 3
Bourges ****** 1400 11 7

(a) Example of a post aggregation phase result

Attributes k `
city, street 5 3

city 10 3
(b) Privacy guarantees of
the query

city street AVG(salary)
Le Chesnay Dom. Voluceau 1500
Bourges ****** 1442.86

(c) Data sent to the querier

Table 4.1: Filtering phase

forcement of the anonymity guarantees have been pushed to the collection,
aggregation and filtering phases.

Collection phase: After TDSs download the query, they compare the
anonymity guarantees announced by the querier with their own anonymity
constraints. As discussed above (see Section 4.3.1) TDSs send real data at
the finest grouping granularity compliant with their anonymity constraints
or send a dummy tuple if no anonymity constraint can be satisfied.

Aggregation phase: To ensure that the anonymisation guarantees can
be verified at the filtering phase, clauses COUNT(*) and COUNT(DISTINCT A)
are computed in addition to the aggregation asked by the querier. COUNT(*)
will be used to check that the k−anonymity guarantee is met while
COUNT(DISTINCT A)5 are computed in addition to the aggregation asked
by the querier. As explained next, these clauses are used respectively to
check the k−anonymity and `−diversity guarantees). If tuples with varying
grouping granularity enter this phase, they are aggregated separately, i.e.
one group per grouping granularity.

Filtering phase: Besides HAVING predicates which can be formulated
by the querier, the HAVING clause is used to check the anonymity guarantees.

5Since this clause is an holistic function, we can compute it while the aggregation
phase by adding naively each distinct value under a list or using a cardinality estimation
algorithm such as HyperLogLog [26].
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Typically, k−anonymity sums up to check COUNT(*)≥ k while `−diversity
is checked by COUNT(DISTINCT A)≥ `. If these guarantees are not met for
some tuples, they are not immediately discarded. Instead, the protocol tries
to merge them with a group of coarser granularity containing them. Let us
consider the example of Table 4.1a. The tuple (Bourges, Bv.Lahitolle,
1600) is merged with the tuple (Bourges, ******, 1400) to form the tuple
(Bourges, ******, 1442.86). Merges stop when all guarantees are met.
If, despite merges, the guarantees cannot be met, the corresponding tuples
are removed form the result. Hence, the querier will receive every piece
of data which satisfies the guarantees, and only these ones, as shown on
Table 4.1c. In this same example, note that another choice could have been
done regarding tuple (Le Chesnay, ******). Instead of removing it because
it does not meet the privacy constraints, it could have been merged with tuple
(Le Chesnay, Dom. Voluceau). The result would lose in precision but will
gain in completeness. We discuss more deeply the various semantics which
can be associated to personalized anonymisation in Section 4.4.

How to generalize. The example pictured in Table 4.1 illustrates data
generalization in a simplistic case, that is a Group By query performed on
a single attribute which can be expressed with only two levels of precision
<City,Street> and <City>. In the general case, Group By queries can be
performed on several attributes, each having multiple levels of precision. To
reach the same k and ` values on the groups, the grouping attributes can
be generalized in different orders, impacting the quality of the result for the
querier. For instance, if the GroupBy clause involves two attributes Address
and Age, would it be better to generalize the tuples on Address (e.g. re-
placing <City,Street> by <City>) or on Age (replacing exact values by
intervals) ? The querier must indicate to the TDSs how to generalize the
data to best meet her objectives, by indicating which attributes to gener-
alize, in which order, and what privacy guarantees will be enforced after
each generalization. In the following example, we consider the UCI Adult
dataset [59], we define a GroupBy query GB on attributes Age, Workclass,
Education, Marital_status, Occupation, Race, Gender, Native_Country
and we compute the average fnlwgt operation OP=AVG(fnlwgt). MD repre-
sents the metadata attached to the query. Each metadata indicates which k
and ` can be guaranteed after a given generalization operation. Depending
on the attribute type, generalizing an attribute may correspond to climbing
up in a generalization hierarchy (for categorical attributes such as Workclass
or Race) or replacing a value by an interval of greater width (for numeric val-
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ues such as Age or Education). The del operation means that the attribute
is simply removed. The ordering of the metadata in MD translates the querier
requirements.

GB= Age, Workclass, Education, Marital_status,
Ocupation, Race, Gender, Native_Country;

OP= AVG(fnlwgt);
MD= : k=5 l=3,

age->20: k=6 l=3,
workclass->up: k=8 l=4,
education->5: k=9 l=4,
marital_status->up: k=9 l=4,
occupation->up: k=10 l=4,
race->up: k=11 l=5,
gender->del: k=14 l=6,
native country->del:k=15 l=7,
age->40: k=17 l=8;

Figure 4.5: kiSQL/AA query example

4.3.3 Differences in importance of attributes
The way data is anonymised is in general defined by the algorithm applying
generalizations. Most of the time all attributes are considered as equivalent
in term of importance. The problem is that generalizing an attribute can
have a higher impact than generalizing another. Let us represent the degra-
dation of an attribute by a percentage. For instance, generalizing sex data
from Female/Male to individual leads to a 100% information loss on that at-
tribute. In contrary, generalizing the age by making intervals of ages two by
two, generates low information loss. This difference of generalization gran-
ularities can lead many anonymisation methods to generate high informa-
tion loss. Another problem is the difference of minimum utility statisticians
need. For example, a statistician could feel that utility falls to nill when
an attribute is generalized too much, even if it is not totally anonymised.
There is a gap where the utility falls to nill and this gap depends on the
objective of the query. Most anonymisation methods aim to optimize a met-
ric (see section 3.4) which is not always the same objective as the querier.
That is why, supervised methods such as the µ−argus framework from the
CASC project [42] or the R package sdcMicro [84] are often preferred by
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∗
count = 3

AB
count = 2

A
count = 2

B
count = 4

CD
count = 7

C
count = 3

D
count = 4

k = 5

k = 7

k = 10

Figure 4.6: Post-aggregation phase example

statisticians. Our approach also follows the idea that a statistician or a
querier should be able to specify how the generalization process occurs. The
kiSQL/AA protocol is a semi-supervised approach where the querier can spec-
ify the different steps of the anonymisation process while not having a view
of the data. By doing so, the querier is able to define the granularity of each
attribute generalization he is willing to have.

4.4 Semantic Issues Linked toKi−Anonymisation

The example presented in Table 4.1 highlighted the fact that no single per-
sonalized anonymisation semantics fits all situations. Typically, personalized
anonymisation introduces an interesting tradeoff between preciseness and
completeness of the query results. Figure 4.6 illustrates this tradeoff and
shows that two different result tables might both respect the privacy con-
straints, while containing different tuples. In other words, it is important
to be able to define the formal characteristics that can be guaranteed, even
though some are contradictory. We call semantics of a ki−anonymised query
the rules that lead to publishing tuples under privacy guarantees. These
semantics are evaluated during the filtering phase of the query.

Let Q be a query computing an aggregation on a set of tuples, grouping
on an attribute a of finite domain dom(a). We note |dom(a)| the size of the
domain. For the sake of simplicity, we assume that the querier specifies the
generalization process by means of a labeled generalization tree (thus each
value has only one parent) which explains how each value must be generalized,
and which indicates the privacy guarantees enforced at each generalization
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level of a.
We plot on Figure 4.6 an example where dom(a) = {A,B,C,D}. The

example represents the post-aggregation result of queryQ (before the filtering
phase). For readability purposes, the k privacy guarantee labels are indicated
on the left. Each node shows the total number of participants in the given
aggregation group. It is important to note that at this point, a microdata
tuple will only have contributed to a single group, depending on its privacy
preferences.

Example: Group AB is composed of the tuples of 2 participants, with
values A or B for a, and with a privacy guarantee of k ≥ 7. Clearly as only
2 participants contributed to the group in this case, this guarantee cannot
be enforced, and thus this group cannot be published as is in the resulting
query answer.

Different decisions, which will impact the semantics of the Group By
query, can be made regarding this group: (i) discard the group, and the
corresponding microdata tuples, (ii) merge it with a more general group (i.e.
a parent node in the generalization tree), (iii) add tuples from a more specific
but compatible group to it. We discuss next different realistic semantics for
the Group By query and how to achieve them. Two concurrent objectives
can actually be pursued: generalizing the microdata tuples the least possible
or dropping the least possible microdata tuples. Note that when publishing
the results of such queries, although a microdata tuple is only counted once,
the domains of the groups can overlap.

1. Selective semantics. These semantics prioritize the precision of the
result over its completeness, while enforcing all privacy guarantees.
In other words, the querier wants to keep the best quality groups as
possible, that is at the finest generalization level, and accepts to drop
groups that do not achieve the privacy constraints.

2. Complete semantics. Conversely, these semantics prioritize the com-
pleteness of the result over its precision. The querier wants to keep the
most tuples as possible, and accepts to generalize and merge groups to
achieve this objective.

Selective semantics are rather straightforward since they correspond to a
locally optimizable algorithm. They can be implemented as the algorithm 1.

With this algorithm 1, the microdata are generalized along the general-
ization tree until the group cardinality reaches the privacy guarantee of a
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Algorithm 1 Selective algorithm
procedure selective(List L)

while N = L.pop() do
if satisfyPrivacy(N) then

publish(N)
else

if hasParent(N) then
N.mergeTo(parent(N))

end if
end if

end while
end procedure

given node and are then published with this level of precision. Once a node
content is published, it cannot be used by a higher level node to help it get
published. Thus a node N cannot be discarded if a higher level node N ′ is
published.

Example: Groups A and B do not respect the privacy constraint, they
are thus merged with Group AB. The same holds for groups C and D
which are merged with group CD. Groups AB and CD (including the newly
generalized tuples) are both published. Group ∗ does not respect the privacy
constraint and is discarded.

Complete semantics are more difficult to achieve. Indeed, the objective
here is to globally optimize the number of tuples published, and only then
look at the quality of the generalization. The problem can be formalized
as a constrained optimization problem with two (ordered) objective func-
tions. F1 is the priority optimization function which counts the number
of microdata tuples published. F2 is the secondary optimization function
which evaluates the overall quality of groups. Functions F2 could be defined
to take into account the semantic relatedness among nodes of the gener-
alization tree by using appropriate metrics (e.g. Wu and Palmer[94] met-
ric), but for the sake of simplicity we chose to define the overall quality
as the σg ∈ {groups}(depth(g) · count(g)). Maximal quality is obtained
if all the microdata tuples are published at maximal depth. Dropped tu-
ples induce maximal penalty in quality, since they do not contribute to the
score. Also note that it is not possible to generalize only a subset of the
microdata tuples composing one of the initial groups. A group must be
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generalized completely or not at all. However, descendant groups could be
generalized more than some of their ancestor groups. For instance, group
CD might be published as is since it already satisfies the privacy guarantee,
and groups C and D might be generalized to ∗ to form a group of cardinality
10 which can also be published (instead of dropping the three initial elements
in ∗). Hence, regarding F1, various combinations are valid like {(∗, count =
10), (AB, count = 8), (CD, count = 7)}, {(∗, count = 18), (CD, count = 7)}
or {(∗, count = 11), (CD, count = 14)}. In this example, F2 should lead to
select the former one.

The practical difficulty comes precisely from the computation of this sec-
ondary optimization function F2 (not to mention having to chose what func-
tion to use). Indeed, otherwise a trivial answer would simply generalize all
the microdata tuples to ∗, and publish a single group. In a centralized con-
text, a (non linear) constraint solver could be used to compute the optimal
result to this problem. However, in a distributed context, generalization
must take place during the distributed filtering phase. Thus we propose to
use a greedy heuristic to simplify decision making in the complete semantics
approach.

Algorithm 2 Greedy complete algorithm.
procedure complete(Ordered List (lower node first) L)

R←empty list
while N = L.pop() do

if satisfyPrivacy(N) then
R.push(N)

else if hasDescendant(N) then
P ← descendant(N)
R.remove(P )
P.mergeTo(N)

else if hasParent(N) then
N.mergeTo(parent(N))

end if
publish(R)

end while
end procedure

The difference between these two algorithms is that the second algorithm
accepts to generalize a node which could be published as is, if it can help a
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higher node to get published. Also note that another semantic choice that
must be made when implementing the algorithm is when deciding which
descendant node to merge, when several possibilities exist.

Example: The algorithm behaves the same as the selective algorithm
until it has groups AB and CD in R. Then it must decide whether to merge
AB or CD with ∗. The decision can be made by chosing the smallest group
that still respects the privacy constraint. In this case, as |AB| = 8 and
|CD| = 14, we would chose to merge AB with ∗ and produce | ∗ | = 11 and
|CD| = 14. However we see that the optimal solution would have been to
merge C and D with ∗ or merge CD with ∗ and generalize C and D to CD,
thus producing |AB| = 8, |CD| = 7 and | ∗ | = 10.

Conclusion: Several different semantics can be applied in order to decide
how to publish the groups while respecting privacy constraints. There is no
ideal choice in absolute terms and the decision should be application driven.
However, besides the preciseness and completeness of the obtained result, the
cost of implementing these semantics may widely differ. While implement-
ing the selective semantics is straightforward, optimizing the computation
of the complete semantics can be rather complex and costly, especially in a
decentralized context.

4.5 Algorithmic Issues Linked to Ki−Anonymisation

The implementation of kiSQL/AA builds upon the secure aggregation proto-
col of SQL/AA [86, 85], recalled in Section 4.2.2. Secure aggregation is based
on non-deterministic encryption as AES CBC to encrypt tuples. Each TDS
encrypts its data with the same secret key but with a different initialization
vector such that two tuples with the same value have two different encrypted
values. Hence all TDSs, regardless of whether they contributed to the collec-
tion phase or not, can participate in a distributed computation and decrypt
all intermediate results produced by this computation, without revealing any
information to the SSI. Indeed, the SSI cannot infer personal information by
the distribution of non deterministically encrypted values. Injecting person-
nalization in this protocol has no impact on the cryptographic protection.
However, this impacts the internal processing of each phase of the protocol,
as detailed next.
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4.5.1 Collection phase
The confrontation between the querier’s privacy guarantees and the TDS’s
privacy constraints, along with the potential data generalization resulting
from this confrontation, are included in the collection phase. The resulting
algorithm is given below (see Algorithm 3). As in most works related to data
anonymisation, we make the simplifying assumption that each individual is
represented by a single tuple. Hence, the algorithm always returns a single
tuple. This tuple is a dummy if the privacy constraints or the WHERE clause
cannot be satisfied.

Algorithm 3 Collection Phase.
procedure collection_phase(Query Q)

t← getTuple(Q)
p← getConstraints(Q)
g ← getGuarantees(Q)
i← 0
if verifyWhere(t, Q) then

while gi < p do
if not canGeneralize(t) then

t← makeDummy(Q)
else

t← nextGeneralization(t)
i← i+ 1

end if
end while

else
t← makeDummy(Q)

end if
return Encrypt(t)

end procedure

4.5.2 Aggregation phase
To make sure that aggregations are entirely computed, the SSI uses a divide
and conquer partitioning to make the TDS compute partial aggregations on
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partitions of data. The aggregation phase, as implemented in SQL/AA [86,
85], is illustrated by Figure 4.7.

TDS1: Final Aggregation
TDS1: Agg(P1,2)

TDS1: Agg(P1)
TDS2: Agg(P2)

TDS2: Agg(P3,4)
TDS3: Agg(P3)
TDS4: Agg(P4)

Figure 4.7: Aggregation phase with four partitions.

The weakness of this way of computing the aggregation is the work load
put on the unique TDS performing the final aggregation. The limited amount
of TDS RAM reduces the number of different groups (i.e. given by the
GroupBy clause) which can be managed by a single TDS using RAM only.
Moreover, the larger the partitions to merge, the larger the time spent by
that TDS to do the computation and the greater the burden put on the
TDS owner who cannot easily perform other tasks in parallel. This limita-
tion is magnified in our context since personalized anonymisation may lead
to a larger number of groups since initial groups may appear at different
granularity levels.

We propose two algorithms overcoming this limitation. The first al-
gorithm, called the swap-merge algorithm, is a direct adaptation of the
SQL/AA aggregation algorithm where partitions bigger than the TDS RAM
are simply swapped in NAND Flash. When it comes to compute aggrega-
tions on two sorted partitions saved on NAND Flash, the TDS will use a
simple merge sort to build the result partition. The corresponding algorithm
is straightforward and not detailed further due to space limitation. The ben-
efit of this adaptation is to accomodate an unlimited amount of groups while
keeping logarithmic the number of aggregation phases. However, this ben-
efit comes at the price of ever increasing the load imposed on TDSs at the
root of the aggregation tree due to NAND Flash I/Os. Note that executing
the initial SQL/AA aggregation algorithm in streaming to avoid resorting to
NAND swapping on each TDS would reveal the tuple ordering to the SSI.
This option is thus discarded.

The second algorithm, illustrated by figure 4.8, does not rely on NAND
Flash swapping and is called the network-merge. The idea is to use a bubble
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Figure 4.8: Merging sorted partitions without NAND access

sort like algorithm to merge two sorted partitions.
The figure 4.8 illustrates the merge of two sorted partitions P1 and P2. We

assume that each partition is in turn decomposed into n frames (n = 4 in the
figure) in order to accomodate the RAM capacity of a TDS. More precisely,
the maximal size of a frame is set to half of the TDS RAM size (so that
two frames of two different partitions can fit in RAM and be merged without
swapping), minus a RAM buffer required to produce the merge result. Let P j

i

denote the jth frame of partition Pi and let Pr denote the partition resulting
from the merge of P1 and P2. Assuming that P1 and P2 are internally sorted
in ascending order on the grouping attributes, the merge works as follows.
For each j = 1..n, the jth frames of P1 and P2 are pairwise sent to any
merger TDS6 which produces in return the jth and (j + 1)th sorted frames
of Pr. All elements in P j

r are smaller or equal to the elements of P j+1
r . By

construction, after the first iteration of the protocol, frame P 1
r contains the

smallest elements of Pr and frame P n
r the greatest ones. Hence, these two

frames do not need to participate to the next iterations. Hence, after k
iterations, 2 · k frames of Pr are totally sorted, the smallest elements being
stored in frames P 1..k

r and the greatest ones being stored in frames P n−k..n
r .

The algorithm, presented in 4 is guaranteed to converge in a linear number of
iterations. For readability concern and without loss of generality, we suppose
that P1 and P2 have the same size.

Hence, algorithm network-merge can accomodate any number of groups
without resorting to NAND Flash swapping. The price to pay is a linear
(instead of logarithmic for swap-merge algorithm) number of iterations. The
negative impact on the latency of the global protocol is low compared to the

6each TDS can contribute to any phase of the protocol, depending on its availability,
independently of the fact that it participated to the collection phase.
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Algorithm 4 Partition Merger Algorithm
procedure network-merge(Partition P1, Partition P2, Command cmd)

Let top, bot,mid, q1, q2 empty partitions
for i from 1 to NumberOfFrame(P1) do

Send(P i
1, P

i
2, cmd) to TDSi

end for
for i from 1 to NumberOfFrame(P1) do

Pr ← receive() from TDSi
if i == 1 then

top.append(P 1
r )

else
q1.append(P 1

r )
end if
if i == NumberOfFrame(P1) then

bot.append(P 2
r )

else
q2.append(P 2

r )
end if

end for
if NotEmpty(q1) then

mid← network-merge(q1, q2, cmd)
end if
return top+mid+ bot

end procedure
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latency of the collection phase itself. But the benefit is high in terms of TDS
availability. Thanks to this algorithm, each participating TDS contributes
to a very small part of the global computation and this part can additionally
be bounded by selecting the appropriate frame size. This property may be
decisive in situations where TDSs are seldom connected.

4.5.3 Filtering Phase

The filtering phase algorithm is given by Algorithm 5.

Algorithm 5 Filtering Phase.
procedure filtering_phase(Query Q, TuplesSet T)

sortByGeneralizationLevel(T )
g ← getGuarantees(Q)
for i from 0 to MaxGeneralizationLevel(Q) do

for t ∈ Ti do
t← decrypt(t)
if verifyHaving(t, Q) then

result.addTuple(t)
else if canGeneralize(t) then

t← nextGeneralization(t)
Ti+1.addTuple(t)

end if
end for

end for
return result

end procedure

First, the algorithm sorts tuples of the aggregation phase by general-
ization level, making multiple sets of tuples of same generalization level.
Function verifyHaving checks if COUNT(*) and COUNT(Disctinct) match
the anonymisation guarantees expected at this generalization level. If so, the
tuple is added to the result. Otherwise, it is further generalized and merged
with the set of higher generalization level. At the end, every tuple which
cannot reach the adequate privacy constraints, despite achieving maximum
generalization, is not included in the result.
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4.6 Experimental Evaluation

We have implemented the kiSQL/AA protocol on equivalent open-source
hardware used in [86, 85]. The goal of this experimental section is to show
that there is very little overhead when taking into account personalized
anonymity constraints compared to the performance measured by the orig-
inal implementation of To et al.. Our implementation is tested using the
classical adult dataset of UCI-ML [59] enhanced with a ki privacy parameter
for each tuple.

4.6.1 Experiments Platform

SD card

Bluetooth

Fingerprint
reader

Smartcard

(data managt)

(secrets)
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Figure 4.9: TDS characteristics [51].

The performance of the kiSQL/AA protocol presented above has been
measured on the tamper resistant open-source hardware platform shown in
Figure 4.9. The TDS hardware platform consists of a 32-bit ARM Cortex-
M4 microcontroller with a maximum frequency of 168MHz, 1MB of internal
NOR flash memory and 196kb of RAM, itself connected to a µSD card con-
taining all the personal data in an encrypted form and to a secure element
(open smartcard) containing cryptographic secrets and algorithms. The TDS
can communicate either through USB (our case in this study) or Bluetooth.
Finally, a TDS embeds a relational DBMS engine, named PlugDB7, running
in the microcontroller. PlugDB is capable of executing SQL queries over the
local personal data stored in the TDS. In our context, it is mainly used to
implement the WHERE clause during the Collection phase of kiSQL/AA.

7https://project.inria.fr/plugdb/en/

https://project.inria.fr/plugdb/en/
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Our performance tests use the Adult dataset from the UCI machine learn-
ing repository [59]. This dataset is an extraction from the American census
bureau database. We modified the dataset the same way of [43, 8]. We
kept eight attributes to perform the GroupBy clause, namely age, workclass,
education, marital status, occupation, race, native country and gender.
Since our work is based on GROUP BY queries, we also kept the fnlwgt
(i.e. final weight) attribute to perform an AVG on it. The final weight is a
computed attribute giving similar value for people with similar demographic
characteristics. We also removed each tuple with a missing value. At the end
we kept 30162 tuples. Attributes age and education are treated as numeric
values and others as categorical values. Since TDS have limited resources,
categorical value are represented by a bit vector. For instance, the categorical
attribute workclass is represented by a 8 bits value and its generalization
process is performed by taking the upper node on the generalization tree
given in Figure 4.10. The native country attribute is the largest and requires
49 bits to be represented.
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State-gov
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Self-emp
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without-pay
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*
0xff

Figure 4.10: Generalization tree of workclass attribute.

4.6.2 Performance measurements
kiSQL/AA being an extension of SQL/AA protocol, this section focuses on
the evaluation of the overhead incurred by the introduction of anonymisa-
tion guarantees in the query protocol. Then, it sums up to a direct com-
parison between kiSQL/AA and original SQL/AA. To make the performance
evaluation more complete, we first recall from [85] the comparison between
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SQL/AA itself and other state of the art methods to securely compute aggre-
gate SQL queries. This comparison is pictured in Figure 4.11. The Paillier
curve shows the performance to compute aggregation in a secure centralized
server using homomorphic encryption, presented in [33]. The DES curve uses
also a centralized server and a DES encryption scheme (data are decrypted
at computation time). Finally, SC curves correspond to the SQL/AA com-
putation with various numbers of groups G (i.e. defined by GroupBy clause).
This figure shows the strength of the massively parallel calculation of TDSs
when G is small and its limits when G is really too big. We compare next
the overhead introduced by our contribution to SQL/AA.
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Figure 4.11: Performance measurements of SQL/AA and state of the art [85].

Categorical vs. numeric values. We ran a query with one hundred gener-
alization levels, using first categorical, then numerical values. Execution time
was exactly the same, demonstrating that the cost of generalizing categorical
or numerical values is indifferent.

Collection and Filtering Phases. Figures 4.12 and 4.13 show the over-
head introduced by our approach, respectively on the collection and filtering
phases. The time corresponds to processing every possible generalization of
the query presented in Figure 4.5, which generates the maximal overhead
(i.e., worst case) for our approach. The SQL/AA bar corresponds to the
execution cost of the SQL/AA protocol inside the TDS, the data transfer
bar corresponds to the total time spent sending the query and retrieving the
tuple (approximately 200 bytes at an experimentally measured data transfer
rate of 7.9Mbits/sec), the TDS platform bar corresponds to the internal cost
of communicating between the infrastructure and the TDS (data transfer
excluded), and the Privacy bar corresponds to the overhead introduced by
the kiSQL/AA approach. All times are indicated in milliseconds. Values are
averaged over the whole dataset (i.e. 30K tuples).
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Collection Phase Analysis. The overhead of the collection phase resides
in deciding how to generalize the tuple in order to comply with the local
privacy requirements, and the global query privacy constraints. Figure 4.12
shows that our protocol introduces about a low overhead (between 0.29ms
and 0.40ms). The variation is due to the number of generalization to be
made. Most of the time is taken by the DBMS running in the TDS since
it must access privacy preference on its NAND memory, which is slow. The
time taken by the SQL/AA system come mostly from the time to retrieve
data from the NAND memory which is constant. The same query could have
been kept but we used the minimal query size to show this variation. Note
that these performances are a bit different from the article [66] since we used
more complicated queries on the TDS DBMS. Our contribution introduces
an overhead under 10% of the overall time which we consider as a very
reasonable cost.
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Filtering Phases Analysis. Figure 4.13 shows the breakdown of the filter-
ing phase execution time. The filtering phase takes place once the TDSs have
computed all the aggregations and generalizations. The limited resources of
the TDSs are bypassed by the SQL/AA system with the help of the (dis-
tributed) aggregation phase. Since every group is represented by one tuple,
the TDS which computes the filtering phase receives a reduced amount of
tuples (called G). To et al. have shown that the SQL/AA protocol converges
if it is possible for a given TDS to compute G groups during the aggregation
phase. As this is the number of tuples that will be processed during the filter-
ing phase, we know that if G is under the threshold to allow its computation
via the distributed aggregation phase, then it will be possible to compute the
filtering phase with our improved protocol. To make performance measures,
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the cortex-M4 has a 24bit system timer giving the possibility to measure
durations lower than 100ms. Since computations now use NAND access,
the time is too high to give a comparison between the SQL/AA system and
the kiSQL/AA system. The dashed line shows the limit where resorting to
NAND is mandatory.

Aggregation phase Analysis. Figure 4.14 shows the performance measures
of the sorting algorithm used in the aggregation phase. After the aggrega-
tion phase, the number of tuples the result contains is the number of different
groups made by the GroupBy clause. We vary the number of groups to in-
crease or decrease the overall time taken by each step of the merge algorithm.
The limit of the SQL/AA system is shown by the dashed vertical line. The
system was unable to compute a query with more groups than this limit. The
merge algorithm permits to overcome this limit. The performance measure
was done on one TDS. Since each step of the merge sort can be distributed,
the maximum time of each partition merge was kept and summed between
the different steps to get the time showed by the figure 4.14. The perfor-
mance of the swap merge drastically decreases when the data to aggregate
cannot fit in the RAM of the TDS and needs to be swapped on the NAND
memory.
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Figure 4.15: TDS Availability Re-
quired By The Aggregation Phase.

One of the weaknesses of the swap merge algorithm is the time a TDS
must be available to merge two partitions. This time is directly related to the
number of distinct groups generated by the GroupBy clause. It is important to
measure this time. The maximum time a TDS must be available to compute
the aggregation phase is illustrated by the figure 4.15. It was obtained by
keeping the highest time between the sends of the message from the SSI and
the receiving of the result by the SSI on the whole aggregation phase. The
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time increases drastically when the TDS needs to use the NAND memory.

4.7 Conclusion
While privacy-by-design and user empowerment are being consecrated in
the legislations regulating the use of personal data (e.g., EU General Data
Protection Regulation), time has come to put these principles into practice.
This chapter tackled this objective by proposing a novel approach to de-
fine personalized anonymity constraints on database queries. The benefit is
twofold: let the individuals control how their personal data is exposed ever
since collection time and, by this way, provides the querier with a greater
set of consenting participants and more accurate results for their surveys.
Moreover, we proposed a fully decentralized and secure execution protocol
enforcing these privacy constraints, which avoids the risk of centralizing all
personal data on a single site to perform anonymisation. Our experiments
showed the practicality of the approach in terms of performance. Finally, this
chapter showed that different semantics can be attached to the personalized
anonymisation principle, opening exciting research perspectives for the data
management community.



Chapter 5

Formalisation and
Experimentation of
Personalised k−Anonymity

In this chapter, we propose and experiment a new anonymisation model,
called ki−anonymity, which allows users to define their own value of k in
the context of k−anonymity. We discuss several scenarios to cases where
personnalization in anonymisation makes sense. We then present the model,
and how to build an experimental dataset with ki information. We discuss
how current heuristics devised for k−anonymity must be adapted to solve the
more complex problem of ki−anonmity. We then show through a thorough
experimentation on the classical adult dataset how ki−anonymity impacts
the quality of anonymisation results from the utility perspective.

85
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5.1 Introduction

The anonymisation of personal information is an important task today. With
the advent of Smart-Disclosure and Open Data the amount of collected data
has exploded. The concept of Big Data is emerging giving new perspec-
tives for statistics studies. Nowadays, data anonymisation is required before
publishing. There are many ways to anonymised data as presented in sec-
tion 3.2. While some statiscal institutes and industrial companies prefer
the use of supervised methods such as the µ−argus [42] toolkit or sdcMi-
cro [84] R package, others prefer the use of partition-based methods such
as k−anonymity and `−diversity or differential privacy. Concurrently, the
GDPR [75] tries to push the possibility to empower users giving them more
control over their data. However, most of the algorithms made to anonymise
users’ micro-data propose uniform anonymisation (i.e. based on a uniform
security parameter) : no personalization exists. Only a small amount of these
methods propose to empower users by giving them the possibility to manip-
ulate the way their micro-data are anonymised. In the previous chapter, we
studied how a querier can parameterize the way that users’ personal data are
generalized by controling generalization hierarchies and letting users specify
the anonymisation level they need to participate, and using these information
as input to guide generalization algorithms. In this chapter, we now consider
the personalization of the privacy parameter itself, and how this will impact
existing algorithms and heuristics.

Existing partition-based methods proposing personalisation can be sep-
arated into two approches. The first approach consists of methods offer-
ing users the manipulation of the granularity of the partition they will be
in (e.g. Clique-Cloak algorithm). Unfortunately, all these methods are re-
stricted to a certain type of data they take into account. They all generalize
spatiotemporal data which are commonly used by location based services.
However, in most cases, the data to be anonymised is much more varied and
privacy-preserving methods must deal with many types of attributes (e.g.
nominal, numerical, ordinal, categorical, . . . ). The second approach consists
in modifying the way sensitive attributes are shared. Some solutions using
guarding nodes allow the user’s sensitive attributes to be generalized. The
goal of methods such as k−anonymity is to keep sensitive information their
integrity. Since those algorithms modify sensitive information, they do not
have the same objectives as k−anonymity. Yet the personalisation of users’
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privacy-preserving security and confidentiality is put forward by security in-
stitutes and legislators such as the GDPR [75]. Despite this interest, to the
best of our knowledge, no one has studied the personalisation of partition-
based privacy preserving methods regarding the granularity specified by their
uniform parameter.

This chapter tackles the problem of the personalisation of k−anonymity
by users (i.e. each user ui can chose their own ki value) to give them more
control over their data and potentially improving the data quality. Instead of
proposing yet another heuristic computing k−anonymity, this chapter pro-
poses adaptations of existing k−anonymity heuristics. Three heuristics to be
adapted have been chosen by their different scalability characteristics. One
heuristic with a high scalability but low efficiency in term of data quality,
a second heuristic with lower scalability but better efficiency and another
one moderately scalable and moderately efficient. We also show that the
adaptions of these heuristics do not complexify the algorithms. Another im-
portant objective of this chapter is to discuss the correlation between the
privacy concern expressed by individuals and their personal data. As speci-
fied in section 3.1, privacy concern is correlated to some micro-data such as
income, nationality or age. Since those correlations may affect the solution
of personalised k−anonymity, experiments are done while simulating those
correlations.

This chapter is organized as follows. We begin with giving several sce-
narios to illustrate use cases where personnalization in anonymisation makes
sense 5.2. We then present the model, and how to build an experimental
dataset with ki information 5.3. We discuss how current heuristics devised
for k−anonymity must be adapted to solve the more complex problem of
ki−anonymity in Section 5.4. We then show through a thorough experi-
mentation how ki−anonymity impacts the quality of results from the utility
perspective 5.5.

5.2 Problem Statement and Scenarios

This section presents the problem statement and the different scenarios per-
sonalized privacy methods should take into account.
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5.2.1 Problem Statement
This chapter tackles the problem of giving the possibility to users to specify
their own privacy parameter used by k−anonymity. Following those views,
the problem consists, also, to compute an anonymised dataset for data pub-
lishing ensuring the privacy parameter of each users.

5.2.2 Scenarios
To understand possible use cases in which personalised k−anonymity can be
used, we propose different scenarios taking advantage of this new approach.

Scenario 1

The first scenario is pretty basic. It gives users, the possibility to determine
“how much” they want to be anonymised. They can increase or decrease
their privacy constraint (i.e. the k security parameter). Such scenarios are
easy to understand in geolocation data, such as the anonymity circle defined
by Chatzikokolakis et al. in the Location Guard add-on, based on geo-
indistinguishability [5].

Scenario 2

Users have the possibility to gain an advantage by reducing their privacy
constraint. They will get a greater advantage the more they decrease the
k they want. To illustrate this scenario, we can use mobile application.
For now, mobile applications use advertising and sell personal data as their
business model. An application could propose to the user to lower the number
of advertisments he sees by reducing his privacy constraint. By doing so, the
data sold by the application would have a higher value which would lead to
reducing advertisements seen by the user.

Scenario 3

The data controller, which is in charge of deciding how data is processed,
wants to apply a k−anonymity algorithm on the data he is in charge of.
A small amount of records want/need to have higher privacy and thus a
higher k parameter. The data controller has several choices. The first is
to compute k−anonymity with the highest k. This will clearly deteriorate
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a lot of information of many records. A second choice would be to remove
records with higher privacy needs and compute k−anonymity on a lower k.
Finally, the third choice that we advocate would be to compute personalized
k−anonymity to keep the information of both record groups (i.e. with and
without higher privacy needs).

5.3 The ki−anonymity model and linked con-
cepts

5.3.1 ki−anonymity definition
In this section, the personalized k−anonymity and used metrics are pre-
sented. Personalized k−anonymity aims in empowering users on the specific
security parameter. Indeed, most of the related works about personalized
k−anonymity give the possibility to user to specify how their sensitive at-
tributes are shared. Instead, we propose the personalization of the security
parameter k. We will denote this concept as ki−anonymity.
Definition 8 (ki−anonymity). Let D be a table of records, ki denote the
k chosen by the user i ∈ D. Let QIDi denotes the quasi-identifier of this
user. The table D is ki−anonymous iff ∀i ∈ D, |{QIDj | j ∈ D, QIDj =
QIDi}| ≥ ki (with |S| denotes the cardinality of the set S).

Rationale

Table 5.1 shows an example of a ki−anonymous table (based on the ta-
ble 3.3). The idea is not to group users with the same privacy constraint
together but to group individuals to achieve best utility, while respecting
the ki constraint. The general approach of constrained optimization is thus
similar to k-anonymity, but constraints vary from class to class depending
on the members of a class, which means that it is much more difficult to
propose heuristics, than in the case where there is only one parameter for all
classes. For instance, one big difference with k−anonymity is that creating
the maximum number of equivalence classes possible does not mean having
the best data quality: we might be grouping together individuals that are
very different, simply to optimize the ki constraints, by putting the least pos-
sible individual in each group, regardless of their similarity. Such a problem
does not appear with k − anonymity.
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Quasi-identifier Sensitive
kiZIP Age Condition

1402* [25, 35] Cancer 2
1402* [25, 35] Heart Disease 2
1402* [25, 35] Cancer 2
141** [38, 45] Heart Disease 3
141** [38, 45] Viral Infection 3
141** [38, 45] Viral Infection 2
141** [38, 45] Cancer 3
1402* [50, 70] Viral Infection 2
1402* [50, 70] Cancer 2

Table 5.1: Example of fictitious medical dataset ki−anonymous.

5.3.2 Metrics for ki−anonymity heuristics
Many current k−anonymity algorithms are based on heuristics that use met-
rics to take their decisions. The example just discussed in the previous
paragraph illustrates why metrics such as the discernability metric or the
normalized average equivalence class size metric do not fit the problem of
ki−anonymity. Using them would consist to first partition records by their
constraints regardless to their similarity. As shown by table 5.1, grouping
records with the same constraint regardless of their similarity to create an
extra group can lead to more information loss! For example here, a new
equivalence class can be created with the third and the sixth records which
would increase global information loss.

In order to represent information loss, we use a metric which is better
adapted to the fact that each group will have a specific ki parameter: the
diameter based metric (already presented in section 3.4):

DBIL(e) = |e| · diameter(e) (5.1)

where e is an equivalence class of records in D∗. The diameter of an equiv-
alence class is computed by the highest distance between two records in the
equivalence class. The distance between two records is the Manhattan dis-
tance with attributes as coordinates. The distance of numeric attributes
consists of the substraction of the greatest value by the lowest and the dis-
tance of two pieces of categorical data is the height of the smallest subtree
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containing each value in the taxonomy tree T of the attribute. This infor-
mation loss metric can be seen as the highest Manhattan distance of the
equivalence class multiplied by the cardinality of the equivalence class. The
distance of two records on an attribute is normalized to ensure each attribute
has the same importance but a factor can be added to give more importance
to some attributes (i.e. some attributes may be more important than others,
see 4.3.3). To compute the overall information loss of the anonymised dataset
D∗, the sum of equivalence classes information loss can be computed.

Other metrics could also be used to guide a ki−anonymity heuristic, so
long as they take into account the similarity of groups.

5.3.3 Personnalized privacy datasets
In order to test the concept, we need data. Unfortunately, to our knowledge,
no dataset exists where individuals have been asked to chose a certain degree
of protection when anonymising their data. For instance, we contacted K.
Chatzikokolakis to see if they had information about the privacy parameter
chosen by users using their Location Guard plug-in, but indeed, this param-
eter was not collected (which is normal since this is in some sense sensitive
information). Another experiment was run by Katsouraki [47] in order to
measure how individuals behave when sharing personal information depend-
ing on their perception of information security, but was not formalized in
terms of ki values. Thus, we discuss here an existing study by Acquisti et al.
and how we can extrapolate it in order to build a realistic dataset to be used
in personalized anonymisation.

Individual Privacy concern

We discuss the impact of the work of A. Acquisti and J. Grossklag already
discussed in the section 3.1 by presenting a discussion about the distribution
of privacy constraints (i.e. privacy parameter k) based on their study. The
study of A. Acquisti and J. Grossklags shows how the privacy concern of
individuals varies regarding the category of targeted personal information.
Table 5.2 is a part of the survey result of A. Acquisti and J. Grossklags
paper [2].

They identified four groups of people differing by their privacy concerns.
The conservative group is composed of people having a high privacy concern.
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General
privacy
concern

Data about
personal
profile

Data about
professional
profile

Data about
sexual and
political
identity

High concern 53.7 % 0.9 % 11.9 % 12.1 %
Mediumconcern 35.5 % 16.8 % 50.8 % 25.8 %
Low concern 10.7 % 82.3 % 37.3 % 62.1 %

Table 5.2: Privacy concern in function of data category [2].

In the moderate group, they merged two groups with a medium privacy
concern. The liberal group is composed of people with low privacy concern.

We consider in this thesis the distribution of privacy concern already
studied by Acquisti et al. to represent the privacy constraints individuals
will choose.

Data correlation

A. Acquisti and J. Grossklags have shown that the privacy concern was cor-
related to the income. This is important, since we do not simply want to
apply the privacy concern distribution blindly: since we are going to be using
the well know adult dataset [59], if we are able to find a correlation between
privacy concern and some of the attributes present in this dataset, then our
experiment will be more realistic.

Indeed, the existence of a correlation is consistent with others studies [48,
15, 13] which show that young adults are less concerned by privacy than older.
It means that in a dataset, clusters of similar records could show different
distributions over conservative, moderate and liberal groups. Figure 5.1 il-
lustrates the correlation between the age and income on the privacy concern
over a fictious dataset. In this figure we can see two different clusters. The
concerned cluster would have a distribution over conservative, moderate and
liberal groups near the general privacy concern of table 5.2 (i.e. 53.7% of con-
servatives, 35.5% of moderates and 10.7% of liberals) when the concernless
cluster would have a distribution more like the data about personal profile
(i.e. 0.9% of conservatives, 16.8% of moderates and 82.3% of liberals).

This correlation shows that even with a high majority of individuals with a
high privacy concern, there will be some clusters of records with lower overall
privacy concern in which information loss will clearly be reduced through the
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Figure 5.1: Correlation between data and privacy concern over a fictitious
dataset.

use of a ki−anonymity approach, which will lead to gains in scenario 3 for
instance.

5.4 Personalised K−Anonymity Heuristics
In this section, three heuristics that have been adapted to the problem of
personalized k−anonymity are presented. To implement heuristics for the
ki−anonymity, we choose to adapt three heuristics presented in section 3.4
which this section will highlight in more details. The first one is theMondrian
(i.e. median partitionning) algorithm proposed by K. Lefevre et al. [54, 55]
which gives a low data quality but has a high scalability because of its low
complexity O(n · log(n)). The second heuristic gives a better quality but
is much less scalable since its complexity is in O(n2 · k). This heuristic is
called the Greedy k-member clustering proposed by J. Byun et al. [14]. The
last one is a trade off between quality and scalability comparing to the two
others with a complexity in O(n2). It is called the MDAV algorithm and was
proposed by J. Domingo-Ferrer and V. Torra [21].

5.4.1 Mondrian adaptation
The idea of the Mondrian heuristic is to cut the dataset by its median on
the wider (i.e. less generalized) attribute. This is equivalent to a top-down
algorithm used with local recoding and it takes advantage of the divide-
and-conquer approach. The median can be found after the computation of a
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Income

Age

Figure 5.2: Example of partitionning by Mondrian heuristic

frequency set which highlights the values’ occurences. This frequency set also
permits to detect when a categorical attribute cannot be specialized. The
two partitions obtained are then considered as new dataset and the method
is reiterated on those partitions. The algorithm stops when the cardinality
of partitions is lesser than 2 · k (i.e. the partition cannot be cut again).
The idea of the Mondrian adaptation is to set the k value of a partition
to the maximum ki constraint of each record in the partition. By doing
so, the heuristic can produce equivalence classes of smaller size than using
the highest constraint as a security parameter. Figure 5.2 illustrates how a
dataset can be partitioned by Mondrian. It is important to note that the
algorithm has a complexity of O(n · log n). Since the Mondrian heuristic cuts
a partition in two, the highest privacy constraint of the two partitions can
be computed during the partitionning process.

5.4.2 MDAV and Greedy k−member clustering adap-
tations

The MDAV heuristics and the Greedy k−member clustering (called Greedy
k−member in the rest of the manuscript for clarity) are a bit similar. The
MDAV heuristic computes the centroid c of the dataset D and does not
necessarily belong to D. It then takes the furthest record r1 from c and the
furthest record r2 from r1. Two equivalence classes e1 and e2 are built by
taking the k− 1 nearest records from r1 (resp. r2) creating equivalence class
e1 (resp. e2). Records from the two equivalence classes are removed from the
dataset and the operation is reiterated until no records are left. If less than
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k records are remaining, the records are merged to the nearest equivalence
classes. On the other hand, the Greedy k−member does not compute the
centroid of the dataset. It takes a random records ri and builds an equivalence
class from the furthest record r1 from ri. Although they do not begin the
same way, MDAV and Greedy k−member try to create equivalence classes
beginning with the edge of the dataset. The biggest difference of MDAV and
Gredy k−member is the way they build the equivalence class after selecting
a record from the edge of the dataset. Instead of taking the k − 1 nearest
records from r1, the Greedy k−member fill the equivalence class e which r1
belongs with the records r that minimizes the following formula:

IL(e ∪ r) = |e ∪ r| · diam(e ∪ r) (5.2)

with e∪ r the equivalence class e merged with the record r. Like the MDAV
heuristic, when an equivalence class is created, records from it are removed
from the dataset and the process is reiterated. The adaptation of those
two heuristics to the ki−anonymity is pretty straightforward. While build-
ing equivalence classes, the number of records to put in those depends of
the highest privacy constraint associated to records from those equivalence
classes. This highest constraint can be kept up-to-date while building the
equivalence class e (i.e. e.k ← max(e.k, kr) when appending r to e). This
way, the complexity of the two heuristics does not increase when adapted to
ki−anonymity.

5.4.3 K−member greedy improvement
The K−member greedy selects the record r which adds the least information
loss to the equivalence class e before publishing. It consists in minimizing
the following diff value by selecting the closest record r:

diff = (|e|+ 1) · (diam(e ∪ r))− |e| · (diam(e)) (5.3)

The disavantage of this value is that it does not avoid the absorption of low
constrained records by highly constrained records. Since the heuristic does
not remove any records, the computation of the estimation of equivalence
class e information loss on the diff equation 5.3 is wrong. Since e will have
a cardinality of at least k, the equation should be:

diff = max (|e|+ 1, k) · (diam(e ∪ r))−max(|e|, k) · (diam(e)) (5.4)
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It is not inconvenient when computing k−anonymity since all equivalence
classes have the same constraint but when used on ki−anonymity, the com-
putation of the diff value should take into account the different constraints
of records:

diff = max (|e|+ 1, ke, kr) · (diam(e ∪ r))−max(|e|, ke) · (diam(e)) (5.5)

with ke the greatest constraint in e and kr the constraint of r. Using this
new equation permits to have equivalence classes fitting better to the privacy
constraints of their records.

5.5 Experimenting ki−anonymity
This section conducts a thorough experimentation of personnalized ki−anonymity,
throught the study of heuristics adapted to our new model, and a compar-
ison to their original version. Measures show the evolution of information
loss when varying some parameter. Our performance tests use the Adult
dataset [59] the same way described in section 4.6 (i.e. using six categorical
and two numerical attributes and removing records with empty values). To
determine the privacy constraints of users, we use the model of A. Acquisti
and J. Grossklags [2] with some examples reminded by table 5.2. We consid-
ered three groups with different levels of privacy constraints, conservatives
having the highest constraint kc, moderates have a medium constraint km
and liberals have the lowest constraints kl. Values for kl, km and kc were
chosen on the same scale of the INSEE (i.e. the french National Institute of
Statistics and Economic Studies) methodology. They chose 10−anonymity
and 3−diversity to protect medical data [11], a 5−anonymity for the Labour
Force Survey and a 3−anonymity for a survey about theft, violence and se-
curity [10]. Experiments where done with two different types of privacy
constraints, one with low privacy constraints (kl = 3, km = 5 and kc = 7)
and the other with high privacy constraints (kl = 5, km = 7 and kc = 10).
Note that tuples selected as conservators (resp. liberals and morderate) where
not the same when changing the privacy constraints from low to high (i.e. a
shuffle of privacy constraints and adult dataset is done at each experiment).

The first part shows the differences between original heuristics and their
adaptions to ki−anonymity. The second part exhibits the influence of the
variation on the distribution of the three groups (i.e. liberals, moderates
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and conservatives). Then, we present the influence of how much the dis-
tance on privacy constraints between conservatives, moderates and liberals
impacts information loss. After that, we show the impact of the suppression
of conservatives to achieve km anonymity and compare it with the use of
ki−anonymity instead. Finally, we experiment on the correlation of privacy
constraints and quasi-identifiers values and discuss it.

A taxonomy trees as been produced for each categorical value. The work-
class taxonomy tree is given by figure 3.10 above to explain metrics about
taxonomy trees. Only taxonomy trees about gender and race were trees of
height 1 (i.e. the generalization of these value comes with the suppression of
these).

5.5.1 Heuristics comparison with their original
Figure 5.3 shows the information loss (using DBIL metric) of k−anonymity
computed by the three different heuristics and compares it with their adap-
tation to ki−anonymity. The variable used in the x−axis is the number of
records taken. Those records were selected randomly from the aldult dataset
after the modifications specified in section 4.6. In this experiment, conser-
vatives were given a security parameter of kc = 7, moderates were given
a km = 5 and liberals a kl = 3. The distributions of the conservatives,
moderates and liberals were given by the personal profile (see table 5.2)
of the paper of A. Acquisti and J. Grossklags [2] and privacy constraints
were given randomly following this distribution. The curves labeled «Per-
sonalized» represent the information loss generated by the adaptation of the
heuristics (labeled by their name) to ki−anonymity. Original heuristics were
used by selecting the highest privacy constraint kc = 7 as security param-
eter. We discuss the curves labeled «Correlated» in section 5.5.5 dedicated
to the correlation of personal information and privacy concern. The first
obversation we can do is the efficiency of those three heuristics. The Mon-
drian algorithm is the one generating the most information loss. This is
not surprising since this algorithm is a median partitionning in O(n · log n).
On the other side, the Greedy k−Member and MDAV algorithms are pretty
close. The MDAV heuristic generates a bit more information loss than the
Greedy k−Member which also corresponds to their difference in term of com-
plexity. The information loss grows slower when increasing the number of
records used because increasing the number of records in a dataset without
modifying the domain of attributes is equivalent to increasing the density of
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Figure 5.3: Information loss of heuristics with the personal profile distribu-
tion and kl = 3, km = 5 and kc = 7
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Figure 5.4: Information loss of heuristics with the personal profile distribu-
tion and kl = 5, km = 7 and kc = 10

the dataset and therefore increasing the similarity between records and their
nearest neighbors. As we can see, personalized k−anonymity generates less
information loss than each original heuristic. Since kc−anonymity respects
all privacy constraints, by construction, ki−anonymity should not produce
more information loss for scenario 2 (i.e. users are able to reduce their con-
straint to access some services). The purple curve labeled Upgrade represents
the modification of the way information loss estimation is computed by the
Greedy k−Member algorithm presented in section 5.4.3. We can see that
this modifaction decreases a bit the information loss generated.

Figure 5.4 shares the same characteristics as figure 5.3 but with different
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security parameters. In this figure, conservatives were associated with a
security parameter kc = 10, moderates km = 7 and liberals kl = 5. By
comparing the two figures, we can see that the gain of quality is lower when
constraints increase. It is due to the fact that the probability records with
a high constraints absorb records with lower constraint increases (i.e. low
constrained records are put in high constrained equivalence classes). This
probability increases because having larger equivalence classes tends to put all
kinds of records (including those with high constraints) in those equivalence
classes. This causes a loss of the potential data quality gain of ki−anonymity
because this gain happens when equivalence classes with no conservatives are
created. It is important to note that the use of original heuristics induces
an increasing information loss because they were parameterized with the
conservors’ security parameter kc. By design, adaptations of those heuristics
to ki−anonymity cannot induce a greater information loss when comparing
to originals parameterized by kc.

The frequencies over conservatives, moderates and liberals also have an
impact on the the information loss when using ki−anonymity as we will see
in next section.

5.5.2 Impact of frequencies high/low constraint groups
Larger versions of figures presented in this section can be found in the ap-
pendix. The appendix aims to make these figures more readable.

Figure 5.5 is a 3D plot of ki−anonymity by varying the frequency of
conservatives fc on the y−axis and the frequency of liberal fl on the x−axis.
Since the frequency of moderates is computed as follows:

fm = 100− (fl + fc), (5.6)

fm is higher when near to the origin and lower otherwise (i.e. 100% at the
origin and 0% on the hypothenuse of the graph). The third dimension is
represented by color and shows the ratio of information loss generated by
k−anonymity heuristics with k = km over information loss generated by their
ki−anonymity version (i.e. DBIL(k−anonymity)/DBIL(ki−anonymity)).
The security parameter given to the conservative group is kc = 7, the moder-
ate group receives km = 5 and the liberal one kl = 3. Data for those graphs
was computed with the adaptation of the Greedy k−Member heuristics with
the improvement of its estimation of information loss shown by figure (a),
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Figure 5.5: Comparison of ki−anonymity and km−anonymity by varying fl
and fc with kl = 3, km = 5 and kc = 7 (scenario 1)
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Figure 5.6: Comparison of ki−anonymity and km−anonymity by varying fl
and fc with kl = 5, km = 7 and kc = 10 (scenario 1)
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the Mondrian heuristics shown by figure (b) and the MDAV heuristic shown
by figure (c). The white dots on the graphs represent the different distri-
butions given by the study of A. Acquisti and J. Grossklags reminded by
table 3.1. Figure 5.6 shares the same characteristics as figure 5.5 but for
kc = 10, km = 7 and kl = 5. Following the scenario 1, those figures show
from which frequencies of conservatives, moderates and liberals, information
loss would be higher with ki−anonymity than the km−anonymity. Due to
the fact that records with high privacy constraints absorb others records in
their equivalence classes, the information loss quickly decreases when their
frequency increases. In cold colors (i.e. from black to blue then purple),
the information loss is lower when computing k−anonymity with km as se-
curity parameter (and so thus not respecting users constraints) than using
ki−anonymity. In hot colors (i.e. from black to red then yellow), the informa-
tion loss is lower with ki−anonymity than the k−anonymity. In scenario 1,
the idea is to give the possibility to users to lower their privacy constraints
but also to increase them. Based on the privacy concern table 5.2, the sce-
nario 1 would reduce information loss for personal profile data but increase
information loss for others data. For data about sexual and political identity,
the information loss would be almost the same as the information loss gen-
erated by km−anonymity. This means that even if you give the possibility
to users to specify their privacy constraints, the information loss would not
increase that much for those kinds of data (i.e. sexual and political identity),
which is a positive result of this study. For other cases, even if information
loss would be worse when giving users the possibility to increase or decrease
their privacy constraints, we assume it would be an acceptable tradeoff to
offer more control to users over their data.

Figure 5.7 and the figure 5.8 share the same characteristics as the previ-
ous figures 5.5 and 5.6 but when comparing ki−anonymity to kc−anonymity
(i.e. k−anonymity with k = kc). In figure 5.7, kc = 7, km = 5 and kl = 3
while in figure 5.8, kc = 10, km = 7 and kl = 5. The figures show the im-
pact of the reduction of users’ privacy constraints on the information loss
generated by the anonymisation process. Regarding the privacy concern ta-
ble 5.2, almost every distribution would cause a decrease of information loss
when ki−anonymity is used. With the personal profile data, the informa-
tion loss with kc−anonymity would be about 1.6 times the information loss
with ki−anonymity when using the Greedy k−Member heuristics, about 1.8
times when using the Mondrian heuristic and about 1.6 times when using the
MDAV heuristic with low contraints (i.e. kc = 7, km = 5, kl = 3). We can
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Figure 5.7: Comparison of ki−anonymity and kc−anonymity by varying fl
and fc (fm = 100− (fl + fc)) with kl = 3, km = 5 and kc = 7 (scenario 2)
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Figure 5.8: Comparison of ki−anonymity and kc−anonymity by varying fl
and fc (fm = 100− (fl + fc)) with kl = 5, km = 7 and kc = 10 (scenario 2)



106 CHAPTER 5. FORMALISATION AND EXPERIMENTATION

also see that increasing the overall security parameter causes the reduction
of information loss to be lower. Thus, increasing security parameters too
much would give no advantage over computing kc−anonymity. Regarding
the scenario 2, a mobile application using advertising and statistics as busi-
ness model could reduce the quantity of advertising function of the type of
data and the frequency of users lowering their constraints.

5.5.3 Impact of the scale between high and low con-
straints

Larger versions of figures presented in this section can be found in the ap-
pendix. The appendix aims to make these figures more readable.

Figure 5.9 shows the ratio of information loss generated by kc−anonymity
over information loss generated by ki−anonymity while varying the scale
and km. The scale represents the space between privacy constraints (i.e.
kl = km − scale and kc = km + scale) and is represented by the y−axis.
On the other hand, km is represented by the x−axis. Colors indicate how
much the information loss decreases when using ki−anonymity instead of
kc−anonymity. A higher value (i.e. yellow) is better (black means almost
no improvement). The distributions of conservatives, moderates and liber-
als are set following the personal profile distribution of the privacy concern
table 5.2. The figures show that the higher the scale, the more the gain of
data quality provided by ki−anonymity is important. This is due to the fact
that conservatives are a small portion of records. When the scale is high the
difference between the information loss of equivalence classes of size kc and
equivalence classes of size km or kl is greater. Since the increase of overall
security parameters (consists in going to the right on the graph) reduces the
data quality gain, the figure shows also that the more the constraints are high
(i.e. km) the lower the difference between kc−anonymity and ki−anonymity.
This means that there is a limit were changing the scale would not affect in-
formation loss because of too high constraints. For instance, defining kl = 2,
km = 15 and kc = 28 (i.e. scale of 13) gives a greater improvement that
defining kl = 2, km = 35 and kc = 67 (i.e. scale of 33) even if the scale was
maximised in both cases.
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Figure 5.9: Comparison of ki−anonymity and kc−anonymity by varying the
scale and km on the personal profile distribution (scenario 2)
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Figure 5.10: ki−anonymity vs km−anonymity after removing conservatives,
using Greedy k−Member (scenario 3)

5.5.4 Impact of the conservatives deletion

Larger versions of figures presented in this section can be found in the ap-
pendix. The appendix aims to make these figures more readable.

Figure 5.10 illustrates the scenario 3. The two figures differ from the over-
all security parameter (i.e. (a) with low contraints, (b) with high constraints).
Results were computed using the Greedy k−Member heuristic. It shows the
ratio between the information loss generated by km−anonymity after remov-
ing conservatives over the information loss generated by ki−anonymity while
varying frequencies of conservatives and liberals. The figure shows that the
information loss is excessively high when removing conservatives. It is due
to the fact that the penalty for the deletion of a record is much higher than
the general information loss an equivalence class generates. For instance,
the deletion of a record generates an information loss of 8 (i.e. number of
attributes) while the information loss generated by records in an instance of
Mondrian ki−anonymity vary from 0 to 5.0274 (mean is equal to 1.6758).
The information loss generated by equivalence classes is negligible compared
to the information loss generated by the deletion of conservatives. Follow-
ing the scenario 3, it would always be better to use ki−anonymity than
not taking into consideration conservatives data to allow the computation of
km−anonymity. This shows that our approach is clearly positive in all cases
for this kind of scenario.
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5.5.5 Impact of the correlation between data and pri-
vacy concern

Larger versions of figures presented in this section can be found in the ap-
pendix. The appendix aims to make these figures more readable.

This section tackles the problem of ki−anonymity with privacy concern
correlated to some personal information. To experiment the correlation we
selected attributes age and education as attributes correlated to privacy con-
cern. Following distributions given by A. Acquisti and J. Grossklags, privacy
parameters where given by projecting the dataset in the 2D plan with age
as the x−axis and education as the y−axis then, the nearest records to the
origin where given a low constraint. Figure 5.11 shows the attribution of
privacy constraints in function of the distribution given by A. Acquisti and
J. Grossklags. Figure (a) shows the distribution when taking the general
privacy concern in consideration and figure (b) illustrates the attribution of
privacy constraints while using data about personal profile distribution.

Figure 5.12 illustrates the ratio between the information loss generated
when no correlations were taken into account over the information loss gener-
ated when the simulation of the correlation between privacy concern and age
and education was used (i.e. DBIL(no correlation)/DBIL(correlation)).
This ratio is represented by the colors, black means no improvement while
yellow means the highest improvement. In this figure, the conservatives were
given a constraint kc = 7, the moderates km = 5 and the liberals kl = 3.
The x−axis illustrates the frequency of liberals and y−axis illustrates the
frequency of conservatives. Since the reduction of information loss was not
of the same magnitude for the three heuristics, the color ranges used were not
the same for the different figures (a), (b) and (c). The first observation we
can make is that the Mondrian heuristic is much more impacted by the cor-
relation. It is not surprising since it tends to create larger equivalence classes
which cause equivalence classes to have better chances to get a conservative
in them when no correlation exists. However, when privacy constraints are
correlated to some attributes, age and education in our case, then the par-
titionning of those attributes will gather conservatives (resp. moderates and
liberals) together. It has the same effect on Greedy k−Member and MDAV
heuristics.

Figure 5.13 shares the same characteristics as the previous one but the
constraints are greater. The conservatives were given a constraint kc = 10,
the moderate km = 7 and the liberals kl = 5. In the six figures, we can
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Figure 5.11: Privacy concern distribution over age and education
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Figure 5.12: Comparison of ki−anonymity withoout correlation and
ki−anonymity with correletaion by varying fl and fc (fm = 100− (fl + fc))
with kl = 3, km = 5 and kc = 7
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Figure 5.13: Comparison of ki−anonymity without correlation and
ki−anonymity with correlation by varying fl and fc (fm = 100 − (fl + fc))
with kl = 5, km = 7 and kc = 10
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see that the impact of correlated privacy constraints is higher when near the
sexual and political identity distribution and fades when near the corner of
the graphs (i.e. when conservatives, moderates or liberals frequency is near
100%). It is due to the fact that when the proportion of a single group (i.e.
conservatives, moderates or liberals) is high, records of this group are already
gathered together (other are negligible).

Figure 5.14 shows box plots of the different heuristics. The leftmost box
represents the computation of k−anonymity using k = kc. The middle one
shows the information loss generated by ki−anonymity when privacy con-
straints are not correlated to age and education. Finally, the rightmost
box represents the computation of ki−anonymity with correlation. Fig-
ures (a), (b) and (c) were computed with the personal profile distribution
while figures (d), (e) and (f) were computed with the general privacy concern
distribution. Since only the Greedy k−Member heuristic adds randomness
to the construction of equivalence classes, it is the only one to have a box
when computing k−anonymity. The MDAV and Mondrian heuristics are de-
terministic and so, computing k−anonymity with no change in the dataset
always gives the same solution (i.e. same information loss). The privacy con-
straints are chosen deterministically when correlated to age and education
attributes and suffer from the same effect. Those figures are consistent with
section 5.5.2 since the general privacy concern distribution shows almost no
improvement on data quality when data are not correlated while the per-
sonal profile distribution shows a great improvement. Also the correlation of
privacy concern and data always shows improvement in term of data quality.

The previous figures 5.3 and 5.4 showing the original heuristics together
with their adaptation while varying the size of the dataset also show a curve
labeled «Correlated» which illustrates the impact of correlation on the mod-
ification of the size of the dataset. The density of a dataset impacts the
information loss generated by the computation of k−anonymity. Since the
attributes domains do not change, increasing the number of record permits
to increase the number of similar neighbours of records. This has the effect to
reduce the information loss when passing a threshold (which explains the fact
that the graph is a concave curve). This threshold is lower when dealing with
correlated constraints. This is even more visible with the Mondrian heuristic
which generates lower information loss with 30000 records than with 25000
when constraints are high.
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Figure 5.14: Box plot of the kc−anonymity and ki−anonymity with and
without correlated constraints
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Heuristics Privacy
con-
straints

General
privacy
concern

Data about
personal
profile

Data about
professional
profile

Data about
sexual and
political
identity

Mondrian Low 1.001
1.341

1.813
2.124

1.167
1.616

1.306
1.761

High 1.000
1.064

1.453
2.057

1.098
1.187

1.065
1.427

k−Member Low 1.005
1.096

1.581
1.758

1.144
1.321

1.210
1.439

High 1.001
1.064

1.385
1.505

1.093
1.239

1.112
1.302

MDAV Low 1.002
1.081

1.636
1.851

1.147
1.341

1.214
1.489

High 0.999
1.068

1.429
1.575

1.104
1.274

1.121
1.346

Table 5.3: Comparison of kc−anonymity and ki−anonymity (top left corner
without correlation and bottom right with)
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5.5.6 Recapitulation and conclusion
Table 5.3 recapitulates results of the evolution of information loss when vary-
ing the distribution of conservatives, moderates and liberals. The corner top-
left of table cells shows the ratio information loss generated by k−anonymity
with k = kc over information loss generated using ki−anonymity without cor-
relation. The corner bottom-right of table cells represents the same ratio but
with constraints correlated to age and education. The privacy constraints
part indicates if constraints were low (i.e. kc = 7, km = 5 and kl = 3) or if
they were high (i.e. kc = 10, km = 7 and kl = 5). The measures given by the
table have been made on a sample of distributions specified by A. Acquisti
and J. Grossklags and illustrated by table 5.2. As specified by section 5.5.2,
distributions of privacy concern play an important role on the information
loss generated by the ki−anonymity. Note also that when conservatives are
frequent, the information loss generated by ki−anonymity is the same as the
information loss generated by applying kc−anonymity as shown by experi-
mentations done using the general privacy concern distribution. However, as
specified by section 5.5.5, when data is correlated to privacy concern the use
of ki−anonymity always gives an improvement in term of information loss.
This effect is due to the fact that a tuple shares the same privacy constraints
with others nearby tuples. This leads the three heuristics to make equiva-
lence classes of records with the same privacy contraints leading conservators
to not absob liberals. The impact of the correlation is also higher for the sex-
ual and political identity distribution than other distributions. As specified
by the previous sections, the Mondrian heuristics is much more impacted by
the correlation of data than other methods. It is an important information
since it is the most scalable heuristic.

5.6 Synthesis
In this chapter, we proposed a new anonymisation model, called ki−anonymity,
which allows users to define their own value of k in the context of k−anonymity.
We have shown, through a detailed experimentation using the classical adult
dataset, enriched with a ki value for each record, that in most cases it is
always better to apply ki−anonymity model than k−anonymity. We believe
that this work opens an interesting venue of new heuristics and algorithms
based on this model.



Chapter 6

Optimal ki−anonymity with
constrained clustering

This chapter presents a new approach to compute optimal ki−anonymity
using constraint clustering. Even if it focuses on ki−anonymity, the approach
can also be used to compute optimal k−anonymity.

The first part presents a set of clustering approaches finishing with con-
strained clustering. Since our new approach uses constraint programming,
we remind how it works. We also present the different scenarios that our
approach aims to cover.

After that, the k−anonymity and ki−anonymity models are discussed,
with regards to a constrained clustering. Since our approach is inspired by
an existing clustering approach, we also compare both models to the model
described by this existing approach.

The different filtering algorithms are then, presented. They permit to
prune inconsistent partitionnings of the dataset to anonymise.

Since constrained programming uses a search tree to find solutions, some
strategies must be made to guide the exploration of the search tree. These
strategies are shown after the presentation of filtering algorithms.

Finally, experimentations are presented showing the limitations of our ap-
proach and which scenarios can be achieved in practice. Since our approach
shows limitations, we also give hints on how to improve it and explain dif-
ferent perspectives.

117
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6.1 Introduction
Big Data is a term designating large datasets. With the development of
processes such as Open Data or Smart-disclosure, Big Data is becoming in-
creasingly common. However in some domains, data is still rare and produced
in small quantities, often because it is expensive to produce. For instance,
in paramedical and cosmetic, all products must be tested before marketing.
These tests make medical measures on healthy volunteers with medical equip-
ment over various periods of time. Since those tests are costly, the number of
volunteers is often quite small. For example, the french project ADOpTER
(Analyse de Données issues de Tests volontaiRe1) deals with datasets varying
from dozens to hundreds of records for a given experiment.

Anonymisation methods often focus on the trade off between scalability
and data quality. All heuristics are tested on large datasets such as cen-
sus datasets (e.g. adult [59]). When dealing with small datasets, attribute
domain definitions are not necessarily smaller than with large datasets. In
most of the cases, attributes in small datasets have the same domain as
in large datasets but datasets have a much lower density. The information
loss generated by anonymisation methods is not of the same magnitude with
dense datasets than with sparse datasets. As specified in section 4.3.3, there
is a border where statisticians found no utility of generalized data even if
the anonymised dataset is not totally generalized. This case happens more
often on small datasets due to the higher impact of generalizations. The
necessity to compute an optimal solution for a k−anonymity problem is thus
higher when dealing with small datasets. Since the computation of optimal
k−anonymity is an NP-hard problem [72] algorithms computing it are consid-
ered to be unfeasible and so current research has focused on the development
of heuristic based approaches. Section 3.2.2 presents some algorithms to pro-
duce an optimal k−anonymised dataset (e.g. MinGen algorithm). However,
these algorithms do not tackle personalized k−anonymity.

This chapter tackles the problem of the computation of optimal k−anony-
mity while taking into account the different privacy constraints of differenr
individuals. The idea is to use clustering methods together with constraint
programming to provide the possibility to compute an optimal anonymised
dataset.

The chapter is structured as follows. First, Section 6.2 provides the ma-
1Meaning: data analysis from trials on healthy volunteers
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terials required to understand the chapter together with real case scenarios
dealing with small datasets. Then, Section 6.3 exposes and compares the
k−anonymity and ki−anonymity models. Section 6.4 exhibits the different
filtering algorithms used to prune invalid clusterings. Section 6.5 presents
different strategies to associate records to equivalence classes. Experimental
evaluations are presented in Section 6.6. Finally, Section 6.7 concludes.

6.2 Background and scenarios

6.2.1 Clustering

Clustering problems (e.g. in data mining) consist to group similar records
from a database into groups called clusters. Clustering techniques have been
widely used from statistics to privacy preserving techniques. Clusters can be
used to infer new information: detecting correlations between different cate-
gories of data, making document classification, etc. For example, in the study
of A. Acquisti and J. Grossklags [2], they used the k−means algorithm [62]
to classify subjects of their study into different groups (i.e. conservatives,
moderates and liberals). Those groups differ by the privacy concerns they
expressed. Various families of clustering techniques are based on different
approaches and have different objectives. The most known are presented in
this section.

Hierarchical clustering

Hierarchical clustering aims to group records which share good similarity (or
have low dissimilarity). Groups are constructed progressively in such a way
that some hierarchies are highlighted. The dissimilarity is computed with
the help of a metric that specifies the distance between two records (some
examples are presented in section 3.4). The distance is useful to compare
records with each other but linkage criteria are needed to compare clusters
with each others. For example, the single-linkage criterion (see the split
metric) compares two clusters with the lowest distance between elements of
the two clusters. To compare the distance between two clusters cA and cB,
the single linkage criterion consists to compare the nearest elements of the
two clusters using the following formula 6.1:
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dist(cA, cB) = min
i∈CA,j∈CB

(dist(i, j)) (6.1)

with dist(x, y) the distance between x and y. Conversely, the complete link-
age criterion is used to compare opposites elements in clusters (i.e. the di-
ameter metric). The following formula 6.2 shows how to compare clusters cA
and cB using this criterion:

dist(cA, cB) = max
i∈CA,j∈CB

(dist(i, j)) . (6.2)

There exist two kinds of clustering techniques, Agglomerative Nesting
methods (i.e. AGNES) which begin with any records as a one cardinality
cluster and merge similar clusters together (i.e. such as Bottom-up methods)
and Divisive Analysis methods (i.e. DIANA) which begin with all records in
a unique cluster then divide this cluster into multiple clusters (e.g. such as
Top-down methods presented in section 3.2.2). AGNES methods are good
to identify small clusters when DIANA are better to identify large clusters.

Centroid-based clustering

Centroid-based clustering is a particular family of clustering algorithms which
consists in finding a centroid which correctly represents all the records of a
cluster. The well known k−means clustering [62] is one of those centroid-
based algorithms. It takes random centroids (i.e. k centroids with k a given
parameter) and associates all records to the nearest centroid. After getting
those new clusters, it computes the new centroids of each cluster and reiter-
ates with the new centroid until convergence. New clusters’ centroids do not
necessarily appear in the dataset. The k−mean algorithm aims to minimize
the pairwise squared deviations in each clusters (see the WCSS metric in
section 3.4).

Density-based clustering

Another clustering family is density-based clustering. As the name suggests,
it consists to create clusters by maximizing the density in clusters. A good
example of density-based clustering is the DBSCAN algorithm proposed by
M. Ester et al. [24]. In statistics, records that are very distant to all others
are often considered as noise. They are called outliers and can modify the
results of clustering algorithms. Since they are distant from others, they
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also show a lower density with their neighborhood. Since density based
clustering tries to keep a minimal (if not a similar) density in each cluster,
they almost always do not take outliers into account. The creation of a
cluster by the DBSCAN algorithm works as follows: it takes any record r
from the dataset, if r has less than n neighbors in a distance d, n and d being
given as DBSCAN parameters, it is considered as an outlier. Else, a cluster
beginning by r is built. Each neighbor of the cluster is added to the cluster
if it also possesses at least n neighbors within distance d. The cluster grows
by iterating on new cluster’s neighbors and the creation of the cluster ends
when no cluster’s neighbor contains n records in a radius of d. When the
creation of the cluster is finished, DBSCAN tries to create another cluster
with the remaining records. DBSCAN stops when no other cluster can be
created.

6.2.2 Constrained clustering
Constrained clustering is a concept which allows the specification of con-
straints. Those constraints must necessarily be satisfied by the clustering
algorithm when giving a partitioning of the dataset. Constraints can be spec-
ified to give hints to the algorithm to converge quickly or to improve the qual-
ity of the solution. Since personalised k−anonymity (and also k−anonymity)
can be considered as a constrained clustering problem it is important to study
the different methods to apply constraints while optimizing a given criterion.

Related work on constraint clustering

Integrating constraints in clustering methods has been studied by many re-
searchers. For example M. Bilenko et al. proposed to add must-link con-
straints and cannot-link constraints to the k−means algorithm. They ex-
press those constraints on couples of records (x, y). The must-link constraint
consists to force x and y records to be in the same cluster. On the opposite,
the cannot-link constraint forces x and y records to be in distinct clusters.
They define a weight matrix for each constraint which represents the penalty
of a violated constraint. The penalty associated to a constraint violation
may be inconsistent with the distance between the couple of records consid-
ered by the constraint violation. To take this into consideration, they use a
learning metric which is computed to represent the distance between records
together with constraint violation penalties. A learning metric is a metric
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evolving during the algorithm (at each iteration of k−means in their work).
They apply the k−means algorithm while maintaining the learning metric in
a way to relax their criterion (i.e. WCSS criterion with constraint violation
penalties). Indeed, their method allows violation of constraints which should
not be the case of k−anonymity constraints.

Constraints may be diverse, for instance, A. K. H. Tung et al. [88] pro-
posed a way to apply clustering mechanisms on spatial data with obstacle
constraints. Using obstacle constraints is an important task when dealing
with spatial data. Most of the time those clustering methods are applied on
location data in cities which are full of buildings (i.e. obstacles). Their idea is
to build a visibility graph connecting nodes together when they are pairwise
visible (i.e. no obstacle between records represented by the nodes). Then
the distance between two records a and b is represented by the lowest sum
of distances between nodes in the path from a to b in the visibility graph.

To solve constraints, there exit a vast amount of methods. S. Gilpin and
I. Davidson have proposed to use a SAT solver to make hierarchical clustering
under constraints [37] (such as must-link or cannot-link) using AGNES meth-
ods. The idea is that AGNES hierarchical clustering merges clusters together
to find a good amount of clusters. Those merges and constraints can be seen
as Horn clauses (disjunction of literals with at most one literal not negated)
when translating a clustering problem to a SAT problem. Horn clauses are
efficiently solvable which explains why they tried to use horn clauses only. It
may be hard or impossible to translate ki−anonymity constraints (or others
partition-based constraints) into horn clauses.

T.-B.-H. Dao et al. proposed a new approach using constrained pro-
gramming to optimize clustering criteria [17]. Their approach is to model
clustering problems as Constraint Satisfaction Problems (CSPs). It exists
a number of adapted solvers to resolve CSPs (e.g. Choco2, Gecode3 to cite
some). The advantage of such a solution is that all constraints can be ex-
pressed to lead clustering algorithms to a good solution. For instance, in
their approach, T.-B.-H. Dao et al. expressed common constraints such as:

• must-link and cannot-link constraints

• minimal size of cluster: constrains clusters to have at least n elements
(for a given n)

2Choco: www.choco-solver.org
3Gecode: www.gecode.org

www.choco-solver.org
www.gecode.org
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• maximal size of cluster: constrains clusters to have at most n elements

• density constraint: constrains elements of a cluster to have at least n
neighbors in a radius of m (for given n and m)

They also use constraints to obtain the optimal optimization of their crite-
ria. T.B.H. Dao et al. showed that various constraints were easy to specify
in constraint programming, which is one of the main advantages of this ap-
proach.

Considering their work, we thought it may be a good approach to calcu-
late optimal ki−anonymity and thus, this chapter proposes an adaption of
the work of T.-B.-H. Dao et al. to achieve optimal ki−anonymity.

Constraint programming

Constraint programming is a paradigm where constraints are specified and
a solver proposes solutions which satisfy these constraints. It is a form of
declarative programming which aims to solve Constraint Satisfaction Prob-
lems.

Definition 9 (Constraint Satisfaction Problem (i.e. CSP)). A Constraint
Satisfaction Problem is a triplet (X,D,C) where

• X is a set of n variables X = {X1, . . . , Xn}.

• D is a set of n domains D = {D1, . . . , Dn} such as Xi ∈ Di.

• C is a set of constraints where each Ci applies a constraint on a subset
X ′ ⊆ X.

An instance of a CSP solution is an assignment of variables in X to a value
in their respective domain in D which satisfies all constraints in C.

There exists a variation of CSP, Constraint Optimization Problem (i.e.
COP). It consists of a CSP which has an objective function to optimize.
With a COP, the solver will find the solution which optimizes the objective
function. It is used to find optimal solutions and works as follows: when
the solver finds a solution, it computes the objective function and posts
a new constraint which asks for a better result for the objective function.
The solver then tries to find a solution which satisfies this constraint and
when it no longer can, the last solution found is the optimal one. Solvers
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use a branch-and-bound algorithm to explore different values of variables
Xi. Since branch-and-bound algorithms are of exponential complexity and
optimal clustering is an NP-Hard problem (except the optimization of single-
linkage criterion, i.e. split metric), using a simple branch-and-bound is not
feasible even for small scale examples. That is why solvers implement con-
straints in the form of propagations.

A propagation is a filtering algorithm which removes impossible values
from variables’ domain dom(Xi). It consists in pruning branches of the search
tree. For example, let us assume that constraint C consists of say X1 < X2,
the propagation would reduce the upper bound of D1 when the upper bound
of D2 is reduced. By filtering values, propagations offer the certainty that
inconsistent branches are pruned from the search tree and impossible values
are not taken into account. When a branch leads to an impossible solution,
a propagation (the one associated to the constraint not satisfied) will change
a domain Di from D to empty set, Di = ∅. When a domain is set to ∅,
a variable cannot have any value and the solver detects that the explored
branch is inconsistent. The solver then uses backtracking methods to go
back in the search tree. Since propagations are filtering algorithms, it is
possible that no inconsistent value is found. That is why the solver uses
a branch-and-bound algorithm to explore branches. The branch-and-bound
updates the domain of a variable following a given branching strategy.

A branching strategy is a description of how the solver will choose
which variable’s domain to change to continue the exploration of the search
tree. When no propagation can find a value to prune from the tested solution,
the solver needs to make a choice because the actual solution does not satisfy
the constraints. This state is a node in the search tree and is called to be
stable. First, the solver needs to select a set of variable’s domains to modify.
Then, it must select the way this set will be updated (i.e. how to partition
the domain). For instance, let a domain Di be selected for the update. It
can be updated by selecting a value to assign to the variable or to reduce
the domain in half (or any other partioning). In the first case, the number
of choices is equal to |Di| leading to |Di| successors from the node while in
the second case the number of successors is equal to the number of partitions
of the Di made. Propagations will be applied to a successor to find some
solutions and if no solution has been found, the backtracking algorithm will
go back to the stable state leaving the possibility to try to find solutions with
others successors. This process is reiterated over all stable nodes, generating
the search tree.
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Benefits from the use of constraint programming are multiple. The first
advantage is that declarative programming makes it easy to specify con-
straints. While different partition-based approaches can be combined (e.g.
combining k−anonymity and `−diversity with k 6= `), they generally can be
expressed by a constraint. For instance, the `−diversity and t−closeness give
constraints on the distribution of sensitive attributes in equivalence classes.
Using declarative programming permits to adapt many partition-based ap-
proaches letting statisticians specify the shape of the anonymisation they
want. The second advantage is that the use of declarative programming
permits the separation of the specification of constraints from the way solu-
tions are found. By doing so, it takes benefits from further improvements
of solvers and methods to propagate constraints. Our approach brings two
contributions:
• The first one is the modelisation of ki−anonymity into constraint pro-

gramming. This contribution gives the possibility to resolve ki−anony-
mity problems with different solvers taking advantage of their different
characteristics.

• The second one is the development of different propagators to ensure
ki−anonymity constraints and the development of new strategies to
define the shape of the search tree.

While common anonymisation heuristics try to get as close as possible to the
optimal k−anonymity, our approach is based on a declaration of the optimal
and lets solvers find it.

6.2.3 Scenarios
The next paragraphs present different scenarios where small datasets are
used.

INSEE scenario

The INSEE is the french National Institute of Statistics and Economic Stud-
ies. This institute collects data, analyses those and disseminates anonymised
information about the french economy and society. Some of their datasets
are manually collected making datasets of representative samples of the pop-
ulation. Those datasets can have a size of about 1500 records which can be
considered as small datasets.
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Student evaluation of teaching

In high education, it is a common practice to let students express their feed-
back about the courses they had [89]. It is an important practice for teachers
to improve their courses and the way they teach them. To get a better feed-
back, it is important to anonymise students to give them trust. Since giving
its feedback is optional, the trust students have is important to get a more
accurate feedback.

The size of that kind of dataset, can vary a lot. The study of E. C.
Kokkelenberg et al. [49] shows the impact of class size on student grades. We
can see in their study that classes size varies from 20 to 440 students. Since
most of student teaching assessments are grouped by classes, those datasets
can vary on the same order.

Social and medical studies

In social and medical studies giving a gratification to subjects is a common
practice. By doing so, it is easier to find volunteers participating to the
study. However, it may be hard to find a funding adequate to extend subjects
sample to a large group. This is why datasets in sociology contains generally
a small number of subject. For instance, the study of A. Acquisti and J.
Grossklags [2] has been made upon 119 responses on the survey they proposed
(participants were given a lump sum of 16$). Medical studies are also made
on small samples for different reasons as pointed out by B.K. Nayak [70] (e.g.
limited ressources, ethic principles). In general, sociological studies with face
interviews rarely go beyond a coupls hundred individuals.

Healthy volunteers trials

As presented in the introduction of the chapter, before medical drugs or
cosmetic products are marketed, it is important to test their efficiency on
individuals. The use of healthy volunteers is a common practice to test those
products after they were tested on animal subjects. Those tests always give
many constraints to volunteers and may make it hard to find volunteers. For
this reason, the participation to these tests is also paid, explaining the small
size of the datasets. It is important to note that the size of that kind of
dataset can also depend of the country in which the study is done.
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Models [17] k−anonymity ki−anonymity
Variables
G = [G1, . . . , Gn], Dom(Gi) = [1, cmax] 3 3 3

D (diameter), S (split), W (WCSD) 3 3 3

u (number of clusters to create) 7 3 3

I (information loss) 7 3 3

Constraints
precede(G, [1, . . . , cmax]) 3 3 3

atleast(1,G, cmin) 3 7 7

∀i ∈ [1, n], atleast(k,G, Gi) 7 3 7

∀i ∈ [1, n], atleast(ki,G, Gi) 7 7 3

Optimization Criteria
Diameter criterion: diameter(G, D, dist) 3 3 3

Split criterion: split(G, S, dist) 3 3 3

WCSD criterion: WCSD(G,W, dist) 3 3 3

DBIL criterion: DBIL(G, I, dist) 7 3 3

Table 6.1: Difference between T-B-H Dao et al. model [17], k−anonymity
model and ki−anonymity model

6.3 Models
To model k−anonymity and ki−anonymity, we were inspired by the article
of T.-B.-H. Dao et al. which presents a methods to use constrained program-
ming to optimize clustering criteria [17]. This section will first present the
adaptation of the T.-B.-H. Dao et al. model to k−anonymity, highlighting
differences then will show modifications needed to achieve ki−anonymity.
Those differences are summarized by table 6.1 alongside the model proposed
by T-B-H Dao et al. [17].

6.3.1 k−Anonymity model
The model of constrained clustering we are using consists to have a variable
for each record representing the ID of the cluster (i.e. equivalence class) the
record belongs to. Let us consider that the database is composed of n records,
G is the set of variables Gi representing the database’s tuples, |G| = n. Gi is
the variable associated to the ith record in D and the value of Gi is the ID of
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the cluster it belongs to. Let us consider the maximum number of clusters
is cmax, the domain of variables Gi is dom(Gi) = {1, . . . , cmax}. The model
uses the work of T.-B.-H. Dao et al. [17] to represent a partitioning of the
database into several clusters of minimal size greater than or equal to k. The
biggest difference with Dao’s model is the fact that the number of clusters
in k−anonymity is unknown. It is however possible to get an upper bound
cmax of the number of clusters, cmax ≤ bnk c. Even with an upper bound, the
k−anonymity problem offers a new challenge since the number of clusters
expected is much higher than data mining clustering common objective. As
specified in section 3.4, in partitioning algorithms, the DM metric aims to
build equivalence classes with low cardinalities but when others metrics are
optimized, the number of equivalence classes may not be optimized. Fig-
ure 6.1 illustrates the optimization of different metrics. Figure (b) shows the
optimization of the DM metric while figure (a) shows the optimization of
DBIL metric. Depending on the criterion to optimize, the solver may cre-
ate clusters with a higher cardinality than k which leads to lesser clusters
than the upper bound specified before. Generally, all metrics try to create
a maximum number of clusters but some exceptions such as exhibited by
the figure happen. The upper bound can be maintained during the search
of solutions. We introduce the variable u to know how many clusters can
be created. Let {existing cluster} be the set of clusters already created,
|{existing cluster}|+ u represents the maximum number of clusters. The u
variable is updated when a record i is assigned to a cluster or the domain
dom(Gi) avoids i to be put in a new cluster. While the u variable is kept
up-to-date, we can post the constraint Gi ≤ u+ |{existing cluster}| (i.e. the
new upper bound of the number of clusters). Since the branch-and-bound
will create clusters progressively the set {existing cluster} is empty at the
beginning and will contain all clusters at the end (i.e. when a solution is
found). This set is not a variable because we just need to keep knowledge
about its cardinality which is the highest value assigned to a variable in G.

To optimize the different criteria, each criterion needs a variable. So
variable D represents the diameter criterion (i.e. complete-linkage criterion)
value, variable S represents the split criterion (i.e. single-linkage criterion)
value and variable W represents the Within-Cluster Sum of Distance cri-
terion (i.e. see WCSD and WCSS metrics) value. We also propose to add
the diameter-based information loss criterion (i.e. see DBIL metric) which
is a more adapted criterion to achieve a k−anonymity partitioning while
optimizing data quality.
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Figure 6.1: Creating the most clusters may generate more information loss

Since the solver searches for every solution it does not differentiate mirror
solutions. For example, let us say that some records are associated to ci and
cj, a solution swapping ci and cj IDs would be considered as a different
solutions while it is actually the same. The precede constraint has the effect
of avoiding those mirror solutions.

The atleast constraint from Dao’s model differs from k−anonymity be-
cause in their model, the number of clusters is something defined. They pro-
posed to give a lower and upper bound on the number of clusters (cmin, cmax).
By doing so, they ensure that at least cmin clusters have a non-zero cardinality
and no records are associated to a cluster ID above cmax. Since k−anonymity
has no constraints on the number of clusters (even if a solution with more
clusters is, in general, a better solution), we removed this constraint. How-
ever, we add a cardinality constraint which ensures that all clusters possess
at least k records which is also a common constraint in clustering methods.

The model proposed by T.-B.-H. Dao et al. includes three criteria. The
diameter criterion aims to minimize the greatest diameter of clusters. This
criterion is one of the most used in clustering techniques. Since the greatest
diameter is reduced when separating the largest cluster in two, this metric
tries to create the highest number of clusters. By doing that, clusters with
high density will have more records associated than clusters with a lower
density. On the opposite, the split criterion will try to create the lowest
number of clusters. For example, let A, B and C be three clusters. The
split value will be equal to min [d(A,B), d(B,C), d(A,C)] (with d(A,B) the
lowest distance between two records from A and B), so merging the two
nearest clusters would give a better split value (i.e. a greater split value).
Since it is conflicting with the objective of k−anonymity, we also added
a constraint to create the highest number of clusters by ensuring that all
solutions will give atleast the same number of clusters than the first solution
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found (for the split criterion only). The WCSD criterion is more adapted to
k−anonymity since it tries to create a high number of clusters while keeping
the highest split (i.e. maximizing the between-cluster sum of squares [91]).
The DBIL criterion has been also added to minimize information loss. The
DBIL criterion consists to minimize the diameter-based information loss as
presented on section 3.4 reminded by equation 6.3:

DBIL(C) =
∑
c∈C
|c| · diameter(c) (6.3)

with C the set of clusters.

6.3.2 ki−Anonymity model
The ki−anonymity model has some differences with the k−anonymity model.
The biggest difference is that the maximum number of clusters is much more
complex to compute. When the k−anonymity has a general parameter which
permits to compute an upper bound with a constant time, the ki−anonymity
cannot. An upper bound can however be computed in linear time.

Theorem 10 (Upper bound of equivalence classes set cardinality). Let K
be the set of users privacy constraints for ki−anonymity, K = {k1, . . . , kn}
and let E be the set of equivalence classes,

|E| ≤
⌊
n∑
i=1

1
ki

⌋
(6.4)

The case of obtaining the highest number of equivalence classes would
be to have all records i of the dataset in an equivalence class of size ki but
as specified in the previous chapter (see section 5.3), this solution is not
necessarily the best in terms of data quality. Instead of having a fixed cmax
for Dao’s model, the ki−anonymity model uses the u variable to fit with
the fact that the number of clusters must be given in clustering techniques.
The u variable is initialised as Dom(u) =

[
0,∑n

i=1
1
ki

]
and its upper bound

will decrease when going deeper on the search tree because going deeper is
equivalent to assigning records to clusters and so decreases the number of
remaining clusters to be created.

The atleast constraint of the ki−anonymity model ensures that for any
record i in the dataset, the value Gi (i.e. the ID of the cluster containing
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i) has been associated at least ki times. This constraint ensures that any
solution found by the solver achieves ki−anonymity.

ki−anonymity shares the same criteria as the k−anonymity since the
objectives are the same.

6.4 Propagations
This section presents the propagations (i.e. filtering algorithms) being used
to delete inconsistent values from the domain’s variables which leads to the
pruning of the search tree. Those propagators are added together with prop-
agators proposed in [17]. The first propagator consists in computing the
maximum number of clusters possible to create (i.e. updating the variable u)
as explained in section 6.4.1. Section 6.4.2 presents the propagator destined
to determine the possible membership of a record to a cluster. Finally sec-
tion 6.4.3 shows the propagator which filters solutions generating too high
information loss.

6.4.1 Number of clusters propagator
The Number of clusters propagator (or nClusters) consists to use theorem 10
to update the maximum number of clusters u to be created and so the highest
ID possible to assign to records’ variable. It is illustrated by the algorithm 6.

The propagation works as follows: first it initializes to an empty set ` and
the minimum number of clusters cmin a solution can have (i.e. the number
of clusters with at least one record). In fact, cmin can be considered as a
value which is the highest cluster ID assigned in G. Due to the precede
constraint, when a cluster is created, it gets the lowest available ID (i.e. the
lowest ID which no cluster already owns in [1, cmax]). The loop, begining
at the fourth line, consists in taking all variables which cannot be used to
create a new cluster anymore since the last propagation and to put them in `.
When a variable is put in that list, it will not be used to create a new cluster
in a deeper node of the search tree (but can in other branches). The loop
beginning at the 11th line consists in updating the number of clusters that
can be created, i.e. u, and the loop at the 15th line reduces the domain of
variables in G. The maximum number of clusters is recomputed by reducing
the u from ki−anonymity constraints of records in ell. The new maximum
number of clusters (i.e. upper bound of variables in G) is bcmin + uc and
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Algorithm 6 Number of clusters propagator
1: procedure nClusters(Set of variables G, variable u, set of values K)
2: `← empty set
3: cmin ← |{created clusters}|
4: for i ∈ {i | Gi just updated} do
5: if max(Dom(Gi)) > cmin before update and
6: max(Dom(Gi)) ≤ cmin after update then
7: `.append(i)
8: end if
9: end for

10:
11: for i ∈ ` do
12: u← u− 1

ki

13: end for
14: if buc has changed then
15: for i from 1 to n do
16: dom(Gi)← {v ∈ dom(Gi) | v ≤ bcmin + uc}
17: end for
18: end if
19: end procedure
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is reported to the domain of variables. Only the upper bound of variables
domain is updated and this modification (illustrated by the 16th line) is in
constant time bigO(1). Since this bound deals with integer only and the u
variable is a float, this update does not need to be done at every propagation.
It is only done when its floor changes.

The loop from line four to nine need a mechanism to keep the upper bound
of each variable’s domain to identify whether or not, the variable cannot be
use to create a new cluster (i.e. the maximum value the variable can take
is a cluster id already assigned to another variable). The obvious methods
would consist to keep copies of variables as propagator local variables. This
method would induce a high memory consumption. Fortunately, the loop can
be replaced by advisors. An advisor, as presented by M. Z. Lagerkvist and C.
Schulte [50], is trigger applied to a variable. When the variable’s domain is
updated, the advisor will be called. Since the advisor is link to a propagator
it can be use to gather informations and prepare the propagation. Here, all
variables have their own advisor which is called when the variable’s domain is
updated. Initially, no clusters have been created leading all variables to have
their domain’s upper bound greater than the minimum number of cluster
(i.e. there is no solution with no cluster). When an advisor is called, it
checks if the upper bound of the variable’s domain is lower or equal to the
highest cluster ID. In that case, the advisor put the variable in the set ` and
is then disable. In the other case, the advisor does nothing. Disabling the
advisor make it to never be called again ensuring that conditions of the fifth
and sixth line are true when an advisor is called.

The use of advisors let the loop from the fourth line to the nineth line
to be removed from the propagator. The Number of clusters propagator
complexity is O(n).

6.4.2 Membership propagator
The Membership propagator aims to avoid records to be in a cluster with a
size lower than the record constraint. It permits the constraint ∀i ∈ [1, n],
atleast(ki,G, Gi) to be ensured. The algorithm 7 describes the Membership
propagator.

The propagator begins by initializing the size of clusters (represented by
ci) to zero. The loop of the fifth line computes the number of variables a
cluster can be associated with for all clusters. It is the highest size the cluster
can reach. This loop can be avoided by keeping up-to-date cluster sizes (as a
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Algorithm 7 Membership propagator
1: procedure Membership(Set of variables G, set of values K)
2: for i from 1 to cmax do
3: ci ← 0
4: end for
5: for i from 1 to n do
6: for j from 1 to cmax do
7: if j ∈ dom(Gi) then
8: cj ← cj + 1
9: end if

10: end for
11: end for
12:
13: for i from 1 to n do
14: for j from 1 to cmax do
15: if ki > cj then
16: dom(Gi)← {v ∈ dom(Gi) | v 6= j}
17: end if
18: end for
19: end for
20: end procedure



6.4. PROPAGATIONS 135

local variable for instance). Those sizes change when a domain’s variable is
modified (i.e. the cluster ID is removed for a domain). After maximum sizes
of clusters are known, for each records i, the propagator removes the cluster
ID from dom(Gi) if the highest size the cluster can reach is lower than the
ki−anonymity constraint ki the user wishes.

6.4.3 Diameter-based information loss propagator
The diameter-based information loss propagator consists in optimizing the
DBIL criterion. It aims to have the lowest information loss following the
DBIL metric (i.e. see section 3.4) and to prune branches generating too
much information loss.

The DBIL propagation keeps two values up-to-date. The first value is
the information loss generated by variables assigned to a cluster. This infor-
mation loss is computed by applying the DBIL equation 6.3 on clusters with
records in it. The second value is an estimation of the minimum information
loss records not assigned can generate. Two cases appear: in the first case,
the unassigned records can be used to create a new cluster with others unas-
signed records. In that case, the information loss generated by a record r is
the kthr nearest pairwise distance from r to any others unassigned records.
The equation 6.5 shows another form of the DBIL metric:

DBIL(D∗) =
∑
r∈D
·diameter(CD∗(r)) (6.5)

with CD∗(r), the cluster (i.e. equivalence class) associated to the record r in
the anonymised dataset D∗. In this equation we can see that each record
generates a computable information loss which is used to compute a weight.
The weight of a record is the lowest information loss the record can generate
when creating a cluster with it. The second case consists to merge a record
to an existing cluster. The information loss generated by this record is the
difference of information loss generated by the cluster with and without the
record (see equation 6.6):

diffDBIL(r, c) = |c ∪ r| · diameter(c ∪ r)− |c| · diameter(c) (6.6)

with diffDBIL(r, c) the difference of information loss generated between c
and c ∪ r. c ∪ r is the equivalence class with any record in c plus r. The
minimum information loss generated by an unassigned record is the lowest
value between the information loss due to the first case and the second case.
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Algorithm 8 Diameter-based information lost propagator
1: procedure DBIL(Set of variables G, variable I)
2: aIL← 0
3: uIL← 0
4: for i from 1 to cmax do
5: ci ← empty set
6: end for
7: for i ∈ {i | Gi assigned} do
8: cGi

.append(i)
9: end for

10:
11: for each ci do
12: aIL← aIL+DBIL(ci)
13: end for
14:
15: for i ∈ {i | Gi unassigned} do
16: d←∞
17: for each cj do
18: if diffDBIL(Gi, cj) + aIL > I then
19: dom(Gi)← {v ∈ dom(Gi) | v 6= j}
20: end if
21: d← min(d, diffDBIL(Gi, c))
22: end for
23: uIL← uIL+min(d, kthi nearest from {a 6= i | Ga unassigned})
24: end for
25: dom(I)← {v ∈ dom(I) | v ≥ aIL+ uIL}
26: end procedure
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The filtering algorithm 8 begins with the initialisation of aIL value, the
information loss generated by assigned variables, and uIL value, the informa-
tion loss generated by unassigned variables. Then, clusters ci are initialised as
empty set. The loop from the 7th line consists in filling clusters with records
assigned to them. The cluster cGi

corresponds to the cluster associated to
the variable Gi (or to the record i). For assigned variable Gi, we consider
that Gi is the ID of the cluster in which the variable is assigned. The loop be-
ginning at the 11th line computes the information loss generated by assigned
variables by summing information loss of each cluster even if some clusters
may not be complete (i.e. may have a cardinality lower than ki−anonymity
constraints). The last loop, at the 15th line, computes the information loss of
unassigned variables. It also prunes association between clusters and records
when it generates a too large amount of information loss. For each cluster,
the influence of unassigned records to clusters’ information loss is computed
using equation 6.6. When the addition diffDBIL(r, ci) + aIL is greater than
the maximum information loss allowed (i.e. upper bound of dom(I)), the
record r cannot be associated to the cluster ci and i is removed from the
domain dom(Gr). This pruning is done by the 19th line. The algorithm uses
a variable d to keep the lowest information loss a record can generate when
merged to a cluster. Finally, the minimum between d and the kthi nearest
distance from i to others records unassigned is kept to add it to the variable
uIL. At the end of this algorithm, we are sure that the information loss gen-
erated by all solution from this branch is no less than aIL + uIL. Pruning
the lower bound of the I variable, permits to detect inconsistent solutions,
i.e. when a visited branch generates more information loss than a previous
solution found.

6.5 Branching strategies

In this section we present the branching strategies we used to build solutions.
Section 6.5.1 shows how elements are chosen to initiate the construction of
new clusters. Section 6.5.2 indicates how the solver fills clusters with elements
when ki−anonymity constraints are not satified. Finally section 6.5.3 exhibits
how the solver switches between the two previous strategies.
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6.5.1 Clusters creation
When no propagation can be done and no solutions came out, this branching
strategy will take a record (i.e. a variable Gi) not assigned to assign it to a
cluster. The algorithm 9 reminds this branching algorithm initially proposed
by T.B.H. Dao et al. [17].

The algorithm works as follows: first, it initializes a variable v which
will be used to identify the record to assign. Then, a set of distances d is
initialized. It represents the highest distance from the record v to any clusters
(i.e. the di = max

r∈ci
(dist(v, r))). The loop at the 6th line aims to identify

which record will be selected to add it to an existing cluster or to an empty
cluster following two conditions. The first condition is to take one record
amongst records with the lowest domain cardinality (and still unassigned).
This is a well-known technique in constraint programming since it focuses on
variables which leads to fewer branches (i.e. it leads to |dom(r)| branches).
The second condition is to begin with the furthest record from all records. It
is a strategy proposed by T.F. Gonzales [40]. His idea is to take points that
are the furthest from any other points (i.e. outliers) to create new clusters.
It is also a strategy used by some k−anonymity heuristics such as MDAV or
K−Member Greddy (see section 3.2.2). This loop can be avoided by sorting
records by their totalDist (see the equation 6.7) in descending order:

totalDist(r,D) =
∑
r′∈D

dist(r, r′) (6.7)

When the variable to assign v is chosen (v is an outlier with a small domain),
the algorithm computes the distance of this record to all clusters by using
the highest distance from v to all points of the cluster. The loop at line 15
computes this distance. After that the cluster ID selected by the loop at
the 22th line (represented by the value low), is the nearest cluster to v. It
is important to note that the second condition of the if on the 23th line:
i ∈ dom(Gv) avoids any clusters whose IDs are not in the domain of variable
Gv to be selected. Finally line 27 assigns the ID value low to the variable Gv.
After that branching, when the backtracking system will come back to the
node, the value low will be removed from the domain dom(Gv) and another
cluster will be selected for v.

The maximum number of clusters given by theorem 10 is reached when
any record r is in a cluster c of cardinality |c| = kr which is obviously not
a realistic case. This branching strategy will always create new clusters



6.5. BRANCHING STRATEGIES 139

Algorithm 9 Clusters creation branching
1: procedure branchCreate(Set of variables G)
2: v ← 1
3: for i from 1 to cmax do
4: di ← 0
5: end for
6: for i ∈ {i | Gi unassigned} do
7: if |dom(Gi)| < |dom(Gv)| then
8: v ← i
9: else if ∑n

j=1 dist(i, j) >
∑n
j=1 dist(v, j) and

10: |dom(Gi)| = |dom(Gv)| then
11: v ← i
12: end if
13: end for
14:
15: for i ∈ {i | Gi assigned} do
16: if dist(i, v) > dGi

and Gi ∈ dom(Gv) then
17: dGi

← dist(i, v)
18: end if
19: end for
20:
21: low ← 1
22: for i from 1 to cmax do
23: if di < dlow and i ∈ dom(Gv) then
24: low ← i
25: end if
26: end for
27: dom(Gv)← low
28: end procedure
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even if this leads to inconsistent solutions. Since it does not take into ac-
count ki−anonymity constraints, we need another branching algorithm to fill
clusters before creating new ones. However, when no more clusters can be
created, this branching offers a good strategy to assign remaining variables
to existing clusters.

6.5.2 Filling clusters
This branching strategy aims to identify all clusters with a user constraint
not satisfied and then, to add records generating the lowest information loss
to those clusters. Algorithm 10 shows the implementation of this branch-
ing algorithm. This algorithm needs to first identify which record is in-

Algorithm 10 Filling clusters branching
1: procedure branchFill(Set of variables G, set of values K)
2: for i from 1 to cmax do
3: ci ← empty set
4: end for
5: for i ∈ {i | Giassigned} do
6: cGi

.append(i)
7: end for
8:
9: id← 1

10: for i from 1 to cmax do
11: for e ∈ ci do
12: if |ci| < ke then
13: id← i
14: end if
15: end for
16: end for
17:
18: r ← nearest({i | Gi unassigned, id ∈ Gi}, cid)
19: dom(Gr) = {id}
20: end procedure

side which cluster. The first two loops beginning respectively at the 2nd
and 5th lines fill clusters set ci with assigned variables such that ci = {j |
Gj is assigned and Gj = i}. Like the DBIL propagator 6.4.3, those loops



6.5. BRANCHING STRATEGIES 141

can be avoided if clusters are kept up-to-date during the research process.
After that loop, the algorithm searches for a cluster with a user constraint
not satisfied. The idea is to try to first complete clusters before creating new
ones. To complete a cluster, the algorithm searches for the nearest record
r of the cluster and assigns the cluster ID to the record’s variable Gr. The
research of the nearest record to the cluster only takes into account records
with the cluster ID in their domain. When the backtracking comes back to
the node, the ID will be removed from dom(Gr).

6.5.3 Switching strategies

Having multiple branching strategies makes the choice of the best strategy
to use for the solver difficult. Most of the time, a branching strategy which
cannot propose a modification of the domain of a variable will not be used
anymore. The idea of the switching strategies algorithm, illustrated by algo-
rithm 11, is to provide a way to have a malleable branching strategy priority
list.

Each braching must have a way to specify if they can propose a branching
over some variables, we will call it the possible procedure. If it cannot,
another branching strategy will be chosen. The create cluster branching can
always assign values to variables which are not assigned. On the other hand,
the possible procedure of the filling cluster branching can assign a value
to a variable only when a cluster c has a lower cardinality than the highest
privacy constraint of one of its records, i.e. |c| < max

r∈c
(kr). The case where

a cluster has a lower cardinality than its records privacy constraints and no
other variables from G can be assigned to this cluster leads to inconsistent
solutions and is highlighted by the propagators (e.g.membership propagator)
instead of the branching strategy.

The switching strategy algorithm is straightforward. It first tests if any
of the procedures from the set of branching strategy B can be applied. If no
branching can be done (i.e. a = ∅), it means that all variables are assigned
since the create cluster branching can always be done while some variables
are not assigned.
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Algorithm 11 Switching strategies
1: procedure Switching(Set of branching strategy B)
2: a← ∅
3: for b ∈ B do
4: if b is possible then
5: a← b
6: end if
7: end for
8:
9: if a = ∅ then

10: No possible branching
11: else
12: apply a
13: end if
14: end procedure

6.6 Experimental evaluation and limitations
This section presents experimental evaluations of optimization criteria on
the optimal ki−anonymity. Firstly, the experimental platform is detailed
together with the dataset used. Then, the impact of the different criteria over
the information loss (i.e. using DBIL metric) is shown. Finally the limitations
of the constraint programming approach to solve the ki−anonymity problem
is discussed.

6.6.1 Experiment settings
All the experiments were done on a computer with a CPU Intel Core i7-3770.
The CPU possesses a frequency of 3.40GHz. Together with the CPU, 16GB
of RAM were available. Implementation of the different algorithms were
made in C++ using the API of the Gecode [34] solver. The Gecode solver is
an open source toolkit destined to the development of constraint systems. In
classical branch-and-bound algorithms, the solver copies the state of variables
at each use of a branching strategy. By doing so, the backtracking system can
go back quickly to stable nodes. Due to this fact, the memory consumption
is multiplied by the height of the search tree h. This leads to a memory
consumption in O(n · h) with n the number of variables. Since the height
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Figure 6.2: Split criterion time line

of the tree can be equal to the number of variables to assign and that every
record is a variable, the memory consumption can grow quickly. Gecode
offers the possibility to reduce this consumption by not saving all stable
states. This has the effect of increasing the computing time but reduces the
memory consumption.

First, the optimal k−anonymity is a NP-hard problem [72] which shows
that it cannot be computed in polynomial time on a random instance. Branch-
and-bound algorithms are exponential which induces a high computing time
and a high memory consumption. Because of those facts, a random sample of
the adult dataset [59] was used to run experiments. The size of sample varied
depending on the criterion used. Since the dataset is small, the ki−anonymity
constraints were chosen between two and three, ∀ki, 2 ≤ ki ≤ 3. We set lib-
erals to have kl = 2 and moderates to have km = 3. We chose a distribution
of 80% of liberals and 20% of moderates which is near the distribution of
personal profile in the paper of A. Acquisti and J. Grossklags (i.e. 82.3% of
liberals, 16.8% of moderates and 0.9% of conservatives).

6.6.2 Impact of optimized criteria over information loss

This section presents the impact of the different optimization criteria over
the DBIL metric. The idea is to see how criteria are useful to find good
solutions of ki−anonymity problems.
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Impact of split function

Firstly, we will present the impact of the optimization of the split criterion
over the DBIL metric. Figure 6.2 shows an example of execution of the solver.
This figure exhibits the DBIL value alongside the split value of the different
solutions the solver has found. The x-axis is the number of the different
solutions in chronological order. For example, solution i is the ith solution
found which is better than solution i − 1 and worse than solution i + 1 in
terms of split value. This figure aims to provide a view of the evolution of
optimized criterion and of the information loss using the DBIL metric. As
we can see even if some solutions found worsen the information loss, the
optimization of the split criterion almost always improves the data utility. It
is because it aims to create equivalence classes distant from each other which
is also a charasteristic targeted by the DBIL metric. Since the split criterion
tries to create the lowest number of clusters, we have put a constraint on the
minimum number of clusters to create. This leads some solutions to create
clusters that can be divided into more clusters to reduce the information loss.

Impact of the diameter function

Secondly, we ran experiments on the optimization of the diameter criterion.
Like the split criterion, figure 6.3 shows an instance of execution of the solver
using the diameter optimization criterion. This figure shows that when the
diameter criterion is improved, the information loss is almost always reduced.
However, it happens that the information loss increases while the diameter
criterion decreases. The optimal solution regarding the diameter criterion
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gives an improvement of the information loss. The information loss of the
first solution was improved by the optimization of the diameter criterion.

Impact of the WCSD function

The WCSD criterion (i.e. generalization of WCSS) is a common criterion
in clustering approaches. Figure 6.4 shows the time line of an instance of
execution of the algorithm while optimizing the WCSD criterion. We can
see that the WCSD criterion is close to the DBIL criterion. It is important
to note that computing the ki−anonymity using the WCSD criterion take
more time than computing it using the DBIL criterion but WCSD is also a
more studied criterion since the WCSS criterion is used by the most studied
clustering algorithm i.e. the k−means algorithm.

Computation of optimal ki−anonymity

Finally, we present the result obtained with our new criterion, the DBIL
criterion. Figure 6.5 shows the time line of the DBIL criterion. Contrary
to other criteria, the DBIL curves is alone on the figure because it is the
measure of information loss we use.

Figure 6.6 shows how the optimization of the different criteria improves
data utility. The boxes were obtained by computing the ratio of the infor-
mation loss generated by the first solution found by the solver over the infor-
mation loss of the optimal solution regarding the criterion. It is important
to note that the first solution is an heuristic giving about the same solutions
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of the K−Member Greedy heuristic. We can see that the use of each of the
four criteria gave almost always better solutions. The split criterion is the
least efficient. It is due to the fact that the number of clusters created is
fixed. Separating big clusters into smaller may improve the solutions given
when optimizing the split criterion. On the other hand, the diameter crite-
rion can be used to find better solutions than the split criterion. Since it is
the criterion offering the best scalability characteristic over the four criteria,
it can be used to compute an anonymised dataset when the optimization of
the DBIL criterion cannot. The WCSD criterion gives solutions which are
almost optimal regarding the DBIL criterion. Since this criterion is similar
to the WCSS criterion used by many clustering algorithms (e.g. k−means),
using those algorithms may give good solutions. Finally the DBIL box shows
that the computation of optimal ki−anonymity can improve the data qual-
ity much more than using heuristics. The information loss generated by
k−member heuristic is generally between 1.3 and 1.4 times the information
loss of an optimal solution.

6.6.3 Limitations discussion
While all optimization criteria decrease the information loss, some criteria
are more scalable than others. For instance, the diameter criterion can deal
with the most records. Our approach can optimize the diameter criterion for
a dataset composed of about forty records. On the other hand, the number
of records others criteria can deal with does not exceed thirty records. Nev-
ertheless, split criterion could deal with more records than DBIL and WCSD
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criteria. This last one could deal with the lowest of records. It is important to
note that in the model proposed by T.B.H. Dao et al. [17], the optimization of
the diameter criterion could be used for 5000 records datasets while the split
criterion could deal with 2000 records datasets. In their model using WCSD
criterion did not permit the computation on larger than a 150 records dataset.
The efficiency of their solution was reduced when increasing the number of
clusters to create but was more affected by the constraint of cluster cardinal-
ity lower bound due to the lack of global constraints as explained in the next
paragraph. While we do not hope to reach the same size of datasets with
our approach, we may reach larger datasets if some improvement are done.
Optimal ki−anonymity can be obtained by almost all scenarios presented
in section 6.2.3. However, optimal ki−anonymity cannot be reached with a
small dataset of the INSEE (1500 records). However, it is possible to apply
pre-clustering on the dataset (i.e. reducing the number of clusters to create).
Then apply our clustering methods on clusters created by the pre-clustering.
Pre-clustering methods are a common practice also used by algorithms such
as the COD-CLARANS[88] or BIRCH [99] algorithms. These methods may
be used to handle the INSEE dataset to find an anonymisation which will be
locally optimal. The social studies scenario is much closer to accomodate the
limitations of our approach. In this scenario, a pre-clustering computation
would have a lower impact than with a dataset from the INSEE (i.e. which
may need multiple pre-clustering). However, datasets from student/teaching
evaluations and from healthy volunteers trials would fit perfectly with the
computation of optimal ki−anonymity.

One reason of the limits of our approach is the lack of global constraints.
In constraint programming, some constraints may enter in conflict which im-
pacts the different propagations applied by the solver. A global constraint
aims to capture simultaneously multiple constraints. The use of global con-
straints can help models to find solutions quickly [9]. To show the advantage
of global constraint let us instantiate a CSP as example:

• Variables: X = {x1, x2, x3}

• Domains: D = {D1, D2, D3} such that D1 = D2 = D3 and |Di| = 2
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• Constraints: C = {C1, C2, C3} such that:

C1 =x1 6= x2

C2 =x2 6= x3

C3 =x1 6= x3

This CSP cannot be solved by the propagation of the constraints C1, C2 and
C3 separately. It is pretty obvious that this CSP has no solution. However,
the solver would need to use its backtracking system to find that no solution
exists for this CSP. In contrast, the AllDifference constraint that takes a
list of variables and ensures that all those variables are not equal can exhibit
that inconsistency. The AllDifference is called a global constraint because
it ensures multiple constraints simultaneously. Many other global constraints
exist to improve constraint programming methods. For example, C. Bessiere
et al. [12] have built a global constraint which ensures the Precede constraint
together with the AllDifference constraint. Another example is the use of
constraint programming to extract frequent patterns in data mining. In
their paper, N. Lazaar et al. [52] uses a global constraint to ensure multiple
properties. They show that their global constraint prunes a large amount of
inconsistent values in the domain of variables.

6.7 Conclusion
The anonymisation of small datasets is way far from being satisfactory. Most
anonymisation approaches deal with large datasets tackling only the Big Data
problem. The reality is that many use cases do not provide datasets with
sufficient data to be classify as Big Data. Those datasets can vary from
dozens to thousands of records. The computation of optimal ki−anonymity
being possible with those sizes, this chapter proposes an approach to pro-
duce an optimal anonymised dataset while adding user empowerment. This
approach makes use of the constrained programming paradigm which offers
many perspectives. The first one is that it can use the technological advances
of solvers resolving CSPs. Those solvers are often used in artificial intelli-
gence, a domain which is in broad expansion currently. A second perspective
is that the different constraints proposed by partition-based methods can be
easily expressed with constrained programming. A third one is that disclo-
sure risk metrics presented by section 3.4.3 can be expressed as constraints to



6.7. CONCLUSION 149

let the solver find solutions with a low disclosure risk. As privacy is a general
concern nowadays, and anonymisation must be done by non-specialists, we
believe that a declarative approach is preferable.

Unfortunately, our approach suffers from its lack of scalability making it
unefficient on too large datasets. As specified in section 6.6.3, one of the
reasons of those limits is the lack of global constraints which is an important
improvement in constraint programming. Another reason may also be the
estimation of the information loss made by the DBIL propagator presented
by section 6.4.3. This estimation is distorted by the fact that it computes
an optimal information for each record (which cannot be reached) instead of
estimating a global optimal information loss.
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Chapter 7

Conclusion (Version Française)

Alors que le nombre de données collectées augmente de jours en jours, les
utilisateurs souhaitent reprendre le contrôle sur leur données afin d’améliorer
la protection de leur vie privée. Chaque individu devrait être capable de
partager ses informations personnelles comme bon lui semble plutôt qu’elles
ne soient partagées contre son gré. Ce manuscrit vise à fournir plus de con-
trôle aux individus sur la façon dont leurs données personnelles sont utilisées.
Plus particulièrement, ce manuscrit traite des aspects de personnalisation des
protections utilisées pour préserver la vie privée des individus. Ainsi, chaque
utilisateur peut exprimer sa propre vision du risque et en déduire le niveau
de protection qu’il souhaite.

Ce chapitre offre un bilan des différentes contributions proposées dans ce
manuscrit, leurs limitations et les perspectives de recherche qu’elles entraî-
nent.

7.1 Contributions
Cette thèse a présenté un nouveau concept d’anonymisation permettant aux
individus d’exprimer à quel point leurs données doivent être anonymisées. Ce
nouveau concept, appelé ki−anonymat, a été étudié sur différents scénarios.
Ce concept est inspiré du k−anonymat. Plutôt que d’utiliser des méthodes
telles que la confidentialité différentielle dont la compréhension est hors de
portée pour des individus lambdas, nous avons choisi le k−anonymat pour
sa simplicité. De plus, il est un des rares concepts à ne pas limiter les calculs
effectuables sur des données anonymisées (e.g. la confidentialité différentielle

151



152 CHAPTER 7. CONCLUSION (VERSION FRANÇAISE)

s’applique pour un ensemble d’opérations prédéfinies).
Dans un premier temps, le chapitre 4 repose sur la proposition d’une

architecture décentralisée (appelé l’architecture Trusted Cells) avec laque-
lle un enquêteur peut interagir. Cette interaction lui permet d’agréger les
données stockées dans cette architecture. Cette architecture se compose de
deux parties: les Trusted Data Server (TDS ou Serveur de données de confi-
ance) possédés par chaque utilisateur et une Supporting Server Infrastructure
(SSI ou Infrastructure de serveur de soutien) en laquelle les utilisateurs n’ont
pas confiance (on la considère comme honnête-mais-curieuse). Les utilisa-
teurs ont confiance envers les TDS et leurs données personnelles sont stockées
dedans. Cela leur permet d’y avoir accès et d’obtenir plus de contrôle sur
celles-ci.

Les utilisateurs peuvent soumettre des contraintes d’anonymat à leur
TDS. Lorsqu’un enquêteur envoie un requête, il y incorpore des garanties
d’anonymat. Les utilisateurs participent à la requête en fournissant leurs
données seulement si ces garanties sont plus hautes que leurs contraintes. Le
protocole élaboré dans cette thèse et, nommé kiSQL/AA, permet à la SSI
et aux TDS de s’entraider afin de calculer les requêtes tout en empêchant la
SSI d’inférer des informations personnelles des utilisateurs. De plus ce proto-
cole assure que les garanties données par l’enquêteur sont bien satisfaites et
que seuls les utilisateurs ayant des contraintes plus basses que ces garanties,
participent à la requête.

Le protocole kiSQL/AA se divise en trois phases : la phase de collecte où
les utilisateurs décident de participer ou non en fonction de leurs contraintes
et des garanties associées à la requête ; la phase d’agrégation qui calcule le
résultat de la requête sans que la SSI puisse inférer des informations per-
sonnelles des utilisateurs ; la phase de filtrage qui finalise le résultat de la
requête avant son envoi à l’enquêteur assurant entre autre que les garanties
sont satisfaites. Le protocole kiSQL/AA est inspiré du protocole SQL/AA
proposé par Q.-C. To et al. [85].

La phase d’agrégation du protocole SQL/AA possédant une limite sur la
taille des données possible à traiter, le chapitre 4 propose deux algorithmes
permettant d’outrepasser cette limite. Ces deux algorithmes, le swap-merge
et le network-merge permettent d’agréger deux ensembles de données pour
n’en former plus qu’un. Le swap-merge consiste à utiliser la flash des TDS
pour stocker les données lorsqu’elles ne rentrent pas en RAM. En contrepar-
tie, il augmente la charge de travail du TDS. Le network-merge consiste à
diviser les deux ensembles de données de façon à réduire la charge de tra-
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vail des TDS. Il augmente, cependant, le nombre de transferts de données.
Ces deux algorithmes permettent aussi de contrôler le temps d’utilisation des
TDS et ne sont donc pas limités par le manque de disponibilité des TDS.

Le chapitre 4 propose aussi un processus de généralisation des données
afin qu’un enquêteur obtienne plus de réponses à sa requête. L’enquêteur
peut proposer d’augmenter les garanties d’anonymat lorsque les utilisateurs
fournissent des données moins précises. Cela permet aux utilisateurs avec de
fortes contraintes de participer à la requête avec des données moins précises.

Les expérimentations faites en fin du chapitre montrent que le protocole
kiSQL/AA est tout à fait capable de traiter de larges jeux de données. Il a
été testé sur la table adult composée de 30162 n-uplets.

Alors que le chapitre 4 propose un protocole pour évaluer des requêtes
dynamiques d’agrégation des données tout en respectant les contraintes des
individus, le chapitre 5 propose d’anonymiser un jeu de données en vue de
le publier. Ce chapitre présente des adaptations de trois heuristiques au
ki−anonymat. Les heuristiques étaient à l’origine conçues pour le k−anonymat.
Ces heuristiques ont différentes caractéristiques. La première, Mondrian, est
capable de traiter de plus larges jeux de données mais génère plus de perte
d’information. La deuxième, Greedy k−Member, est moins extensible (scal-
able) mais génère aussi moins de perte d’information. La troisième, MDAV,
présente une solution intermédiaire.

Ce chapitre étudie l’anonymisation de données sous contraintes personnal-
isées en fonction de trois scénarios. Le premier consiste à proposer aux utilisa-
teurs d’augmenter ou de réduire leurs contraintes d’anonymat. Le deuxième
scénario permet aux utilisateurs de réduire leurs contraintes d’anonymat afin
d’obtenir des services. Enfin, dans le troisième scénario, un responsable de
traitement collecte des données en assurant un degré d’anonymisation fixe.
Les personnes souhaitant de plus hautes garanties, ne participent pas (i.e.
leurs données sont considérées comme supprimées).

Dans le premier scénario, le chapitre montre que dans la plupart des
cas relevés par A. Acquisti et J. Grossklags, la perte d’information est plus
importante lorsque l’on utilise le ki−anonymat plutôt que le k−anonymat
en prenant le k des modérés. Cependant, il est important de noter que dans
ce scénario, l’utilisation du k−anonymat ne respecterait pas la volonté de
nombreux utilisateurs. Il y a tout de même certains cas, tels que des études
sur le profil personnel des utilisateurs, où il est possible de satisfaire tous les
individus tout en réduisant la perte d’information.

À l’aide de ces expérimentations, le chapitre 5 montre aussi que dans le
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cadre du deuxième scénario, utiliser du ki−anonymat au lieu d’utiliser du
k−anonymat permet d’obtenir des données anonymes plus précises. Cepen-
dant, lorsqu’un grand nombre d’individus choisissent des contraintes d’anonymat
élevées, l’utilisation ki−anonymat permet un gain de précision moindre.

Dans le troisième scénario, le ki−anonymat induit toujours un gain de
précision des données. La suppression de données ayant un impact important
sur la qualité des données, il n’est jamais rentable de supprimer des données
associées à de trop fortes contraintes.

Le chapitre 5 étudie aussi l’effet de la corrélation entre le choix des con-
traintes des individus et leur vécu. Il propose une façon de la simuler et
montre, dans le cadre du deuxième scénario, que cette corrélation induit tou-
jours une réduction de la perte d’information (même lorsque les individus
avec de fortes contraintes d’anonymat sont nombreux).

Enfin, le chapitre 6 propose une toute nouvelle approche pour calculer
une solution ki−anonyme optimale à l’aide de la programmation par con-
trainte. Pour utiliser la programmation par contrainte, le chapitre définit
tout d’abord le modèle du k−anonymat et du ki−anonymat. Ces modèles
sont nécessaires pour pouvoir représenter le problème sous forme de variables
et de contraintes.

De plus, ce chapitre propose des algorithmes de filtrage et des straté-
gies de recherche afin de trouver la solution optimale en terme de perte
d’information. Ces algorithmes de filtrage permettent de compter le nombre
de classes d’équivalence optimal (nommé nClusters), d’assurer que chaque
contrainte d’anonymat est respectée (nommé Membership) et d’optimiser la
métrique DBIL. Il présente aussi un nouveau système (nommé Switching
strategies) permettant de sélectionner la meilleure stratégie à appliquer et
une stratégie permettant de remplir les classes d’équivalences ne satisfaisant
pas les contraintes d’anonymat par des n-uplets les composant.

Ce chapitre étant basé sur le travail de T.B.H. Dao et al. [17], il propose
aussi d’utiliser les critères d’optimisation définis dans leur travail. Le pre-
mier critère d’optimisation, le diamètre, consiste à minimiser le plus grand
diamètre parmi les classes d’équivalences. Une autre métrique, le split, con-
siste à maximiser l’espace entre les classes d’équivalences (i.e. maximiser la
plus petite distance entre des éléments de deux classes d’équivalence dis-
tinct). Le troisième critère d’optimisation, la somme des distances intra-
cluster (within-cluster sum of distances ou WCSD), consiste à minimiser la
somme des distances entre les points d’une même classe d’équivalence. Ces
critères peuvent être utilisés par un statisticien pour obtenir des solutions
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optimales s’il estime qu’ils mesurent mieux la perte d’information.
À l’aide des expérimentations menées, ce chapitre montre que ces critères

peuvent aussi être utilisés pour réduire la valeur de la métrique DBIL. Par
exemple, l’optimisation du critère WCSD donne des résultats proches de
l’optimisation de la métrique DBIL. Ce critère d’optimisation est, néan-
moins, moins extensible (scalable) que le critère DBIL (i.e. les jeux de don-
nées sur lesquels il est applicable sont plus petits). Le diamètre est le critère
le plus extensible et donne des solutions générant peu de perte d’information
(i.e. moins que des heuristiques).

7.2 Limitations
Nos contributions ont, cependant, des limitations qui sont détaillées dans
cette section. La section 7.3 propose des intuitions et perspectives de recherche
pour pallier ces limitations.

Le protocole kiSQL/AA possède des limitations. Les méthodes d’anonymi-
sation supervisés sont habituellement utilisées avec des outils guidant le su-
perviseur en lui permettant, par exemple, d’identifier les données isolées (i.e.
ne ressemblant à aucune autre). De plus, le superviseur est souvent capable
de calculer des statistiques avant et après anonymisation. Il peut ainsi choisir
de modifier certaines données anonymisées pour qu’elles soient plus en accord
avec la réalité. Dans le protocole proposé dans ce manuscrit, l’enquêteur ne
possède aucun outil pour l’aider à choisir les garanties d’anonymat. Cela
peut mener un enquêteur à mal estimer les garanties d’une requête. Si ces
garanties sont trop basses, il se peut que personne ne réponde à sa requête
alors qu’avec des garanties plus élevées, les contraintes des utilisateurs au-
raient étaient satisfaites. Au contraire, si les garanties d’anonymat fournies
par l’enquêteur sont trop élevées, tous les utilisateurs participeront à la re-
quête mais ces garanties ne pourront pas être satisfaites en phase de filtrage ce
qui amènera l’enquêteur à ne recevoir qu’une partie des agrégations. Cette
limitation est assez importante mais peut être contournée par l’utilisation
d’algorithmes d’anonymisation non supervisés.

Une autre limitation du protocole kiSQL/AA est le fait que les généralisa-
tions proposées par les requêtes soient linéaire. C’est à dire, tous les n-uplets
sont généralisés de la même façon. Alors que cela peut être vu comme du
recodage global (global recoding), il ne propose pas de recodages locaux (lo-
cal recoding). Pour permettre aux utilisateurs de faire du recodage local,
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il est nécessaire que les généralisations soient proposées sous la forme d’un
treillis plutôt que linéairement. Dans le cadre de requêtes de type GroupBy,
utiliser un treillis augmenterait le nombre groupes compliquant alors les tâche
d’agrégation et de filtrage (i.e. le résultat de la phase d’agrégation serait plus
volumineux).

L’architecture des Trusted Cells possède elle-même des limitations. Un
adversaire malicieux qui prendrait le contrôle complet d’un TDS aurait la
possibilité de déchiffrer les messages échangés par les TDS. Il découvrirait
alors les données personnelles des utilisateurs. Une telle attaque serait com-
plexe à effectuer dû au fait que les TDS sont sécurisés matériellement et donc,
elle en serait tout aussi coûteuse. Cependant, une telle attaque engendrerait
un haut bénéfice. Cette limitation est peu importante puisque l’impact de
cette attaque peut être réduit en faisant des groupes de TDS avec la même
clé secrète au sein d’un groupe mais des clés secrètes différentes entre les
groupes (plutôt que tous avec la même clé). Dans ce cas là, un TDS pourrait
seulement effectuer des calculs sur les données des individus de son groupe.
Cela réduirait le nombre de TDS disponibles en phase d’agrégation (i.e. la
SSI peut piocher dans un groupe plus petit de TDS pour effectuer les calculs).

Les algorithmes swap-merge et network-merge ont aussi des limitations.
Le swap-merge est limité par la quantité de mémoire flash que les TDS pos-
sèdent. Bien que cette quantité puisse être grande, elle reste limitée. De
plus, les accès I/O à cet flash étant coûteux et les TDS peu disponibles, le
swap-merge ne peut pas être utilisé seul. Le network-merge permet de pallier
au manque de disponibilité et mémoire RAM des TDS. Cependant, il aug-
mente le nombre de communications réseaux. Ces communications peuvent
être coûteuses et, augmentent le temps de la phase d’agrégation. Toutefois,
la latence d’une requête n’est pas un critère bloquant, la collecte s’étalant
elle-même potentiellement sur plusieurs jours. Le temps de mobilisation d’un
TDS est par contre un critère plus contraignant car il pénalise l’individu con-
tribuant au calcul. La limitation du network-merge prend de l’importance
si on considère que les TDS sont tout le temps disponibles et que la latence
des requêtes doit être réduite. Par exemple, dans le cas où les TDS sont
associés au compteur intelligent Linky, ils sont rarement indisponibles. Dans
ce cas, le swap-merge devient plus accessible, réduisant alors le nombre de
communications. Ces deux algorithmes pallient mutuellement la limitation
de l’autre, rendant leur limitation peut importante.

Le concept ki−anonymat, présenté dans ce manuscrit, est limité par le
nombre de conservateurs (i.e. les individus indiquant de hautes contraintes
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d’anonymat). Comme l’indique le chapitre 5, lorsque les données ne sont pas
corrélées avec les caractéristiques des individus (e.g. âge, niveau d’étude),
les conservateurs ont tendance à absorber les libéraux (i.e. les individus
avec de faibles contraintes) et les modérés (i.e. ceux avec des contraintes
moyennes). Ceci est dû en partie au fait que les heuristiques présentées dans
ce chapitre n’essaient pas de rassembler les conservateurs entre eux. Cela
réduit les potentiels gains de qualité des données induits par l’utilisation du
ki−anonymat. Il est nécessaire d’avoir une métrique évaluant la différence de
perte d’information entre l’ajout d’un conservateur à une classe d’équivalence
ou son exclusion. Cette métrique servirait alors à guider les heuristiques dans
la sélection des membres d’une même classe d’équivalence.

Les études présentées dans la section 3.1 montrent que les contraintes
d’anonymat des individus sont corrélées à leurs caractéristiques. Dans le
chapitre 5, nous simulons cette corrélation de façon stricte. C’est à dire que
nous regroupons les individus en trois ensembles distincts et considérons que
100% des individus d’un ensemble sont soit libéraux, soit modérés, soit con-
servateurs. Par exemple, lorsque ce chapitre utilise la distribution general pri-
vacy concern aucun individu de moins de 36 ans et n’ayant pas fait d’études
supérieures (i.e. 12th grade) ne demande de garanties d’anonymat élevées.
Cette corrélation stricte n’illustre probablement pas fidèlement la réalité. De
plus, les contraintes d’anonymat n’ont pas été choisies en fonction d’autres
corrélations existantes telles que la corrélation avec la nationalité d’un indi-
vidu ou sa confiance envers le responsable de traitement. Cette limitation
est importante puisqu’elle empêche d’évaluer correctement l’impact de la per-
sonnalisation des protections des individus. Une intuition pour pallier cette
limitation est discutée dans la partie «Génération de jeux de données» de la
section 7.3.

Enfin, la nouvelle approche basée sur la programmation par contraintes
possède aussi des limites. La première limitation de cette approche est
présentée par la section 6.6.3 et est le manque d’adaptabilité aux jeux de don-
nées plus larges. La taille des jeux de données traitables par cette approche
reste faible, limitant son impact pratique à des cas particuliers. Un travail
de recherche est donc nécessaire pour augmenter la taille des jeux de données
exploitables. Des intuitions sont données par la partie «ki−anonymat et pro-
grammation par contraintes» de la section 7.3 pour améliorer cette approche.

Le modèle choisi par l’approche utilisant la programmation par con-
traintes, utilise un grand nombre de variables et de contraintes causant un
coup important en mémoire. Ce coût est amplifié par la hauteur de l’arbre
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de recherche parcouru par le solveur. Il devient alors, nécessaire de ne sauve-
garder qu’un certains nombre d’états stables, nous obligeant à recalculer
les états stables non sauvegardés. Cette limitation reste cependant peu im-
portante puisque bon nombre de solveurs proposent de recalculer efficace-
ment les états stables en sauvegardant uniquement les choix des stratégies
de recherche. Ainsi, ces solveurs réappliquent ces choix et puis appliquent
les propagations (i.e. les propagations ne sont pas appliquées après chaque
choix).

7.3 Perspectives
Proposer des solutions de user empowerment est de nos jours un moyen de
mieux protéger les individus tout en obtenant leur confiance. Comme nous
l’avons vu dans ce manuscrit, un moyen de contribuer au concept de user
empowerment est de fournir la possibilité aux utilisateurs de personnaliser
leur protection. Le ki−anonymat est un concept permettant d’appliquer
le k−anonymat tout en proposant aux individus de spécifier le k qui leur
est attribué. Les travaux sur le ki−anonymat, présentés dans cette thèse,
ouvrent la voie à un certain nombre de recherches futures. Nous détaillons
ici ces différentes perspectives.

Personnalisation de concepts d’anonymisation. La principale per-
spective de recherche induite par ce manuscrit est la personnalisation d’autres
concepts d’anonymisation. Les concepts basés sur le partitionnement (e.g.
`−diversité, t−proximité, . . . ) anonymisent tous les individus uniformément.
Le k−anonymat ayant des faiblesses, il est nécessaire d’avoir d’autres con-
cepts d’anonymisation personnalisable afin d’améliorer l’anonymisation per-
sonnalisée.

Trusted Cells et ki−anonymat non supervisé. Le protocole kiSQL/AA
offre un moyen aux individus de personnaliser leurs protections en utilisant
le ki−anonymat et la `−diversité personnalisée. Le protocole adopte une
approche supervisée et dédiée aux requêtes d’agrégation. Une des perspec-
tives possibles serait de proposer une approche non supervisée permettant
de produire un jeu de données anonymisé. Dans leur article [3], T. Allard
et al. proposent une approche non supervisée pour rendre un jeu de don-
nées k−anonyme. Leur approche consiste à laisser la SSI créer les classes
d’équivalence sans accéder aux informations sensibles. En combinant leur
approche avec les heuristiques présentées par le chapitre 5, il est possible
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de générer un jeu de données ki−anonyme. Cette approche permet néan-
moins à la SSI d’inférer les quasi-identifiants des individus. Une perspective
serait de proposer un protocole permettant aux TDS de créer ces classes
d’équivalence sans que la SSI puisse inférer des informations personnelles et
tout en garantissant les contraintes des individus.

Trusted Cells et confidentialité différentielle personnalisée. L’utilisation
de la confidentialité différentielle consomme le privacy budget (le budget de
respect de la vie privée). Les TDS sont un bon moyen de garder une vue sur
la consommation du privacy budget de chaque utilisateur. Deux perspectives
s’offrent à nous :

• proposer un mécanisme assurant la confidentialité différentielle en phase
de collection. Le bruit ajouté sur les données d’un utilisateur par ce
mécanisme se superposerait avec le bruit ajouté sur les données des
autres utilisateurs. Il est alors nécessaire d’avoir un mécanisme qui
se superpose bien avec lui même. Ú. Erlingsson et al. ont proposé
le protocole RAPPOR [23] permettant d’assurer la confidentialité dif-
férentielle des utilisateurs lorsqu’ils partagent des informations avec un
enquêteur. Cette confidentialité différentielle est assurée du côté de
l’utilisateur lors de la phase de collecte. Dans leur travail, Ú. Erlings-
son et al. utilisent des filtres de Bloom. Un utilisateur retranscrit son
information dans un filtre de Bloom qu’il bruite. L’enquêteur reçoit un
certain nombre de filtres de Bloom bruités, ce qui lui permet de calculer
des agrégations sur cette information. L’avantage de cette solution est
qu’elle permet aux utilisateurs d’ajouter le bruit qu’ils désirent sans im-
pacter les données des autres utilisateurs. Cependant, elle n’a jamais
été testée avec des contraintes personnalisées.

• proposer un protocole permettant l’utilisation d’un mécanisme assur-
ant la confidentialité différentielle en phase de filtrage. Pour cela, il
est nécessaire que les TDS attachent le ε choisi par les utilisateurs à
leurs données. Ainsi, le TDS effectuant les calculs en phase de filtrage
pourrait appliquer un bruit satisfaisant les contraintes de tous les util-
isateurs.

Génération de jeux de données. Comme nous l’avons vu dans les
limitations, la façon dont la corrélation entre les contraintes d’anonymisation
et les informations personnelles des individus a été simulée, peut être éloignée
de la réalité. Générer un jeu de données de contrainte d’anonymat est quelque
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chose de compliqué qui nécessite non seulement des études sociales mais aussi
un moyen de générer des contraintes cohérentes avec les résultats de ces
études. Une perspective possible est alors de proposer un framework (Boîte
à outils) pour générer des jeux de données avec des contraintes personnalisées.

ki−anonymat et programmation par contraintes. La section 6.6.3
a présenté le concept de contraintes globales en programmation par con-
traintes. Ce concept permet de spécifier plusieurs contraintes en une seule.
Plutôt que de garantir chaque contrainte avec des algorithmes de filtrage
individuels, fournir un algorithme qui garantit un ensemble de contraintes
permet d’une part, de réduire le temps de calcul et d’autre part de prendre
en compte les contradictions entre les objectifs des contraintes. Par exemple,
la contrainte exprimant l’optimisation du critère diamètre ne prend pas en
compte les contraintes d’anonymat et vise à créer des classes d’équivalences
ne satisfaisant pas ces contraintes. L’élaboration de contraintes globales est
source de nombreuses recherches dans le domaine de l’intelligence artificielle.
Actuellement, le diamètre minimum pris en compte par la contrainte diamètre
est la plus petite distance entre deux points. Pour qu’elle prennent en compte
les contraintes d’anonymat des individus, il faudrait qu’elle considère la plus
petite distance entre un individu i et le kème

i individu le plus proche.



Chapter 8

Conclusion (English Version)

While the amount of collected data increases days to days, users wish to get
back the control over their data and improve their privacy. Individuals should
be able to share their personal data as they wish rather than being shared
against their will. This manuscript aims to give more control to users over
their data. More specifically, this manuscript deals with the personalisation
of privacy parameters in privacy preserving methods by individuals. Thus, all
users can express their own vision of the risk and the level of anonymisation
they wish.

This chapter provides an overview of the different contributions presented
in this manuscript, together with their limitations, and perspectives they
bring.

8.1 Contributions
In this manuscript, a new anonymisation concept has been presented. It al-
lows individuals to express how much their personal data must be anonymised.
This new concept, called ki−anonymity, has been studied following various
scenarios. It is based on k−anonymity. We chose k−anonymity for its sim-
plicity rather than using methods such as differential privacy whose under-
standing is out of reach for the average individual. Furthermore, it is one of
the rare concept which does not limit computations that can be performed
on the anonymised dataset (e.g. differential privacy is optimized for a set of
predefined operations).

Firstly, the chapter 4 rely on a decentralized architecture (called the
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Trusted Cells architecture) with which a querier can interact. This inter-
action allows the querier to aggregate data stored in the architecture. This
architecture is made of two parts: a large set of Trusted Data Servers (TDSs),
each owned by an individual and a Supporting Server Infrastructure (SSI)
which is untrusted by users (we can consider it as an honest-but-curious ad-
versary). Users trust TDSs and their personal data are stored in their own
TDS. This allow them to access their data and to have a better control on
those. The whole database is composed of the data from all TDSs.

Users can submit anonymity constraints to their TDS. A querier that
want to make aggregations on the database, adds anonymity guarantees to
his query. Users can participate to the query by sharing their data only if
anonymity guarantees are greater or equal to their constraints. The protocol
made in this thesis and called kiSQL/AA, allow the SSI and TDSs to work
together to computes queries while preventing the SSI to infer users personal
informations. Furthermore, this protocol ensures that anonymity guarantees
given by the querier are met and that only users with lower constraints
participate to the result.

The kiSQL/AA protocol is divided in three parts: the collection phase
in which users decide to participate or not according to their anonymity
constraints and the guarantee given by the querier; the aggregation phase in
which TDSs compute the result of the query without letting the SSI infer
users personal data; the filtering phase in which the result is finalized and the
guarantees are ensured. The kiSQL/AA protocol is based on the SQL/AA
protocol presented by Q.-C. To et al. [85].

Since the aggregation phase of the SQL/AA protocol is limited on the
amount of data it can process, the chapter 4 presents two algorithms made to
override this limitation. Those algorithms, the swap-merge and the network-
merge, merge two sorted datasets in one while computing aggregations. The
swap-merge uses the flash memory of TDSs to store the data when the RAM
is insufficient. Consequently, it increase the TDSs workload. The network-
merge consists to divide the two datasets in smaller to decrease the TDSs
workload. However, it increases the number of data transfer. These two
algorithms also allow to control the workload of TDSs and are thus, not
limited by the low availability of TDSs.

The chapter 4 presents also a process of data generalisation to allow the
querier to get more data from users. To do this, the querier can give higher
guarantees for users giving less accurate personal data. This has the effect to
keep users with higher constraints in the computation of the query which will
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have a more accurate result, even if some individuals data are less accurate.
Experiments made at the end of the chapter show that the kiSQL/AA pro-

tocol is able to compute query on large datasets. Indeed, the adult dataset,
composed of 30162 tuples, has been used for those experiments.

While the chapter 4 proposes a protocol for the computation of dynamic
aggregation queries while respecting users anonymity constraints, the chap-
ter 5 presents an approach to publish anonymised dataset. This chapter
presents the adaptation of three heuristics to ki−anonymity. These heuristics
were originally made for k−anonymity and differ from their characteristics.
The first, called Mondrian, has the best scalability compared to others but
also generated the highest information loss. The second, Greedy k−Member,
is less scalable but generated an anonymised datasets with the best utility.
The third, MDAV, is an intermediate solution.

This chapter studies data anonymisation under personalised constraints.
We identified three realistic scenarios. The first scenario consists to let users
increase or decrease their anonymity constraints. The second scenario con-
sists to propose to users to decrease their constraints to get advantages or
services (e.g. decreasing the publicity in mobile application). Finally, in third
scenario, a data controller collects individuals personal data giving to users
anonymity guarantees. People asking for higher guarantees do not partici-
pate (i.e. their data are considered as removed).

In the first scenario, the chapter shows that in most cases identified by
A. Acquisti and J. Grossklags, more information loss is generated when us-
ing the ki−anonymity instead of the k−anonymity when using the security
parameter of moderates. However, it is important to note that in this case,
the use of k−anonymity would not respect the wish of many individuals (i.e.
all conservators). There are still some cases, such as the personal profile
distribution, where the use of ki−anonymity would generate less information
loss.

Experiments in the chapter 5, show that in the second scenario, the
ki−anonymity always generates an anonymised dataset with a better util-
ity or, at worse, the same utility than the use of k−anonymity. This worse
case happens when almost all individuals wish for the highest anonymity
constraints which is not a realistic case.

In the third scenario, the ki−anonymity always induce a better data util-
ity. Indeed, data removing has a real impact on data quality, so, it is never
profitable to delete individuals with high anonymity constraints.

The chapter 5 also studies the impact of the correlation between individu-
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als privacy concern and their data (e.g. age, income). It presents a simulation
of this correlation and shows that, in the second scenario, this correlation de-
creases the information loss induced by the ki−anonymity (even when there
are many individuals with high constraints).

Finally, the chapter 6 presents a new methods based on constraint pro-
gramming to compute an optimal ki−anonymous dataset (i.e. generating the
lowest information loss). To use constraint programming, the chapter firstly
defines k−anonymity and ki−anonymity models. These models are necessary
to represent the problem through variables and constraints on these.

Then, the chapter presents filtering algorithms, called propagators, and
search strategies in order to find the optimal solution. These filtering al-
gorithms allow the solver to determine the number of equivalence classes
(called nClusters), to ensure that all anonymity constraints are satisfied
(called Membership) and to minimise the DBIL metric. The chapter also de-
scribes a new system (called Switching strategies) allowing to select the best
strategy to apply in order to minimise the information loss and to complete
equivalence classes which do not satisfy anonymity constraints.

The solution presented in the chapter 6 is built upon the work of T.B.H.
Dao et al. [17] and allows the use of various optimisation criteria. The di-
ameter criterion aims to minimise the diameter of the largest equivalence
class. The split criterion aims to maximise the distance between equivalence
class (i.e. to maximise the shortest distance between records from distinct
equivalence classes). The within-cluster sum of dissimilarities (WCSD) aims
to minimise the sum of distances between records from the same equivalence
class. Those criteria may be used for statistics if a querier assesses that they
are more efficient at evaluating information loss.

The chapter 6 shows, via a set of experiments that those criteria can be
used to reduce the value of the DBIL metric. For example, the optimisa-
tion of WCSD criterion gives solutions similar to optimal solution regarding
the DBIL metric. However this criterion is less scalable than the DBIL
criterion. The diameter is the most scalable criterion and gives solutions
generating low information loss (i.e. less than heuristics).

8.2 Limitations
Contributions presented in this manuscript have limitations which are de-
scribed in this section. The section 8.3 shows hints and perspectives to
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overpass these limitations.
The kiSQL/AA protocol has limitations. Supervised anonymisation meth-

ods are usually used with tools leading the supervisor in the anonymisation
process. For example, it can help him to identify outliers (i.e. tuple differ-
ent from any others). Furthermore, the supervisor is often able to compute
statistics before and after the anonymisation process. By doing so, he can
alter some anonymised data to better fit the reality and manually decrease
the information loss. In the protocol proposed in this paper, the querier have
not access to tools which would help him decide on anonymity guarantees.
This may lead the querier to choose wrong guarantees. If anonymity guar-
antees are too low, most individuals would not participate to the query, and
conversely, too high guarantees would be impossible to satisfy leading to the
deletion of data in the filtering phase. This limitation may be important but
can be overpass by the use of unsupervised anonymity algorithms.

Another limitation of the kiSQL/AA protocol is the linear generalisations
that the querier can make. For example, all tuples are generalised the same
way, which can be seen as global recoding. However, it does not allow local
recoding. To allow it, generalisations must be proposed in the form of lattices.
The use of lattices would increase the number of groups in a GroupBy query.
This would complicate the aggregation and filtering phase (i.e. the result of
the aggregation phase would be larger).

The Trusted Cells architecture has its own limitations. Suppose a mali-
cious adversary took the full control of a TDS. He could decrypt any message
shared by TDSs and obtain all individuals personal data. Compromising a
TDS would be hard and expensive due to the fact it is a secure hardware.
However, it would be an attack with a high benefit. This limitation can
be reduced by dividing the set of TDSs in multiple clusters. All TDSs in a
same cluster would share the same cryptographic key but TDSs from distinct
clusters would have different keys. TDSs would be able to compute aggre-
gations on data from TDSs of the same cluster only. This may decrease the
amount of available TDSs to compute these aggregations (i.e. the SSI can
select TDSs from a smaller set of TDSs).

The swap-merge and network-merge algorithms have also limitations.
Firstly, the swap-merge algorithm is limited by the amount of flash memory
TDSs have. Although this memory may be large, it remains limited. Sec-
ondly, I/O access to this memory are expensive and since TDSs have a low
availability, the swap-merge algorithm cannot be used alone. The network-
merge is able to overpass the lack of TDSs availability and RAM memory.
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However, it increases the amount of network communications. Those commu-
nications may be expensive and increase the time of the aggregation phase.
However, the query latency is not considered as a limit since the collection
phase can take several days. The network-merge limitations are more impor-
tant in the case TDSs are always available and the query latency must be
low. For example, in the case TDSs are embedded in the Linky, the french
smart electricity meter, they would be rarely unavailable. In this case, the
swap-merge is more efficient, decreasing the number of network communi-
cations. Since those two algorithms mutually compensate their limitations
each other, these limitations are not important.

The ki−anonymity concept presented in this manuscript is limited by the
amount of conservators (i.e. individuals with high anonymity constraints).
In the chapter 5, we see that without considering the correlation between
data (e.g. age, study level) and privacy concern, conservators absorb liberals
and moderates. This is partly due to the fact that heuristics presented in this
chapter does not try to group liberals and moderates together. This decreases
the potential gain of utility the ki−anonymity proposes. It becomes, then,
necessary to have a metric that measures the difference of information loss
between adding a conservators to an equivalence class or its exclusion. This
metric would lead heuristics to a better solution.

Studies presented in section 3.1 shows that individual anonymity con-
straints are correlated to their data. The chapter 5, simulates this correla-
tion in a straight way. This means that we consider three groups of similar
individuals differing from their constraints. One group contains all conser-
vators, another contains all moderates and, finally, the third group contains
all liberals. For example, using the general privacy concern distribution no
individual under 36 years old with no higher education (i.e. 12th grade) have
high anonymity constraints. This straight correlation probably does not ac-
curately reflect the reality. Moreover, anonymity constraints are not chosen
in function of others correlations such as the correlation between privacy
concern and nationality. This limitation is important because it prevents to
correctly evaluate the impact of anonymity constraints personalisation. An
hint to overpass this limitation is discussed in the part «Dataset generation»
in the section 8.3.

Finally, the new approach based on constraint programming also have
limits. The first limitation of this approach is presented by the section 8.3
and is its lack of scalability. Indeed it cannot process the anonymisation
on big datasets. Since the size of datasets it can handle is small, it can
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only be used on particular use cases. More researches are needed to increase
the amount of data it can handle. To improve this approach, some hints
are provided by the part «ki−anonymity and constraint programming» in
section 8.3.

The model based on constraint programming uses many variables and
constraints which may induce high memory cost. This cost is magnified by
the height of the research tree the solver explores. It becomes necessary to
save only a small amount of stable states leading to recalculate non save
stable states. Many solvers propose an efficient way to do so by saving only
choices made by the branching strategy. After applying the choices, the
solver can use propagations (i.e. propagations are not apply for each choice
but after all choices application) to obtain a new stable state.

8.3 Perspectives
Proposing user empowerment solutions is important to gain trust from users
while ensuring their protection. As seen in this manuscript, a way to propose
user empowerment is to allow individual to personalise the protection of their
privacy. The ki−anonymity is a concept that applies k−anonymity while
proposing users to set their k parameter. Works on ki−anonymity presented
in this thesis, induce some research perspectives. This section presents these
perspectives.

Personalised anonymity concepts. The main perspective induced by
this manuscript is the personalisation of others anonymity concepts. Con-
cepts based on dataset partitioning (e.g. `−diversity, t−closeness, . . . ) are
all uniform. The k−anonymity has its own weakness that others concepts try
to compensate. That why, it is necessary to work on their personalisation.

Unsupervised ki−anonymity under Trusted Cells architecture.
The kiSQL/AA protocol offers to individuals the possibility to personalised
their protections using ki−anonymity and personalised `−diversity. This
protocol can be seen as a supervised anonymisation method dedicated to
aggregation queries. One of the researches perspectives kiSQL/AA protocol
induces would be to propose an unsupervised anonymisation method. In
their article [3], T. Allard et al. have proposed an unsupervised approach to
compute a k−anonymous dataset on the Trusted Cells architecture. Their
method consists to let the SSI to build equivalences classes by sharing only
quasi-identifiers (i.e. sensitive data are encrypted by TDSs). By combining
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their approach with k−anonymity heuristics presented by the chapter 5, we
can generate a ki−anonymous dataset. This approach allows the SSI to infer
all individuals quasi-identifiers. Another perspective would be to propose a
protocol where equivalence classes are created by TDSs. By doing so, the SSI
would not be able to infer any personal information while ensuring individual
anonymity constraints.

Personalised differential privacy under Trusted Cells architec-
ture. The use of differential privacy consumes the privacy budget. TDSs are
able to save the privacy budget consumption of each individuals. We can
discern two major perspectives regarding personalised differential privacy:

• to propose a protocol which ensures differential privacy to users in
the collection phase. Individuals would add noise to their data inde-
pendently of the others. Users noise would superimpose during the
computation of the aggregation phase. That is why, it is important
to have a differentially private mechanism which superimpose correctly
with itself. Ú. Erlingsson et al. have proposed the RAPPOR [23] pro-
tocol which ensure differential privacy to users when they send their
data to a querier. The differential privacy is ensured on the user side
during the collection process. In their work, Ú. Erlingsson et al. used
Bloom filter. A user translates his data as a Bloom filter and adds
noise into it. The querier receives number of noisy Bloom filters which
allow him to compute aggregations. The benefit of this method is that
it allows users to separately add noise on their data without impacting
others users data. However, this method has not been experimented
with personalised differential privacy.

• to propose a protocol which use a differentially privacy mechanism in
the filtering phase. To do so, it becomes necessary that TDSs attach
users ε to their data. By doing so, the TDS which computes the filtering
phase, can add noise to the result regarding users constraints.

Dataset generation. As said in the limitations section, we have simu-
lated the correlation between users anonymity constraints and their data in a
way that may not totally reflect the reality. Generating a dataset containing
anonymity constraints is complex and need number of social studies and a
mechanism that can generate these data consistently with these studies. A
possible perspective is to propose a framework for generating personalised
anonymity constraints.
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ki−anonymity and constraint programming. The section 6.6.3 has
presented the concept of global constraints in constraint programming. This
concept allows the specification of multiple constraints in one. Instead of
having many filtering algorithms that can be redundant, providing an algo-
rithm that can ensure multiple constraints allows, on one hand, to decrease
computation time and to take into account incompatibilities between solu-
tions induced by different constraints. For example, the constraint which
optimises the diameter criterion, does not take into account anonymity con-
straints and try to create too small equivalence classes (e.g. isolating outliers
alone in their equivalence class). In artificial intelligence community, it is
common to put lot of effort to elaborate efficient global constraints. Cur-
rently, the diameter constraint computes the lowest diameter as the smallest
distance between two tuples. To consider anonymity constraints, the con-
straint could computes the lowest distance between any tuple i and its kthi
nearest tuple.
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Figures of chapter 5

This appendix shows figures from the chapter 5 in larger versions. This aims
to make these more readable.
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Figure 1: Greedy k−Member with low constraints, referring to figure 5.5a
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Figure 2: Mondrian with low constraints, referring to figure 5.5b
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Figure 3: MDAV with low constraints, referring to figure 5.5c
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Figure 4: Greedy k−Member with high constraints, referring to figure 5.6a
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Figure 5: Mondrian with high constraints, referring to figure 5.6b
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Figure 6: MDAV with high constraints, referring to figure 5.6c
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Figure 7: Greedy k−Member with low constraints, referring to figure 5.7a
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Figure 8: Mondrian with low constraints, referring to figure 5.7b
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Figure 9: MDAV with low constraints, referring to figure 5.7c
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Figure 10: Greedy k−Member with high constraints, referring to figure 5.8a
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Figure 11: Mondrian with high constraints, referring to figure 5.8b
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Figure 12: MDAV with high constraints, referring to figure 5.8c
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Figure 13: Greedy k−Member varying the scale, referring to figure 5.9a
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Figure 14: Mondrian varying the scale, referring to figure 5.9b
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Figure 15: MDAV varying the scale, referring to figure 5.9c
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Conservator suppression vs personalized k-anonymity
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Figure 16: Removing conservators with kl = 3, km = 5 and kc = 7, referring
to figure 5.10a
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Figure 17: Removing conservators with kl = 5, km = 7 and kc = 10, referring
to figure 5.10b
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Ratio IL(not correlated) / IL(correlated)
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Figure 18: Greedy k−Member with low constraints and correlation, referring
to figure 5.12a
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Figure 19: Mondrian with low constraints and correlation, referring to fig-
ure 5.12b
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Figure 20: MDAV with low constraints and correlation, referring to fig-
ure 5.12c
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Figure 21: Greedy k−Member with high constraints and correlation, refer-
ring to figure 5.13a



184 FIGURES OF CHAPTER 5

Ratio IL(not correlated) / IL(correlated)

 0  20  40  60  80  100

liberals (%)

 0

 20

 40

 60

 80

 100

co
n
se

rv
a
ti

v
e
s 

(%
)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

Figure 22: Mondrian with high constraints and correlation, referring to fig-
ure 5.13b
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Figure 23: MDAV with high constraints and correlation, referring to fig-
ure 5.13c
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[Axel MICHEL]

Personnalisation de protection de la vie privée sur des modèles
d'anonymisation basés sur des généralisations

Résumé : Les bénéfices engendrés par les études statistiques sur les données personnelles des individus
sont nombreux, que ce soit  dans le médical,  l'énergie ou la gestion du trafic urbain pour n'en citer que
quelques-uns. Les initiatives publiques de smart-disclosure et d'ouverture des données rendent ces études
statistiques indispensables pour les institutions et industries tout autour du globe. Cependant, ces calculs
peuvent  exposer  les  données  personnelles  des  individus,  portant  ainsi  atteinte  à  leur  vie  privée.  Les
individus sont alors de plus en plus réticent à participer à des études statistiques malgré les protections
garanties par les instituts. Pour retrouver la confiance des individus, il devient nécessaire de proposer des
solutions de user empowerment, c'est-à-dire permettre à chaque utilisateur de contrôler les paramètres de
protection des données personnelles les concernant qui sont utilisées pour des calculs.

Cette thèse développe donc un nouveau concept d'anonymisation personnalisé, basé sur la généralisation
de données et sur le user empowerment.

En premier lieu, ce manuscrit  propose une nouvelle approche mettant  en avant la personnalisation des
protections de la vie privée par les individus, lors de calculs d'agrégation dans une base de données. De
cette façon les individus peuvent fournir des données de précision variable, en fonction de leur perception du
risque. De plus, nous utilisons une architecture décentralisée basée sur du matériel sécurisé assurant ainsi
les garanties de respect de la vie privée tout au long des opérations d'agrégation.

En deuxième lieu, ce manuscrit étudie la personnalisations des garanties d'anonymat lors de la publication
de  jeux  de  données  anonymisés.  Nous  proposons  l'adaptation  d'heuristiques  existantes  ainsi  qu'une
nouvelle approche basée sur la programmation par contraintes. Des expérimentations ont été menées pour
étudier l'impact d’une telle personnalisation sur la qualité des données. Les contraintes d’anonymat ont été
construites et simulées de façon réaliste en se basant sur des résultats d'études sociologiques.

Mots clés :  Protection de la vie privée et des données, Big Data, Matériel  sécurisé, Programmation par
contraintes

 Personalizing Privacy Constraints in Generalization-based
  Anonymization Models

Summary : The benefit of performing Big data computations over individual’s microdata is manifold, in the
medical, energy or transportation fields to cite only a few, and this interest is growing with the emergence of
smart-disclosure initiatives around the world.However, these computations often expose microdata to privacy
leakages, explaining the reluctance of individuals to participate in studies despite the privacy guarantees
promised  by  statistical  institutes.  To  regain  indivuals’trust,  it  becomes  essential  to  propose  user
empowerment solutions, that is to say allowing individuals to control the privacy parameter used to mke
computations over their microdata.

This work proposes a novel concept of personalized anonymisation based on data generalization and user
empowerment.

Firstly,  this  manuscript  proposes  a  novel  approach  to  push  personalized  privacy  guarantees  in  the
processing of database queries so that individuals can disclose different amounts of information (i.e. data at
different  levels  of  accuracy)  depending  on  their  own  perception  of  the  risk.  Moreover,  we  propose  a
decentralized  computing  infrastructure  based  on  secure  hardware  enforcing  these  personalized  privacy
guarantees all along the query execution process.

Secondly, this manuscript studies the personalization of anonymity guarantees when publishing data. We
propose  the  adapation  of  existing  heuristics  and  a  new  approach  based  on  constraint  programming.
Experiments  have  been  done  to  show  the  impact  of  such  personalization  on  the  data  quality.
Individuals’privacy constraints have been built and realistically using social statistic studies.
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