Multi-scale modelling of highly-diluted gasoline premixed flames - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Multi-scale modelling of highly-diluted gasoline premixed flames

Compréhension et modélisation de flammes d'essence à fortes charges et fortes dilutions

Résumé

Reducing CO2 and pollutant emission is the essential challenge when dealing with climate change problems. In the transport sector, exhaust gas recirculation (EGR) technology is often used in turbocharged gasoline spark ignition (SI) engines to increase fuel economy, inhibit knock tendency, and reduce NOx emissions. However, high EGR ratios are still difficult to achieve, as they result in reduced heat release and engine stability. As increasing turbulence level and advance spark ignition systems could not bring sufficient improvements at such extreme conditions, growing interest is cast onto the combustion chemistry under high dilution. The present work aims to understand the combustion chemistry of highly-diluted gasoline premixed flames and to establish a detailed kinetic mechanism by multi-scale modeling to predict combustion characteristics with sufficient accuracy at highly-diluted conditions.This work adopts a multi-scale modeling approach, and targets on the laminar flame speed (SL) of a gasoline surrogate, which is named toluene reference fuel with ethanol addition (TRFE) and consist of isooctane, n-heptane, toluene, and ethanol. For micro-scale modeling, the reaction between ketene and hydroxyl radical, which might be important to the SL at highly-diluted conditions, is studied theoretically using ab initio electronic structure methods for the potential energy surface (PES) and Rice–Ramsperger–Kassel–Marcus Theory coupled with Master Equation (RRKM/ME) for the rate coefficients. Detailed PES is obtained, dominant pathways are identified, and their phenomenological rate coefficients are derived to be utilized in combustion modeling. For macro-scale modeling, firstly, important kinetic, thermodynamic, and transport parameters to the laminar flame speed at highly-diluted conditions, are firstly identified using sensitivity analysis based on a starting mechanism. Sensitive reactions are found to mostly involve HO2, C2--C3 species and fuel radicals. Secondly, in the sub-mechanisms where these reactions lies, diluted flames of the corresponding fuels are studied and chemical detail of the dilution effects are explored. The starting mechanism is updated by state-of-the-art kinetics parameters found in the literature for each sub-mechanisms. Finally, a detailed mechanism suitable for laminar flame speed calculations at highly-diluted conditions is established after validation. A mathematical SL correlation is generated for the use in computational fluid dynamic (CFD) simulations.
La réduction des émissions de CO2 et de polluants est un des enjeux essentiels pour faire face aux problèmes liés au changement climatique. Dans le secteur des transports, la technologie de recirculation des gaz d’échappement (EGR) est souvent utilisée dans les moteurs turbo-compressés à allumage commandé pour réduire la consommation de carburant, inhiber les risques de cliquetis et réduire les émissions de NOx. Cependant, des taux d’EGR élevés restent difficiles à atteindre car ils réduisent le dégagement de chaleur et la stabilité du moteur. L'augmentation du niveau de turbulence et la mise en oeuvre de systèmes à allumage commandé avancés n’apportant pas d'améliorations suffisantes dans des conditions aussi extrêmes, la chimie de la combustion pour les très hautes dilutions suscite un intérêt croissant. Le présent travail vise à comprendre la chimie de combustion des flammes prémélangées essence/air très diluées et à établir un mécanisme cinétique détaillé par modélisation multi-échelle afin de prévoir les caractéristiques de combustion avec une précision suffisante dans des conditions de forte dilution.Ce travail adopte une approche de modélisation multi-échelle et cible la vitesse de flamme laminaire (SL) d'un substitut d'essence, appelé TRFE et qui est constitué d'isooctane, de n-heptane, de toluène et d'éthanol. Pour la modélisation à l’échelle microscopique, la réaction entre le cétène et le radical hydroxyle, qui pourrait être importante pour la SL dans des conditions très diluées, est étudiée théoriquement à l'aide de méthodes de structure électronique ab initio pour la surface d'énergie potentielle (PES) et Rice -- Ramsperger -- Kassel -- Marcus Theory couplé à l'équation maîtresse (RRKM / ME) pour les coefficients de vitesse. Des PES détaillées sont obtenues, les voies dominantes sont identifiées et leurs coefficients de vitesse phénoménologiques sont dérivés pour être utilisés dans la modélisation de la combustion. Pour la modélisation à l'échelle macroscopique, les paramètres cinétiques, thermodynamiques et de transport importants pour la vitesse de la flamme laminaire dans des conditions très diluées sont d'abord identifiés à l'aide d'une analyse de sensibilité réalisée sur une version initiale du mécanisme TRFE de départ. Les réactions sensibles impliquent principalement HO2, les espèces C2 - C3 et des radicaux issus du carburant. Le mécanisme initial, via un travail spécifique à chacun des sous-mécanismes, est mis à jour à l'aide des paramètres cinétiques les plus récents issus de la littérature. Enfin, un mécanisme détaillé adapté aux calculs de vitesse de flamme laminaire dans des conditions de forte dilution est validé. Une corrélation mathématique de SL est établie pour l'utilisation dans des simulations numériques de la dynamique des fluides (CFD).
Fichier principal
Vignette du fichier
85472_XU_2019_archivage.pdf (18.74 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03544420 , version 1 (26-01-2022)

Identifiants

  • HAL Id : tel-03544420 , version 1

Citer

Boyang Xu. Multi-scale modelling of highly-diluted gasoline premixed flames. Theoretical and/or physical chemistry. Institut Polytechnique de Paris, 2019. English. ⟨NNT : 2019IPPAE003⟩. ⟨tel-03544420⟩
116 Consultations
29 Téléchargements

Partager

Gmail Facebook X LinkedIn More