Segmentation automatique de la surface corticale dans des IRM cérébrales des nouveaux-nés
Auteur / Autrice : | Carlos Tor díez |
Direction : | François Rousseau, Nicolas Passat |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Vision |
Date : | Soutenance le 23/09/2019 |
Etablissement(s) : | Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Département lmage et Traitement Information - Laboratoire de traitement de l’information médicale (Brest, Finistère) |
Jury : | Président / Présidente : Isabelle Bloch |
Examinateurs / Examinatrices : François Rousseau, Nicolas Passat, Miguel Ángel González Ballester, Grégoire Malandain, Meritxell Bach Cuadra, Élodie Puybareau | |
Rapporteurs / Rapporteuses : Miguel Ángel González Ballester, Grégoire Malandain |
Mots clés
Résumé
Des études cliniques sur les nouveau-nés prématurés montrent qu'une large proportion des grands prématurés (moins de 32 semaines d’aménorrhée) présentera des troubles cognitifs, moteurs ou comportementaux. Un objectif clinique est donc d’approfondir les études du développement cérébral et de détecter les anomalies chez les patients néonataux. Parmi les modalités d'imagerie, l'IRM peut fournir une information 3D morphologique, non-invasive, non ionisante et avec une résolution spatiale de l'ordre du millimètre, propriétés qui sont bien adaptées à cette problématique. En outre, la segmentation de ces images permet de fournir des informations quantitatives de l'anatomie, comme le volume ou la forme. Il existe de nombreuses méthodes pour l'IRM chez l'adulte. Néanmoins, la plupart d'entre elles ne peuvent pas s'appliquer directement chez le nouveau-né, où la maturation des tissus cérébraux induit des modifications de contraste dans l'image (dues, par exemple, à la non-myélinisation de la substance blanche). De plus, des détériorations visuelles, telles que les effets de volume partiels, se produisent par l'effet conjugué de la résolution des images et de la finesse des structures (par exemple, le cortex). Cette thèse se focalise sur la segmentation de la surface corticale des nouveau-nés en utilisant des images IRM, avec une précision satisfaisante pour des applications subséquentes (comme la génération de maillages surfaciques). Dans cette thèse, nous nous sommes intéressés dans un premier temps aux approches par atlas ou multi-atlas. Cette famille de méthodes est connue pour son efficacité en termes de segmentation cérébrale grâce à des a priori spatiaux intégrés au modèle, qui permettent de guider la segmentation. Néanmoins, le cortex étant une structure très fine, des erreurs topologiques peuvent se produire. Afin de résoudre ce problème, une étape de correction topologique multi échelle est mise en oeuvre. Les résultats montrent le potentiel de ces deux types d'approches pour l’analyse des données considérées.