Thèse soutenue

Transition entre des modes oscillatoires de migration cellulaire induite par le confinement
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Vanni Petrolli
Direction : Giovanni CappelloMartial Balland
Type : Thèse de doctorat
Discipline(s) : Physique pour les sciences du vivant
Date : Soutenance le 06/11/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interdisciplinaire de Physique (Grenoble)
Jury : Président / Présidente : Johannes Geiselmann
Examinateurs / Examinatrices : Eric Bertin, Isabelle Bonnet, Kevin Painter
Rapporteurs / Rapporteuses : Sara A. Wickström, Xavier Trepat

Résumé

FR  |  
EN

La capacité des cellules à générer spontanément de l'ordre a l’échelle supra cellulaire repose sur l'interaction de signaux mécaniques et biochimiques. Si le consensus général est que la signalisation chimique est le régulateur principal du comportement cellulaire, il est aujourd’hui bien établi que l'impact des facteurs mécaniques est primordial sur des processus fondamentaux de la physiologie cellulaire tel que la différenciation, la prolifération, la motilité et qu’une dérégulation des paramètres mécaniques du microenvironnement des cellules sont impliqués dans un grand nombre de pathologies allant du cancer aux myopathies. Dans ce contexte, plusieurs études ont récemment mis en évidence l'existence d’ondes mécaniques se propageant à l’échelle supra-cellulaire.Nous étudions dans le cadre de cette thèse l'origine de ces ondes de vitesse dans les tissus et discutons leur origine biologique. En pratique, nous confinons des monocouches de cellules épithéliales à des géométries quasi unidimensionnelles, pour forcer l'établissement presque omniprésent d'ondes au niveau tissulaire. En accordant la longueur des tissus, nous découvrons l'existence d'une transition de phase entre les oscillations globales et multi-nodales, et prouvons que dans ce dernier régime, longueur d'onde et période sont indépendantes de la longueur de confinement. Ces résultats démontrent que l’origine de ces oscillations est intrinsèque au système biologique, ce mécanisme apparait comme un candidat pertinent permettant aux cellules de mesurer avec précision des distances au niveau supra-cellulaire et potentiellement de structurer spatialement un tissu. Des simulations numériques basées sur un modèle de type Self-propelled Voronoi reproduisent la transition de phase que nous avons observé expérimentalement et aident à guider nos recherches sur l'origine de ces phénomènes ondulatoires et leur rôle potentiel dans l'apparition spontanée des follicules pileux dans les explants cutanés des souris.