Multi-component gauge-dependent quantum gases - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Multi-component gauge-dependent quantum gases

Gaz quantiques à plusieurs composantes sous champ de jauge

Résumé

The first observation of Bose-Einstein condensation (BEC) in dilute atomic vapors has been a breakthrough both fundamentally, verifying theoretical concept predicted by Bose and Einstein several decades ago, revealing the statistical property of quantum particles. Since then, a new field has emerged and experimentalists are able to study this artificial matter in a very clean and controllable way. Cold-atom systems allows us to explore a whole range of fundamental phenomena that are extremely difficult or impossible to study in real materials, such as Bloch oscillation, Mott-superfluid transition, topology of band structure, orbital magnetism just to name a few. These progresses allow the quantum simulation of a large class of Hamiltonians subjected to magnetic field. Indeed, condensed matter phenomena under strong magnetic fields are still intriguing and are at the center of modern research. For instance, topological states of matter are realized in quantum Hall systems. A ladder is the simplest geometry where one can get some insight on two-dimensional quantum systems subjected to a synthetic gauge field.The first part of this thesis is dedicated to the study of double ring ladder subjected to gauge fluxes.Through both numerical and analytical calculation we explore the phase diagram of the system revealing known phases such as Meissner, vortex and biased ladder phase and the effect of commensurability of the total flux. Thanks to Bogoliubov approximation we are able to derive the excitation spectrum of the system and the nature of the low energy modes in the different phases revealing supersolid features as well as Josephson oscillation between the rings. The regime of infinite interaction between the boson enabled us to use exact mapping into fermions using Jordan-Wigner transformation to characterize the properties of the ground state. We explore the intermediate regime of interactions. Thanks to mode expansion and re-fermionization approach of the bosonized Hamiltonian of the double ring under gauge flux, we show the peculiarities of finite size periodic boundary condition on the current in the double ring with a rotating barrier inducing gauge flux.Exciton-polaritons in semiconductor microcavities constitute an amazing playground to study quantum fluids of light where remarkable effects, similar to those observed in cold atoms experiments, arise. Even though this quantum fluid of light is assumed to be composed, almost, upon pure condensate, the non-equilibrium nature of the gas make the comparison with typical condensates in cold atom experiment rather non trivial.The second part of the thesis is devoted to the study of excitons-polariton in honeycomb lattice. One of the most interesting aspect of the honeycomb lattice problem is that its low-energy excitations are massless, chiral, Dirac particles. Exciton-polariton, which are composite particle of light, in this lattice get back the relativist character of light but in a context where condensation is possible. Features of bosons in honeycomb lattice including retarded Green’s functions, Brillouin-zone selection mechanism and link between geometry of the lattice. We show that decay mode are suppressed as a consequence of the symmetry of the lattice leading to the possibility to engineer polaritonic dark-state. Then we obtain the Bogoliubov excitation spectrum of exciton-polariton. The usual bistability curve is shown to be unstable above C point showing the break-down of mean-field theory because of possible highly non-classical state. Finally experiment and theory are compared.
La première observation de la condensation de Bose-Einstein (BEC) dans les vapeurs atomiques diluées a été une percée fondamentale, vérifiant le concept théorique prédit par Bose et Einstein il y a plusieurs décennies, révélant la propriété statistique des particules quantiques. Depuis lors, un nouveau champ est apparu et les expérimentateurs sont en mesure d'étudier cette matière artificielle de manière très propre et contrôlable. Les systèmes à atomes froids nous permettent d’explorer toute une série de phénomènes fondamentaux extrêmement difficiles voire impossibles à étudier dans des matériaux réels, tels que l’oscillation de Bloch, la transition superfluide-Mott, la topologie de la structure de la bande, le magnétisme orbital, pour ne nommer que ceux-ci. Ces progrès permettent la simulation quantique d'une grande classe d'hamiltoniens soumis au champ magnétique. En effet, les phénomènes de matière condensée sous de forts champs magnétiques intriguent toujours et sont au centre des recherches modernes. Une échelle est la géométrie la plus simple où l'on peut avoir un aperçu des effets d’un champ de jauge synthétique.dans un systèmes quantiques à deux dimensions.La première partie de cette thèse est consacrée à l'étude de l'échelle à double anneau soumise à des flux de jauge.À travers des calculs numériques et analytiques, nous explorons le diagramme de phases du système en révélant les phases connues telles que la phase de Meissner, vortex et « biased ladder » phases, ainsi que l’effet de commensurabilité du flux total. Grâce à l'approximation de Bogoliubov, nous pouvons déduire le spectre d'excitation du système et la nature des modes à basse énergie dans les différentes phases, révélant des effets de supersolidités ainsi d'oscillation de Josephson entre les anneaux. Le régime d'interaction infinie entre le boson nous a permis d'utiliser une cartographie exacte entre fermions et bosons à l'aide de la transformation de Jordan-Wigner pour caractériser les propriétés de l'état fondamental. Nous explorons le régime intermédiaire des interactions via la théorie des Liquide de Luttinger. Grâce à l’expansion de mode et à l’approche de re-fermionisation de l’Hamiltonien bosonisé du double anneau sous flux de jauge, nous montrons les particularités de la condition aux limites périodiques de taille finie sur le courant dans le double anneau en présence d’une barrière permettant la simulation d’un champ de jauge.Les excitons-polaritons dans les microcavités semi-conductrices constituent un formidable terrain de jeu pour l'étude des fluides quantiques de la lumière où des effets remarquables, similaires à ceux observés dans les expériences sur les atomes froids, se produisent. Même si ce fluide quantique de lumière est supposé être composé d’un état macroscopiquement occupé la nature hors équilibre du gaz rend la comparaison avec les condensats typiques des expériences d’atomes froids plutôt non triviale.La deuxième partie de la thèse est consacrée à l'étude des excitons-polariton dans le réseau en nid d'abeille. Dans ces réseaux les excitations à faible énergie sont des particules de Dirac sans masse et chirales. Les exciton-polaritons, qui sont des particules composites de lumière, retrouvent leur caractère relativiste dans ce reseau mais dans un contexte où la condensation est possible. Les caractéristiques des bosons dans le réseau en nid d’abeilles, y compris les fonctions de Green retardés, le mécanisme de sélection de la zone de Brillouin et le lien avec la géométrie du réseau. Nous montrons que les modes de désintégration sont supprimés en raison de la symétrie du réseau menant à la possibilité de créer un état sombre polaritonique. On obtient ensuite le spectre d’excitation de Bogoliubov. La courbe de bistabilité habituelle est instable au-dessus du point C, montrant la chute de la théorie du champ moyen en raison de la possibilité d'un état hautement non classique. Enfin, expérience et théorie sont comparées.
Fichier principal
Vignette du fichier
VICTORIN_2019_archivage.pdf (25.94 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02513450 , version 1 (20-03-2020)

Identifiants

  • HAL Id : tel-02513450 , version 1

Citer

Nicolas Victorin. Multi-component gauge-dependent quantum gases. Quantum Gases [cond-mat.quant-gas]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAY049⟩. ⟨tel-02513450⟩
168 Consultations
17 Téléchargements

Partager

Gmail Facebook X LinkedIn More