Thèse soutenue

Système avancé de cryptographie pour l'internet des objets ultra-basse consommation

FR  |  
EN
Auteur / Autrice : Duy-Hieu Bui
Direction : Édith BeignéXuan-Tu Tran
Type : Thèse de doctorat
Discipline(s) : Nano electronique et nano technologies
Date : Soutenance le 17/01/2019
Etablissement(s) : Université Grenoble Alpes (ComUE) en cotutelle avec Trường Đại học Quốc Gia Hà Nội
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Observatoire des micro et nanotechnologies (Grenoble)
Jury : Président / Présidente : Régis Leveugle
Rapporteurs / Rapporteuses : Jean-Max Dutertre, Nadine Azemard-Crestani

Résumé

FR  |  
EN

L'Internet des objets (IoT : Internet-of-Things) a été favorisé par les progrès accélérés dans les technologies de communication, les technologies de calcul, les technologies de capteurs, l'intelligence artificielle, l'informatique en nuage et les technologies des semi-conducteurs. En générale, l'IoT utilise l'informatique en nuage pour traitant les données, l'infrastructure de communication (y compris l’Internet) et des nœuds de capteurs pour collecter des données, de les envoyer de l'infrastructure du réseau à l’Internet, et de recevoir des commandes pour réagir à l'environnement. Au cours de ses opérations, l'IoT peut collecter, transmettre et traiter des données secrètes ou privées, ce qui pose des problèmes de sécurité. La mise en œuvre des mécanismes de sécurité pour l'IoT est un défi, car les organisations de l’IoT incluent des millions de périphériques intégrés à plusieurs couches, chaque couche ayant des capacités de calcul et des exigences de sécurité différentes. En outre, les nœuds de capteurs dans l'IoT sont conçus pour être des périphériques limités par une batterie, avec un budget de puissance, des calculs et une empreinte mémoires limités pour réduire les coûts d’implémentation. L'implémentation de mécanismes de sécurité sur ces appareils rencontre même plus de défis. Ce travail est donc motivé pour se concentrer sur l’implémentation du cryptage des données afin de protéger les nœuds et les systèmes de capteurs IoT en tenant compte du coût matériel, du débit et de la consommation d’énergie. Pour commencer, un crypto-accélérateur de chiffrement de bloc ultra-basse consommation avec des paramètres configurables est proposé et implémenté dans la technologie FDSOI ST 28 nm dans une puce de test, qui est appelée SNACk, avec deux modules de cryptographie : AES et PRESENT. L’AES est un algorithme de cryptage de données largement utilisé pour l’Internet et utilisé actuellement pour les nouvelles propositions IoT, tandis que le PRESENT est un algorithme plus léger offrant un niveau de sécurité réduit mais nécessitant une zone matérielle beaucoup plus réduite et une consommation très bas. Le module AES est une architecture de chemin de données 32 bits contenant plusieurs stratégies d'optimisation prenant en charge plusieurs niveaux de sécurité, allant des clés 128 bits aux clés 256 bits. Le module PRESENT contient une architecture à base arrondie de 64 bits pour optimiser son débit. Les résultats mesurés pendant cette thèse indiquent que ce crypto-accélérateur peut fournir un débit moyen (environ 20 Mbits/s au 10 MHz) tout en consommant moins de 20 µW dans des conditions normales et une sous-pJ d’énergie par bit. Cependant, la limitation du crypto-accélérateur réside dans le fait que les données doivent être lues dans le crypto-accélérateur et réécrites en mémoire, ce qui augmente la consommation d'énergie. Après cela, afin de fournir un haut niveau de sécurité avec une flexibilité et une possibilité de configuration pour s’adapter aux nouvelles normes et pour atténuer les nouvelles attaques, ces travaux portent sur une approche novatrice de mise en œuvre de l’algorithme de cryptographie utilisant la nouvelle SRAM proposée en mémoire. Le calcul en mémoire SRAM peut fournir des solutions reconfigurables pour mettre en œuvre diverses primitives de sécurité en programmant les opérations de la mémoire. Le schéma proposé consiste à effectuer le chiffrement dans la mémoire en utilisant la technologie Calcul en Mémoire (In-Memory-Computing). Ce travail illustre deux mappages possibles de l'AES et du PRESENT à l'aide du calcul en mémoire.