Apprentissage continu pour la classification des images
Auteur / Autrice : | Anuvabh Dutt |
Direction : | Georges Quénot, Denis Pellerin |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 17/12/2019 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de Grenoble (2007-....) - Grenoble Images parole signal automatique (2007-....) |
Jury : | Président / Présidente : Massih-Reza Amini |
Examinateurs / Examinatrices : Hervé Le Borgne | |
Rapporteurs / Rapporteuses : Jenny Benois Pineau, Nicolas Thome |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse traite de l'apprentissage en profondeur appliqu'e aux tâches de classification des images. La principale motivation du travail est de rendre les techniques d’apprentissage en profondeur actuelles plus efficaces et de faire face aux changements dans la distribution des données. Nous travaillons dans le cadre élargi de l’apprentissage continu, dans le but d’avoir 'a l’avenir des modèles d’apprentissage automatique pouvant être améliorés en permanence.Nous examinons d’abord la modification de l’espace étiquette d’un ensemble de données, les échantillons de données restant les mêmes. Nous considérons une hiérarchie d'étiquettes sémantiques à laquelle appartiennent les étiquettes. Nous étudions comment nous pouvons utiliser cette hiérarchie pour obtenir des améliorations dans les modèles formés à différents niveaux de cette hiérarchie.Les deuxième et troisième contributions impliquent un apprentissage continu utilisant un modèle génératif. Nous analysons la facilité d'utilisation des échantillons d'un modèle génératif dans le cas de la formation de bons classificateurs discriminants. Nous proposons des techniques pour améliorer la sélection et la génération d'échantillons à partir d'un modèle génératif. Ensuite, nous observons que les algorithmes d’apprentissage continu subissent certaines pertes de performances lorsqu’ils sont entraînés séquentiellement à plusieurs tâches. Nous analysons la dynamique de la formation dans ce scénario et comparons avec la formation sur plusieurs tâches simultanément. Nous faisons des observations qui indiquent des difficultés potentielles dans l’apprentissage de modèles dans un scénario d’apprentissage continu.Enfin, nous proposons un nouveau modèle de conception pour les réseaux de convolution. Cette architecture permet de former des modèles plus petits sans compromettre les performances. De plus, la conception se prête facilement à la parallélisation, ce qui permet une formation distribuée efficace.En conclusion, nous examinons deux types de scénarios d’apprentissage continu. Nous proposons des méthodes qui conduisent à des améliorations. Notre analyse met 'egalement en évidence des problèmes plus importants, dont nous aurions peut-être besoin de changements dans notre procédure actuelle de formation de réseau neuronal.