Thèse soutenue

Courbures de métriques invariantes dans les variétés complexes non compactes

FR  |  
EN
Auteur / Autrice : Sébastien Gontard
Direction : Hervé Gaussier
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 21/06/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut Fourier (Grenoble)
Jury : Président / Présidente : Sandrine Grellier
Examinateurs / Examinatrices : Jean-Pierre Demailly, Alexandre Sukhov
Rapporteurs / Rapporteuses : Peter Ebenfelt, Siqi Fu

Résumé

FR  |  
EN

Nous étudions les relations entre des propriétés géométriques et des propriétés métriques dans les domaines de C^n.Plus précisément, nous nous intéressons au comportement des courbures bisectionnelles holomorphes de métriques de Kähler invariantes, la métrique de Bergman et la métrique de Kähler-Einstein, au voisinage du bord des domaines pseudoconvexe bornés à bord lisse.Nous prouvons qu'aux points de stricte pseudoconvexité ou tels que la fonction squeezing du domaine tend vers 1 les courbures bisectionnelles holomorphes de la métrique de Kähler-Einstein du domaine tendent vers les courbures bisectionnelles holomorphes de la métrique de Kähler-Einstein de la boule.Nous étudions également les courbures de la métrique de Kähler-Einstein et de la métrique de Bergman dans certains domaines polynomiaux (notamment les domaines tubes et les domaines de Thullen de C^2) qui servent de modèles locaux aux points du bord qui sont de type fini. A partir de ces études nous prouvons qu'en certains points du bord de domaines convexes bornés lisse de type fini dans C^2 il existe un voisinage non tangentiel tel que les courbures bisectionnelles holomorphes de la métrique de Kâhler-Einstein sont pincées négativement. Nous prouvons également que pour tout domaine pseudoconvexe borné de type fini qui est Reinhardt complet il existe un voisinage du bord relatif au domaine tel que les courbures bisectionnelles holomorphes de la métrique de Bergman sont comprises entre deux constantes strictement négatives.