Thèse soutenue

Construction automatique d'outils et de ressources linguistiques à partir de corpus parallèles

FR  |  
EN
Auteur / Autrice : Othman Zennaki
Direction : Laurent BesacierNasredine Semmar
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 11/03/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de Grenoble (Isère, France ; 2007-....) - Laboratoire Vision et Ingénierie des contenus (Gif sur Yvette)
Jury : Président / Présidente : Sophie Rosset
Rapporteurs / Rapporteuses : Reinhard Rapp, Mounir Zrigui

Résumé

FR  |  
EN

Cette thèse porte sur la construction automatique d’outils et de ressources pour l’analyse linguistique de textes des langues peu dotées. Nous proposons une approche utilisant des réseaux de neurones récurrents (RNN - Recurrent Neural Networks) et n'ayant besoin que d'un corpus parallèle ou mutli-parallele entre une langue source bien dotée et une ou plusieurs langues cibles moins bien ou peu dotées. Ce corpus parallèle ou mutli-parallele est utilisé pour la construction d'une représentation multilingue des mots des langues source et cible. Nous avons utilisé cette représentation multilingue pour l’apprentissage de nos modèles neuronaux et nous avons exploré deux architectures neuronales : les RNN simples et les RNN bidirectionnels. Nous avons aussi proposé plusieurs variantes des RNN pour la prise en compte d'informations linguistiques de bas niveau (informations morpho-syntaxiques) durant le processus de construction d'annotateurs linguistiques de niveau supérieur (SuperSenses et dépendances syntaxiques). Nous avons démontré la généricité de notre approche sur plusieurs langues ainsi que sur plusieurs tâches d'annotation linguistique. Nous avons construit trois types d'annotateurs linguistiques multilingues: annotateurs morpho-syntaxiques, annotateurs en SuperSenses et annotateurs en dépendances syntaxiques, avec des performances très satisfaisantes. Notre approche a les avantages suivants : (a) elle n'utilise aucune information d'alignement des mots, (b) aucune connaissance concernant les langues cibles traitées n'est requise au préalable (notre seule supposition est que, les langues source et cible n'ont pas une grande divergence syntaxique), ce qui rend notre approche applicable pour le traitement d'un très grand éventail de langues peu dotées, (c) elle permet la construction d'annotateurs multilingues authentiques (un annotateur pour N langages).