Thèse soutenue

Etude expérimentale et numérique des contraintes mécaniques dans les architectures tridimensionnelles sur silicium pour les applications d'imagerie

FR  |  
EN
Auteur / Autrice : Clément Sart
Direction : Rafael Estevez
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 13/12/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Science et ingénierie des matériaux et procédés (Grenoble)
Jury : Président / Présidente : Olivier Thomas
Examinateurs / Examinatrices : Hélène Fremont
Rapporteurs / Rapporteuses : Olivier Thomas, Philippe Djemia

Résumé

FR  |  
EN

Ces dernières années, un certain nombre de barrières physiques ou économiques ont fait leur apparition dans la course pour la miniaturisation et l’amélioration des performances des circuits intégrés. Pour dépasser ces limites, de nouvelles architectures sont continûment développées. En particulier, on observe un tournant dans l’industrie de la microélectronique vers les stratégies d’intégration 3D, comme une alternative à la réduction des dimensions des transistors MOS. Cette approche innovante consiste à combiner en un seul et même module des puces de technologies ou fonctionnalités diverses. Une stratégie possible pour réaliser ces systèmes hétérogènes est d’empiler verticalement les puces les unes sur les autres plutôt que de les juxtaposer dans le plan, permettant des gains considérables en terme de compacité et de polyvalence des circuits. Ceci vaut en particulier pour les capteurs d’image, pour lesquels l’exploitation de la dimension verticale rend possible l’incorporation de fonctionnalités supplémentaires, notamment pour le traitement d’image. Parmi les nombreuses méthodes existantes pour réaliser des interconnexions verticales directes entre les puces empilées, le collage « hybride » cuivre/oxyde est une approche prometteuse permettant de réaliser simultanément la connexion mécanique et électrique, avec un pas d’interconnexion submicronique car limité principalement par la précision d’alignement atteignable entre les plots de collage métalliques au moment de leur mise en contact.Un enjeu majeur pour ce type d’architecture innovante est la tenue mécanique des éléments de connexion électrique. Cette thèse vise à examiner la robustesse mécanique d’un capteur d’image reporté sur un circuit logique de technologie plus avancée par empilement 3D, dans le but de prévenir un certain nombre de problèmes potentiels causés par les contraintes thermomécaniques s’accumulant pendant sa fabrication. Dans ce travail de thèse, les contraintes mécaniques générées dans le capteur d’image empilé pendant l’élaboration du circuit et son encapsulation dans un boîtier à puce sont examinées, et les interactions entre les différents composants du système analysées. L’intégrité mécanique de plusieurs structures clés est étudiée, notamment : (i) les plots d’interconnexion à l’interface de collage « hybride » entre la puce imageur et la puce logique, (ii) les plots d’assemblage filaire faisant le lien entre le capteur d’image empilé et le substrat du boîtier, ainsi que (iii) les composants électroniques dans la zone active du substrat silicium du capteur d’image, à travers l’évaluation in-situ des contraintes mécaniques induites par les procédés de fabrication grâce à des capteurs de contraintes piézorésistifs à base de silicium dopé. Pour ce faire, une approche combinant caractérisations expérimentales et analyses numériques a été adoptée : les mesures morphologiques, mécaniques et électriques effectuées sont systématiquement corrélées et étendues à l’aide de simulations par la méthode des éléments finis, permettant de garantir la bonne intégration des produits d’imagerie du point de vue thermomécanique.