Thèse soutenue

Simulation de l'érosion de cavitation par une approche CFD-FEM couplée

FR  |  
EN
Auteur / Autrice : Prasanta Sarkar
Direction : Marc FivelJean-Pierre FrancGiovanni Ghigliotti
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides Energétique, Procédés
Date : Soutenance le 05/03/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des écoulements géophysiques et industriels (Grenoble)
Jury : Président / Présidente : Jean-Yves Billard
Rapporteurs / Rapporteuses : Éric Goncalves, Christophe Corre

Résumé

FR  |  
EN

Ce travail de recherche est dédié à la compréhension des mécanismes physiques de l’érosion de cavitation dans un fluide compressible à l’échelle fondamentale de l’implosion d’une bulle de cavitation. Suite à l’implosion d’une bulle de vapeur à proximité d’une surface solide, des très hautes pressions sont générées. Ces pressions sont considérées responsables de l’endommagement (érosion) des surfaces solides observé dans la plupart des applications. Notre approche numérique démarre avec le développement d’un solveur compressible capable de résoudre les bulles de cavitation au sein du code volumes finis YALES2 en utilisant un simple modèle de mélange homogène des phases fluides. Le solveur est étendu à une approche ALE (Arbitraire Lagrangien Eulérien) dans le but de mener des simulations d’interaction fluide-structure sur un maillage mobile. La réponse du matériau solide est calculée avec le code de calcul éléments finis Cast3M, et nous a permis de mener des simulation avec un couplage d’abord monodirectionnel, ensuite bidirectionnel, entre le fluide et le solide. On compare des résultats obtenus à deux dimensions, puis à trois, avec des observations expérimentales. On discute les chargements de pression estimés, et les réponses de différents matériaux pour des implosions de bulle à des différentes distances de la surface. Enfin, à travers l’utilisation de simulations avec couplage bidirectionnel entre fluide et solide, on identifie l’amortissement des chargements de pression pour les différents matériaux.