Modélisation multiphysique de différentes phases de l'électro-aérospray : de la génération à l'atomisation
Auteur / Autrice : | Victorien Mamet |
Direction : | Jean-Marc Dedulle |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des fluides Energétique, Procédés |
Date : | Soutenance le 10/01/2019 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des matériaux et du génie physique (Grenoble) |
Jury : | Président / Présidente : Alexandre Ern |
Examinateurs / Examinatrices : Raphael Boichot, Patrick Namy | |
Rapporteurs / Rapporteuses : Moumen Darcherif, Gérard Louis Vignoles |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Afin de lutter contre les allergies alimentaires, la société pharmaceutique DBV Technologies propose un patch épicutané permettant un traitement efficace, la plateforme Viaskin ®.Pour envisager de nouveaux moyens de production de ce patch, nous avons étudié dans cette thèse le procédé d'aérospray (AS).Pour cela, nous avons développé des modèles numériques des différentes parties spatiales de l'AS.Dans un premier temps, nous étudions le cône de liquide formé à la sortie de buse d'AS. L'approche diphasique est traitée à l'aide de la méthode de champ de phase (dite à interface diffuse), dans laquelle l'équation de Cahn-Hilliard gouverne la fonctionnelle d'interface.Deux régimes principaux sont identifiés : le régime Stationnaire Dynamique, où le cône de liquide est stable, et le régime Transitoire, où sa dynamique est périodique.Dans ce second régime, les résultats du modèle ont montré une évolution discontinue de la période d'oscillation du cône en fonction du débit liquide. Nous avons corrélé ce phénomène avec des oscillations capillaires du cône, et comparé avec succès les résultats des simulations numériques aux résultats expérimentaux.Dans un second temps, la fragmentation du jet de liquide produit par le cône est étudiée numériquement, et comparée aux résultats d'analyses de stabilité linéaire produites dans la littérature. Le modèle proposé est une méthode utilisant un maillage mobile, à interface nette.Nous avons montré que la taille des gouttelettes produites variait peu en fonction de la pression de gaz appliquée.L'ensemble des travaux permet de comprendre les phénomènes physiques sous-jacents à l'AS, et à sélectionner dans une optique industrielle les modes optimaux de fonctionnement.