Thèse soutenue

Modélisation, estimation et simulation dans deux modèles statistiques : la régression quantile et la déconvolution aveugle

FR  |  
EN
Auteur / Autrice : Josephine Merhi Bleik
Direction : Ghislaine Gayraud
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées : Laboratoire de Mathématiques Appliquées de Compiègne (Unité de recherche EA-2222)
Date : Soutenance le 06/09/2019
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Compiègne)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques Appliquées de Compiègne / LMAC

Résumé

FR  |  
EN

Cette thèse est consacrée à l’estimation de deux modèles statistiques : le modèle des quantiles de régression simultanés et le modèle de déconvolution aveugle. Elle se compose donc de deux parties. Dans la première partie, nous nous intéressons à l’estimation simultanée de plusieurs quantiles de régression par l’approche Bayésienne. En supposant que le terme d’erreur suit la distribution de Laplace asymétrique et en utilisant la relation entre deux quantiles distincts de cette distribution, nous proposons une méthode simple entièrement Bayésienne qui satisfait la propriété non croisée des quantiles. Pour la mise en œuvre, nous utilisons l’algorithme de Gibbs avec une étape de Metropolis-Hastings pour simuler les paramètres inconnus suivant leur distribution conditionnelle a posteriori. Nous montrons la performance et la compétitivité de la méthode sous-jacente par rapport à d’autres méthodes en fournissant des exemples de simulation. Dans la deuxième partie, nous nous concentrons sur la restoration du filtre inverse et du niveau de bruit d’un modèle de déconvolution aveugle bruyant dans un environnement paramétrique. Après la caractérisation du niveau de bruit et du filtre inverse, nous proposons une nouvelle procédure d’estimation plus simple à mettre en œuvre que les autres méthodes existantes. De plus, nous considérons l’estimation de la distribution discrète inconnue du signal d’entrée. Nous obtenons une forte cohérence et une normalité asymptotique pour toutes nos estimations. En incluant une comparaison avec une autre méthode, nous effectuons une étude de simulation cohérente qui démontre empiriquement la performance informatique de nos procédures d’estimation.