Thèse soutenue

Stratégies de régularisation pour l'apprentissage par transfert des réseaux de neurones à convolution

FR  |  
EN
Auteur / Autrice : Xuhong Li
Direction : Yves GrandvaletFranck Davoine
Type : Thèse de doctorat
Discipline(s) : Informatique : Unité de recherche Heudyasic (UMR-7253)
Date : Soutenance le 10/09/2019
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Compiègne)
Partenaire(s) de recherche : Laboratoire : Heuristique et Diagnostic des Systèmes Complexes [Compiègne] / Heudiasyc

Résumé

FR  |  
EN

L’apprentissage par transfert de réseaux profonds réduit considérablement les coûts en temps de calcul et en données du processus d’entraînement des réseaux et améliore largement les performances de la tâche cible par rapport à l’apprentissage à partir de zéro. Cependant, l’apprentissage par transfert d’un réseau profond peut provoquer un oubli des connaissances acquises lors de l’apprentissage de la tâche source. Puisque l’efficacité de l’apprentissage par transfert vient des connaissances acquises sur la tâche source, ces connaissances doivent être préservées pendant le transfert. Cette thèse résout ce problème d’oubli en proposant deux schémas de régularisation préservant les connaissances pendant l’apprentissage par transfert. Nous examinons d’abord plusieurs formes de régularisation des paramètres qui favorisent toutes explicitement la similarité de la solution finale avec le modèle initial, par exemple, L1, L2, et Group-Lasso. Nous proposons également les variantes qui utilisent l’information de Fisher comme métrique pour mesurer l’importance des paramètres. Nous validons ces approches de régularisation des paramètres sur différentes tâches de segmentation sémantique d’image ou de calcul de flot optique. Le second schéma de régularisation est basé sur la théorie du transport optimal qui permet d’estimer la dissimilarité entre deux distributions. Nous nous appuyons sur la théorie du transport optimal pour pénaliser les déviations des représentations de haut niveau entre la tâche source et la tâche cible, avec le même objectif de préserver les connaissances pendant l’apprentissage par transfert. Au prix d’une légère augmentation du temps de calcul pendant l’apprentissage, cette nouvelle approche de régularisation améliore les performances des tâches cibles et offre une plus grande précision dans les tâches de classification d’images par rapport aux approches de régularisation des paramètres.