Thèse soutenue

Allocation de puissance en ligne dans un réseau IoT dynamique et non-prédictible

FR  |  
EN
Auteur / Autrice : Alexandre Marcastel
Direction : Inbar Fijalkow
Type : Thèse de doctorat
Discipline(s) : STIC (Sciences et Technologies de l'Information et de la Communication) - ED EM2PSI
Date : Soutenance le 21/02/2019
Etablissement(s) : Cergy-Pontoise
Ecole(s) doctorale(s) : École doctorale Économie, Management, Mathématiques, Physique et Sciences Informatiques (Cergy-Pontoise, Val d'Oise)
Partenaire(s) de recherche : Laboratoire : Equipes Traitement de l'Information et Systèmes (Cergy-Pontoise, Val d'Oise ; 2002-....)
Jury : Président / Présidente : Jean-Marie Gorce
Examinateurs / Examinatrices : Inbar Fijalkow, Mylène Pischella, David Gesbert, Marceau Coupechoux, Zwi Altman, Elena Veronica Belmega, Panagiotis Mertikopoulos
Rapporteur / Rapporteuse : Mylène Pischella, David Gesbert

Résumé

FR  |  
EN

L’Internet des Objets (IoT) est envisagé pour interconnecter des objets communicants et autonomes au sein du même réseau, qui peut être le réseau Internet ou un réseau de communication sans fil. Les objets autonomes qui composent les réseaux IoT possèdent des caractéristiques très différentes, que ce soit en terme d’application, de connectivité, de puissance de calcul, de mobilité ou encore de consommation de puissance. Le fait que tant d’objets hétérogènes partagent un même réseau soulève de nombreux défis tels que : l’identification des objets, l’efficacité énergétique, le contrôle des interférences du réseau, la latence ou encore la fiabilité des communications. La densification du réseau couplée à la limitation des ressources spectrales (partagées entre les objets) et à l’efficacité énergétique obligent les objets à optimiser l’utilisation des ressources fréquentielles et de puissance de transmission. De plus, la mobilité des objets au sein du réseau ainsi que la grande variabilité de leur comportement changent la dynamique du réseau qui devient imprévisible. Dans ce contexte, il devient difficile pour les objets d’utiliser des algorithmes d’allocation de ressources classiques, qui se basent sur une connaissance parfaite ou statistique du réseau. Afin de transmettre de manière efficace, il est impératif de développer de nouveaux algorithmes d’allocation de ressources qui sont en mesure de s’adapter aux évolutions du réseau. Pour cela, nous allons utiliser des outils d’optimisation en ligne et des techniques d’apprentissage. Dans ce cadre nous allons exploiter la notion du regret qui permet de comparer l’efficacité d’une allocation de puissance dynamique à la meilleure allocation de puissance fixe calculée à posteriori. Nous allons aussi utiliser la notion de non-regret qui garantit que l’allocation de puissance dynamique donne des résultats asymptotiquement optimaux . Dans cette thèse, nous nous sommes concentrés sur le problème de minimisation de puissance sous contrainte de débit. Ce type de problème permet de garantir une certaine efficacité énergétique tout en assurant une qualité de service minimale des communications. De plus, nous considérons des réseaux de type IoT et ne faisons donc aucune hypothèse quant aux évolutions du réseau. Un des objectifs majeurs de cette thèse est la réduction de la quantité d’information nécessaire à la détermination de l’allocation de puissance dynamique. Pour résoudre ce problème, nous avons proposé des algorithmes inspirés du problème du bandit manchot, problème classique de l’apprentissage statistique. Nous avons montré que ces algorithmes sont efficaces en terme du regret lorsque l’objet a accès à un vecteur, le gradient ou l’estimateur non-biaisé du gradient, comme feedback d’information. Afin de réduire d’avantage la quantité d’information reçue par l’objet, nous avons proposé une méthode de construction d’un estimateur du gradient basé uniquement sur une information scalaire. En utilisant cet estimateur nous avons présenté un algorithme efficace d’allocation de puissance.