Thèse soutenue

Développement de la séquence IRM Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) pour la quantification du T1 : application à la détection et à la caractérisation de métastases chez le petit animal

FR  |  
EN
Auteur / Autrice : Thibaut Faller
Direction : Emeline Ribot
Type : Thèse de doctorat
Discipline(s) : Bioimagerie
Date : Soutenance le 02/12/2019
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Partenaire(s) de recherche : Laboratoire : Centre de Résonance Magnétique des Systèmes Biologiques
Jury : Président / Présidente : Macha Nikolski
Examinateurs / Examinatrices : Emeline Ribot, Franck Kober, Olivier Beuf, Tobias Kober
Rapporteurs / Rapporteuses : Franck Kober, Olivier Beuf

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les métastases sont une cause majeure de décès dans le cas du cancer. En effet, ces tumeurs secondaires peuvent se développer dans divers organes, distants de la tumeur primaire, et surviennent à des temps différents au cours de la croissance de la tumeur primaire. De nombreuses techniques d’imagerie biomédicale peuvent être utilisées pour les détecter. Parmi celles-ci, l’Imagerie par Résonance Magnétique (IRM) a l’avantage de ne pas utiliser de rayonnements ionisants et permet de forts contrastes entre des tissus mous différents. Toutefois il est encore nécessaire de développer de nouvelles techniques IRM pour mieux caractériser les tumeurs, obtenir des données quantitatives, et réduire drastiquement les durées d’examen. Parmi les caractéristiques biophysiques mesurables par IRM, le temps de relaxation T1 semble être un bio-marqueur de l’efficacité d’une thérapie anti-cancéreuse. Cependant, sa mesure est généralement trop chronophage pour être utilisée en imagerie préclinique sur des cohortes d’animaux, ou pour une utilisation en routine clinique. Cette thèse a porté sur le développement d’une séquence de quantification T1 fiable et rapide. Elle a été appliquée pour détecter et caractériser des métastases chez la souris avec comme pré-requis de générer des images avec une résolution spatiale élevée, d’être insensible aux mouvements respiratoires et de permettre des mesures reproductibles du T1. La séquence Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) à encodage cartésien a donc été choisie pour son fort potentiel de quantification T1, sa robustesse aux hétérogénéités de champ magnétique, et pour obtenir rapidement des cartes paramétriques en 3D. L’influence des paramètres de la séquence a d’abord été évaluée par simulations. Puis la séquence a été modifiée pour être compatible avec une méthode d’accélération appelée acquisition comprimée. Cette méthode a alors été utilisée soit pour réduire le temps d’acquisition des cartes T1, soit pour en améliorer la résolution spatiale. Cette nouvelle séquence MP2RAGE a alors été utilisée à 7T pour détecter et caractériser des métastases cérébrales disséminées dans le cerveau de souris. Pour détecter des métastases hépatiques, l’encodage cartésien initial s’est avéré trop sensible aux mouvements respiratoires. Il a donc été remplacé par un encodage radial, nécessitant une adaptation du schéma de reconstruction des cartes T1. Ainsi, des cartes T1 3D de l’abdomen entier de souris ont été obtenues en 9 minutes. Un suivi longitudinal de métastases hépatiques a montré des hétérogénéités de T1 inter- et intra-métastatiques. Pour une accélération supplémentaire, la séquence a été développée avec un encodage multi-coupe 2D, permettant ainsi d’utiliser les nombreux temps-morts présents dans le chronogramme. Des optimisations des paramètres de la séquence ont permis d’obtenir 6 cartes T1 en 9 s in vivo sur le cerveau et l’abdomen de souris. De plus, une étude préliminaire a montré qu’elle permettait de réaliser de la thermométrie. Une première perspective de ces travaux consiste à transférer cette séquence sur un aimant de recherche clinique. Une autre perspective serait de développer une séquence multi-coupe 3D radiale, accélérée par acquisition comprimée, applicable sur le petit-animal comme chez l’humain. Celapermettrait d’allier efficacité de la séquence, forte résolution spatiale et robustesse aux mouvements pour un large éventail d’applications.