Etude numérique et modélisation du modèle d'Euler bitempérature : point de vue cinétique.
Auteur / Autrice : | Corentin Prigent |
Direction : | Denise Aregba-Driollet, Stéphane Brull |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées et calcul scientifique |
Date : | Soutenance le 24/10/2019 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de mathématiques de Bordeaux - Centre Lasers Intenses et Applications (Bordeaux ; 1999-....) |
Jury : | Président / Présidente : David Lannes |
Examinateurs / Examinatrices : Denise Aregba-Driollet, Marc Massot, Christophe Chalons, Bruno Dubroca, Hervé Guillard, Matteo Faganello | |
Rapporteurs / Rapporteuses : Marc Massot, Christophe Chalons |
Mots clés
Mots clés contrôlés
Résumé
Dans divers domaines de la physique, certains phénomènes sont modélisés par des systèmes hyperboliques non-conservatifs. En particulier, dans le domaine de la physique des plasmas, dont l'un des champs d'application majeur est la Fusion par Confinement Inertiel, le système d'Euler bi-température, modélisant les phénomènes de transport de particules chargées, en est un exemple. La difficulté de l'étude de ces systèmes réside dans la présence de termes non-conservatifs, qui empêchent la définition classique des solutions faibles. Pour parvenir à une définition de ce type de solutions, on a recours à l'emploi de systèmes cinétiques sous-jacents. Dans ce manuscrit, on s'intéresse à l'étude numérique de ces systèmes cinétiques pour la résolution du système d'Euler bi-température.Ce manuscrit se divise en deux parties. La première partie contient l'étude numérique du système d'Euler bi-température. Dans un premier chapitre, on résout numériquement les équations en dimension 1 d'espace par le biais d'un système sous-jacent issu de la physique des plasmas: le système de Vlasov-BGK-Ampère. On présente une méthode numérique préservant l'asymptotique pour ce système sous-jacent et on montre, par des simulations numériques, que le schéma limite obtenu donne des résultats consistants avec Euler bi-température. Dans un second chapitre, on résout le même modèle en dimension 2 d'espace par un système sous-jacent de type BGK discret. On démontre une inégalité d'entropie pour les solutions issues du modèle sous-jacent, ainsi qu'une inégalité discrète de dissipation d'entropie pour le schéma.Dans la deuxième partie de ce manuscrit, on s'intéresse au développement de méthodes numériques pour quelques modèles cinétiques. On considère ici le cas des écoulements raréfiés de mélanges de gaz, dans l'optique d'une application aux cas des plasmas. Premièrement, on présente un schéma cinétique adaptatif et dynamique en vitesse pour les gaz inertes. Par l'emploi de lois de conservation discrètes, la solution est approchée sur un ensemble de vitesses discrètes local et dynamique. Dans un second temps, on propose une extension de cette méthode visant à améliorer les performances de celle-ci. Puis, ces deux versions de la méthode sont comparées à la méthode classique sur grille fixe uniforme sur une série de cas tests.Enfin, dans le dernier chapitre, on propose une méthode numérique pour la résolution d'une extension de ces équations, prenant en compte la présence de réactions chimiques au sein du mélange. Le contexte considéré est celui des réactions chimiques bi-moléculaires réversibles lentes. La méthode proposée, de type implicite-explicite, est linéaire, stable et conservative.