Stratégies de jeux pour quelques problèmes inverses
Mots clés
Résumé
L’objectif de ce travail de thèse est la résolution du problème de couplage de complétion des données et identification des paramètres. Le problème de Cauchy est un problème de détermination des mesures sur une partie inaccessible du bord d’un solide à partir des données surabondantes sur le bord. L’identification des paramètres est un problème de détermination du paramètre de système. Ces deux problèmes sont connus pour être mal posés au sens d’Hadamard. Le mémoire de thèse se divise en quatre parties. La première partie est consacrée à une étude bibliographique. Dans le deuxième chapitre, nous avons appliqué la théorie des jeux pour la résolution du problème de couplage de complétion des données et identification de conductivité en électrocardiographie. On a évoqué la question d ’identifiabilité de la conductivité. On a montré l’unicité de ce paramètre en utilisant seulement les données de Cauchy sur une partie du bord. Nos expériences numériques ciblent les applications médicales en électrocardiographie. Nous avons appliqué notre procédure dans un thorax bidimensionnel et tridimensionnel. La troisième partie est consacré à la résolution du problème de couplage en élasticité linéaire en appliquant la stratégie des jeux. Une étude numérique a été effectué où on a considéré une configuration particulière pour assurer l’identifiabilité des paramètres. Dans la dernière partie, on s’intéresse à un problème de thermoélasticité. Il s’agit de coupler deux disciplines différentes, la thermique et l’élasticité. Le problème de l’identification de fissure est une application naturelle dans ce cas.