New negative electrode materials for Li-, Na- and K-ion batteries - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

New negative electrode materials for Li-, Na- and K-ion batteries

Nouveaux matériaux d'électrodes négatives pour les batteries Li-, Na- et K-ion

Résumé

Nowadays, the batteries play a key role in almost all of the technologies that surround human kind. In order to satisfy the increasing demand, the design of more efficient devices with higher energy density and cycle life is crucial. In this context, silicon and germanium appear as promising candidates for electrode materials due to their high theoretical capacities. Although, prior to the implementation of these materials at an industrial level, several challenges must be addressed. The high delivered capacities come at the expense of a volume expansion and contraction upon alkali insertion and deinsertion. These volume changes in the Si and Ge particles, lead to particle pulverization, detachment from the current collector, excessive and uncontrolled formation of SEI layer and eventual capacity fade. Different strategies have been reported in the literature to overcome the aforementioned challenges. In this work, two approaches are considered, the study of the Si1-xGex alloys and the use of a layered morphology. In the first one, the formation of the Si1-xGex solid solution improves the capacity retention and the electronic conductivity. In the second one, the layered Siloxene and germanane, derived from the CaSi2 and CaGe2 Zintl phases buffers the volume changes and improves the kinetics of the system. On the other hand, the fundamental study of their electrochemical mechanism is crucial to understand the reasons behind an improvement and a failure. Thus, in this work we have studied the electrochemical lithiation mechanism of the Si- and Ge- based materials in an attempt to identify the different phases that are formed during cycling
De nos jours, les batteries jouent un rôle clé dans presque toutes les technologies qui entourent le genre humain. Afin de répondre à la demande croissante, la conception d'appareils plus efficaces avec une densité d'énergie et une durée de vie plus élevées est cruciale. Dans ce contexte, le silicium et le germanium apparaissent comme des candidats prometteurs pour les matériaux d'électrodes en raison de leurs capacités théoriques élevées. Bien avant une mise en œuvre de ces matériaux au niveau industriel, plusieurs défis doivent être relevés. Les capacités élevées délivrées se font au détriment d'une expansion volumique lors de l'insertion des ions lithium par exemple. Ces changements de volume dans les particules de Si et de Ge entraînent la pulvérisation des particules, le détachement du collecteur de courant, la formation excessive et incontrôlée de la couche de SEI et une chute de la capacité. Différentes stratégies ont été rapportées dans la littérature pour surmonter les défis susmentionnés. Dans ce travail, deux approches ont été considérées, d'une part l'étude des alliages Si1-xGex et d'autre part l'étude de composés lamellaires. Dans le premier cas, la formation de la solution solide Si1-xGex améliore la rétention de capacité et la conductivité électronique. Dans le second, les matériaux lamellaires Siloxene et germanane, dérivés des phases de Zintl CaSi2 et CaGe2, amortissent les changements de volume et améliorent la cinétique du système. Une étude fondamentale des mécanismes électrochimiques a été réalisée pour comprendre les processus mis en jeu dans ces deux approches

Domaines

Autre
Fichier principal
Vignette du fichier
TheseLoaizaRodriguez.pdf (149.94 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03637259 , version 1 (11-04-2022)

Identifiants

  • HAL Id : tel-03637259 , version 1

Citer

Laura Cristina Loaiza Rodriguez. New negative electrode materials for Li-, Na- and K-ion batteries. Other. Université de Picardie Jules Verne, 2019. English. ⟨NNT : 2019AMIE0059⟩. ⟨tel-03637259⟩
106 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More