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Resumen
Ciertos tipos de problemas no pueden resolverse usando los actuales ordenadores
clásicos. Una forma de encontrar una solución, es mediante el uso de orde-
nadores cuánticos. Sin embargo, construir un ordenador cuántico es realmente
complicado actualmente, debido a las limitaciones tecnológicas. Mientras tanto,
los simuladores cuánticos han sido capaces de resolver algunos de estos proble-
mas, ya que los simuladores cuánticos son más accesibles experimentalmente.

Las llamadas caminatas cuánticas, en su versión discreta, son una herramienta
muy útil para simular ciertos sistemas físicos. En el límite al continuo, se puede
obtener una serie de ecuaciones diferenciales, particularmente, la ecuación de
Dirac entre ellas. En la presente tesis, se seguirán estudiando las propiedades de
las caminatas cuánticas, como posibles simuladores cuánticos. Podemos resumir
los resultados en: i) Se introduce un modelo de caminata cuántica, en el que se
simula, en el continuo, la dinámica de fermiones en una teoría de branas. Eso
abre la posibilidad de estudiar diferentes modelos de teorías de Kaluza-Klein;
ii) Se discute la invariancia gauge en caminatas cuánticas, acopladas a campos
electromagnéticos, donde se exhiben similitudes y diferencias con modelos pre-
vios. Este modelo presenta conexiones con la invariancia gauge realizada en
"lattice gauge theories"; iii) Se introducen caminatas cuánticas sobre redes no
rectangulares, como la red triangular o hexagonal, con el propósito de simular
la ecuación de Dirac en el límite al continuo. Estos modelos se pueden extender,
por medio de operadores locales unitarios, que permiten reproducir la dinámica
de fermiones en espacio tiempo curvo.

Palabras claves: Caminatas cuánticas a tiempo discreto, Simulación cuántica,
Invariancia Gauge discreta, Redes no rectangulares.
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Résumé
Certains problèmes ne peuvent être résolus efficacement avec les ordinateurs
actuels, dits “classiques”. Certains algorithmes quantiques apportent des solu-
tions théoriques à ces problèmes, qui pourraient être résolus efficacement si un
ordinateur quantique, sous-entendu, universel, pouvait implémenter ces algo-
rithmes. Il se trouve que la construction d’un tel ordinateur quantique s’avère
une tâche très compliquée, limitée aujourd’hui fortement par les technologies à
notre disposition. Ceci étant dit, les recherches précédemment citées durant, des
simulateurs quantiques specialisés ont déjà été capables de résoudre certaines
versions modestes de ces problèmes. Les simulateurs quantiques actuels sont en
effet, soit des ordinateurs quantiques effectuant une tâche spécifique, soit des
machines quantiques analogiques mimant le phénomène physique d’intérêt.

Les dénommées marches quantiques, évolutions quantiques locales sur graphes
discrets, sont un outil très pratique pour simuler certains systèmes physiques.
Nous nous limiterons à leur version à temps discret, les marches quantiques
à temps discret (MQTD). Dans certaines limites en espace-temps continu, ces
marches quantiques coincident avec des équations d’onde pour fermions rela-
tivistes, dont l’archétype et pilier est l’équation de Dirac. Dans la présente thèse,
nous poursuivons l’étude des propriétés des MQTD comme possibles schémas
de simulation quantique. Nous pouvons résumer nos résultats en trois parties:
i) Nous introduisons un schéma MQTD permettant de simuler, dans la limite
au continu, la dynamique de fermions relativistes dans une théorie de branes;
ceci ouvre la possibilité d’étudier différents modèles de théories Kaluza-Klein; ii)
Nous discutons l’invariance de jauge U(1), i.e., électromagnétique, des MQTD,
nous comparons notre modèle aux invariances précédemment introduites dans
la littérature; notre invariance de jauge présente de fortes similitudes avec celle
des théories de jauge sur réseau; iii) Nous introduisons des MQTD sur grilles
non-rectangulaires, plus précisément, triangulaires et hexagonales, avec toujours
comme condition de retrouver l’équation de Dirac au continuum; ces modèles
peuvent être étendus au moyen d’opérateurs unitaires locaux spatiotemporelle-
ment inhomogènes et n’agissant que sur l’espace interne du marcheur, afin de
générer dans la limite au continu l’equation de Dirac en espace-temps courbe.

Mots clés: Marches quantiques à temps discret, Simulation quantique
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Abstract
There are many problems that cannot be solved using current classical comput-
ers. One manner to approach a solution of these systems is by using quantum
computers. However, building a quantum computer is really challenging from
the experimental side. Quantum simulators have been capable to solve some of
these problems, as they are realizable experimentally.

Discrete Time Quantum Walks (DTQWs) have been proved to be an useful
tool to quantum simulate physical systems. In the continuous limit, a family of
differential equations can be achieved, in particular, the Dirac equation can be
recovered. In this thesis we study QWs as possible schemes for quantum simula-
tion. Specifically, we can summarize our results in: i) We introduce a QW-based
model in which a brane theory can be simulated in the continuum, opening
the possibility to study more general theories with extra dimensions; ii) Elec-
tromagnetic gauge invariance in QWs is discussed, presenting some similarities
and differences to previous models. This QW model also makes a connection to
gauge invariance in lattice gauge theories (LGT); iii) We introduce QWs over non-
rectangular lattices, such a triangular or honeycomb structures, for the purpose
of simulating the Dirac equation in the continuum. We also extent these models,
by introducing local coin operators, that allow us to reproduce the dynamics of
quantum particles under a curved space time.

Keywords: Discrete Time Quantum walks, Quantum simulations, Discrete Gauge
invariance, Non-rectangular lattices.
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Introduction
Quantum Walks (QWs), from a computer science perspective, are the quantum
analogue of classical random walks. Instead of using probabilities, which are
transformed by stochastic matrices, QWs involve probability amplitudes, which
are transformed by unitary transformations. Among the interesting properties
that appear in QWs one can mention interference effects or quantum entangle-
ment.

Because of their quantum properties, we can define also QWs from a physical
perspective. QWs can be seen as the dynamics of an excitation, in a quantum-
mechanical spin system ruled by an unitary operator. Therefore, after some itera-
tions, the location of the particle is a probability distribution, whose probabilities
of being in a specific site, that can be calculated using the rules of quantum me-
chanics.

Quantum walks constitute an interdisciplinary scientific field, related to com-
puter science and physics. Motivated by the algorithmic applications of classical
random walks, there is a huge range of quantum algorithms based on quantum
walks, specially since their computational universality has been proved [36, 86],
such the Grover algorithm [121] or element distinctness problems [5]. On the
other hand, due to the quantum properties of QWs, it is natural to consider their
applications in physics: in particular, we are going to focus on their applications
in quantum simulation.

First, in Chapter (2), we introduce the definition of QWs, in particular its
discrete version, and their basic properties. Then, we study their applications in
quantum simulations, and how they can simulate certain differential equations
when the continuous limit is recovered. Specifically, we introduce a discrete-time
quantum walk model which reproduces in the continuum a brane-world model
proposed by Rubakov [114].

In Chapter (3) an important concept is studied in the context of DTQW, gauge
invariance. Discrete gauge invariance is introduced in an alternative manner
with respect to previous works. Indeed, we use a similar approach analogous to
that of lattice gauge theories, which could be beneficial for both fields.

Later, in Chapter (4) , quantum walks are defined over some non-rectangular
lattices. We introduce a DTQW on the honeycomb and triangular lattices, which
allow us to recover the Dirac equation in the continuum. This represents one
of our main results, since QWs on the honeycomb and triangular lattices have
been only used for quantum algorithmic purposes, and it remained an open-
question whether the Dirac equation could be reproduced by DTQW defined on

17



non-rectangular lattices [42].
In Chapter (5) we extend the QW-based model on the honeycomb and triangu-

lar lattice, by introducing local unitaries that allow us to reproduce the dynamics
of the Dirac equation in curved space-time.

Finally, we discuss the possibility of extending these results to a higher dimen-
sional space, specifically, how we can define a QW over a discretized 3D space
using tetrahedrons.

18



1 Quantum walks: an introduction

Summary
1.1 Classical random walk . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Discrete time quantum walk . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Quantum walk in momentum space . . . . . . . . . . . . . . 24
1.2.2 The asymptotic probability distribution in the long time limit 26

In this chapter we introduce the definition of quantum walks, specifically its
discrete time version. In order to understand better the quantum version, we
introduce first the well-known classical random walk. Then, we define the quan-
tum version of the random walk on a line, highlighting some of its basic proper-
ties. Finally, we show how quantum walks can be studied analytically in momen-
tum space.

1.1 Classical random walk
Classical random walks (CRWs) are a subset of stochastic processes which are a
powerful technique for the development of stochastic algorithms [98, 71]. Ref-
erences [102, 85] are recommended to obtain a deeper knowledge in algorithms
based on CRWs. Moreover, apart from their importance in algorithmic, CRWs
have been extensively used in many areas of scientific research as physics, biol-
ogy, finances, etc [52, 72, 93, 25].

Let us introduce the simplest case of a classical random walk. It consists on a
particle (called ’the walker’), that moves on a discrete line. At every time step
j, it can jump either to left or to right, depending on the result of a probability
device with, in this case, two mutually exclusive results1. Generally, the walker
can move to the right with probability p or to the left with probability q = 1− p,
Fig.(1.1).

1In the case where the particle has the same probability to move left and right, we can use the
analogy of tossing an unbiased coin at every step
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0 1 2 3−3 −2 −1

p

q

Figure 1.1: A classical discrete random walk. The probability of moving right is p
and the probability of moving left is q = 1− p.

The probability distribution of finding the particle at position x, after j time
step, is given by the Bernoulli-distributed random variable, x. We can write the
probability distribution, with initial condition localized at x0 = 0, as:

P (x, j) =


(

j
1
2(x+ j)

)
p

1
2 (x+j)p

1
2 (x−j), 1

2(x+ n) ∈ N ;

0, otherwise.
(1.1)

In the limit in which j is large, we can approximate the probability distribution,
Eq.(1.1), by a Gaussian distribution [112]. In the symmetric case, q = p = 1

2 , the
probability is given, for j large, by:

P (x, j) ≈ 1 + (−1)j−x√
2πn

exp
(
−x

2

2j

)
. (1.2)

In order to compare with the quantum case, we can study one of the most im-
portant properties, the standard deviation σ. This magnitude indicates how far
the probability distribution has spread, after a certain time step, from the mean
value, 〈x〉 = 0. In Fig.(1.2), it is represented the standard deviation as a function
of the time step, σ(j). In the case of the CRW, σ is proportional to the square
root of the evolution time.

20



�������

20 40 60 80 100
Time step

10

20

30

40

50

Standard deviation

Quantum random walk

Classical random walk

Figure 1.2: Comparison of the evolution of the standard deviation as a function
of the time step for the QW and the CRW. The initial condition in
the QW is ψ0 = 1√

2 |0〉 ⊗ (|↑〉+ i |↓〉), whereas in the CRW the initial
condition is localized around x0. The total number of time steps is
J = 100.

1.2 Discrete time quantum walk
To illustrate what a quantum random walk is, we introduce the simplest, and
most studied model of quantum walk, i.e the discrete-time quantum walk (DTQW)
on a infinite line. Of course, DTQWs can be defined in more sophisticated struc-
tures like cycles or higher dimensional lattices. However, as the QW on the line
is a simple model, it helps us to understand the most relevant properties.

Let us consider the dynamical evolution of the DTQW described by the Hilbert
space H = Hp ⊗ Hc. Hp is the Hilbert space spanned by the positions of the
particle. In the case of the discrete line, it is spanned by the basis {|p〉}p∈Z. Hc

is the internal degree of freedom, which is referred as the ’coin’-space. In the
simplest case, the coin space is spanned by the two basis states {|↑〉 , |↓〉}, which
play the role of the spin-1

2 of the particle.
The evolution of the system is determined by the application of a unitary op-

erator, instead of a stochastic matrix as in the CRW. The unitary operator which
acts on the total Hilbert space is given by:

U = T (IP ⊗ C) . (1.3)

Therefore, the evolution of the DTQW after j time steps is written as:

|ψ(j)〉 = U j |ψ(0)〉 , (1.4)

where IP is the identity operator in HP . C is the coin operator, which only acts
on HC , whereas T is the conditional shift operator, which involves the whole
Hilbert space H.
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The conditional shift operator T allows the particle to move one step for-
ward/backward, depending on the internal degree of freedom, e.g the walker
goes forward if it has spin up |↑〉) , and goes backwards in case of spin down |↓〉.
This is represented by:

T =
∑
p∈Z
|p+ 1〉 〈p| ⊗ |↑〉 〈↑|+ |p− 1〉 〈p| ⊗ |↓〉 〈↓| . (1.5)

On the other hand, IP⊗C acts only on the coin space, playing the role of ’tossing’
the quantum coin. C rotates the internal degree of freedom of the walker. Since
a unitary transformation is quite arbitrary, we can define a family of walk with
different behaviors. The most general unitary rotation can be chosen as:

C(α, θ, γ, φ) = eiα
(

eiγ cos θ eiφ sin θ
−e−iφ sin θ e−iγ cos θ

)
(1.6)

where the four parameters (α, θ, γ, φ) are real. In the case where θ = π
4 , α =

−γ = π
2 and φ = −π

2 , the quantum coin becomes the so-called Hadamard coin:

CH = 1√
2

(
1 1
1 −1

)
. (1.7)

The Hadamard coin CH is said to be balanced, which means that applying the
evolution operator U :

|↑〉 ⊗ |0〉 → 1√
2

(|↑〉+ |↓〉)⊗ |0〉

→ 1√
2

(|↑〉 ⊗ |1〉+ |↓〉 ⊗ |−1〉) , (1.8)

the probability of finding the particle in the basis {|↑〉 ⊗ |1〉 , |↓〉 ⊗ |−1〉} is p = 1
2

for each state. Note that if we continue the quantum walk by performing a
measurement after each step, we recover the behavior of the classical random
walk. Obviously, in the case of the quantum case, we do not measure at each
time step, otherwise we destroy its quantum nature.

By "quantum nature", we mean that in the quantum walk we find: interference
of the state and entanglement between coin and position space. To illustrate how
the probability distribution differs from the classical one, let us evolve the walker
a few steps, using as an initial condition |ψ〉0 = |↑〉⊗ |0〉. The evolved state reads
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as:

|ψ〉0
U−→ 1√

2
(|↑〉 ⊗ |1〉 − |↓〉 ⊗ |−1〉)

U−→ 1
2 (|↑〉 ⊗ |2〉 − (|↑〉 − |↓〉)⊗ |0〉+ |↓〉 |−2〉)

U−→ 1
2
√

2
(|↑〉 ⊗ |3〉+ |↓〉 ⊗ |1〉+ |↑〉 ⊗ |−1〉

−2 |↓〉 ⊗ |−1〉 − |↓〉 ⊗ |−3〉) . (1.9)

It is possible to observe, after some iterations, that the quantum walk probability
distribution is different from the classical probability distribution. In Fig.(1.3),
we make a comparison between the quantum and the classical case.
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Figure 1.3: Probability density of a Hadamard walk on a line for J = 100 steps,
compared with the probability distribution of a classical random walk.
The initial condition is localized in x = 0, and different initial spin
conditions are considered.

Some features that we can observe, from Fig.(1.3) and from Eq.(1.9), is that
the probability distribution can be asymmetric or symmetric, depending on the
initial condition. This is due to basic property of quantum mechanics, such as
interference. For instance, the initial condition |ψ〉0 = |↑〉⊗|0〉, induces more can-
cellations from the right path, whereas constructive interference appears from
the left. To obtain a symmetric distribution, we can use as an initial condition a
superposition of |↑〉 and |↓〉 state, such a:

|ψ〉0 = 1√
2

(|↑〉+ i |↓〉)⊗ |0〉 . (1.10)

Since the Hadamard coin does not introduce complex amplitudes, the |↑〉 ampli-
tude will remain real, whereas |↓〉 will be purely imaginary. Therefore they will
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not interfere, leaving the probability distribution symmetric. Another possibil-
ity to obtain a symmetric probability distribution consists in changing the coin.
Choosing:

C = 1√
2

(
1 i
i 1

)
, (1.11)

both components |↑〉 and |↓〉 are treated in the same way. Thus, the walk is not
biased, independently of its initial condition.

On the other hand, we also observe that, in the case of the quantum walk,
the probability distribution spreads over the interval

[
− j√

2 ,
j√
2

]
, where j is the

number of steps. This differs from the classical case, in which the distribution is
peaked around the initial position, Fig.(1.3).

As mentioned before, the standard deviation on the classical random walk
scales as σ ∼

√
j, whereas it can be shown that in the quantum walk the variance

scales as σ ∼ j, as proved in [4], and showed numerically in Fig.(1.2). This result
confirms the quadratic speedup of the probability density spreading, being able
to scan significantly faster a graph than the classical walker. This is one of the
reasons why quantum walks are interesting for developing quantum algorithms.

1.2.1 Quantum walk in momentum space
The analytical study of the discrete time quantum walk using the Discrete Time
Fourier Transform (DTFT) was introduced first by Nayak and Vishwanath [101].
For simplicity, we will consider the Hadamard coin, which due to its translational
invariance, permits a simple description in the Fourier domain. Let us describe
the position of the walker as a two component spinor, being at position p at
time-step j, described by:

ψ(p, j) =
(
ψR(p, j)
ψL(p, j)

)
. (1.12)

Upon identifying this notation with the notation in operator terms, we can write
the spinor as:

|ψ(p, j)〉 = ψR(p, j) |↑〉+ ψL(p, j) |↓〉 . (1.13)

Applying the unitary evolution operator, Eq.(1.3), to a state at time j, it is possi-
ble to relate it to the state at time j + 1. Thus, the dynamics in matrix notation
is written as:

ψ(p, j + 1) = M+ψ(p+ 1, j) +M−ψ(p− 1, j). (1.14)

using the notation:

M+ = 1√
2

(
1 1
0 0

)
M− = 1√

2

(
0 0
1 −1

)
. (1.15)
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Therefore, the finite difference equations after one iteration of the unitary
evolution operator U , for each amplitude ψR(p, j) and ψL(j, p) are given by:

ψR(p, j + 1) = 1√
2

(ψR(p+ 1, j) + ψL(p+ 1, j))

ψL(p, j + 1) = 1√
2

(ψR(p− 1, j)− ψL(p− 1, j)) . (1.16)

In this way, the analysis of the QW on the line, for the Hadamard coin, reduces
to solving a two dimensional linear recurrence system.

The discrete Fourier transform of the wave function ψ(p, j), over Z is defined
by:

ψ̃(k, t) =
∑
p

ψ(p, j)eikp (1.17)

where k ∈ [−π, π] is the quasi-momentum. The inverse Fourier transform is given
by:

ψ(p, j) = 1
2π

∫ π

−π
ψ̃(k, j)e−ikpdk (1.18)

Using the definition of the discrete Fourier transform, Eq.(1.14), can be trans-
formed as:

ψ̃(k, t+ 1) =
∑
p

(M+ψ(p+ 1, j) +M−ψ(p− 1, j)) eikp

= eikM+
∑
p

ψ(p− 1, j)eik(p−1) + e−ikM−
∑
p

ψ(p+ 1, j)eik(p+1)

=
(
eikM+ + e−ikM−

)
ψ̃(k, j) (1.19)

Therefore, we have
ψ̃(k, j + 1) = Mkψ̃(k, j), (1.20)

where

Mk = e−ikM+ + eikM− = 1√
2

(
e−ik e−ik

eik −e−ik
)
. (1.21)

The recurrence in Fourier since can be written in the following simple form:

ψ̃(k, j) = M j
k ψ̃(k, 0), (1.22)

noticing that we have a local operator. We can compute M t
k by diagonalizing the

matrix Mk:
Mk = λ1

k |φ1
k〉 〈φ1

k|+ λ2
k |φ2

k〉 〈φ2
k| , (1.23)

where λik are the eigenvalues, and |φik〉 are the eigenvectors of Mk. Hence, we
obtain the time evolution matrix as:

M t
k =

(
λ1
k

)j
|φ1
k〉 〈φ1

k|+
(
λ2
k

)j
|φ2
k〉 〈φ2

k| . (1.24)
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The eigenvalues of Mk are λ1
k = eiωk and λ2

k = ei(π−ωk), where ωk ∈
[
−π

2 ,
π
2

]
satisfies sin(ωk) = sin k√

2 . The eigenvectors are given by:

φ1
k = 1√

2N(k)

(
e−ik√

2eiωk + e−ik

)

φ2
k = 1√

2N(π − k)

(
e−ik

−
√

2e−iωk + e−ik

)
(1.25)

with the normalization factor

N(k) = (1 + cos2 k) + cos k
√

1 + cos2 k. (1.26)

If the initial state is represented by ψ̃(k, 0) = (0, 1)T for all k. The wave functions
for any time, in Fourier space is written as:

ψ̃R(k, j) = 1
2

(
1 + cos k√

1 + cos2 k

)
eiωkj + (−1)j

2

(
1− cos k√

1 + cos2 k

)
e−iωkj

ψ̃L(k, j) = e−ik

2
√

1 + cos2 k

(
eiωkj − (−1)je−iωkj

)
(1.27)

Using the inverse of the Fourier transform, we can transform the amplitudes into
real space:

ψ̃R(p, j) = 1 + (−1)p+j
2

∫ π

−π

dk

2π

(
1 + cos k√

1 + cos2 k

)
e−i(kp+ωkj) (1.28)

ψ̃L(p, j) = 1 + (−1)p+j
2

∫ π

−π

dk

2π

(
eik√

1 + cos2 k

)
e−i(kp+ωkj) (1.29)

Notice that the amplitudes vanish for even p (respectively, odd p) at odd t (even
t), as we would expect from the definition of the walk. There is not analytical
solution to these integrals, however they can be resolved numerically.

1.2.2 The asymptotic probability distribution in the long time
limit

It is possible to obtain the analytical solution of Eq.(1.28), at large times. In fact,
there are several methods to study the asymptotic distribution of the DTQW.

One of them is called the stationary phase method [33],in which the asymp-
totic behavior of the wavefunction can be studied analytically. This method is
useful to solve integrals of the form:

I(α) = 1
2π

∫ π

−π
g(k)eiφ(k,α)tdk (1.30)
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where α = n
t
. The method of stationary phase was introduced by [101], to

find the asymptotic probability distribution, using the Hadamard coin and using
an initial state given by |ψ(0, 0)〉 = (0, 1)T ⊗ |0〉.

The probability distribution of the quantum walk, in the long time limit for
points α = p

j
, between − 1√

2 + ε and 1√
2− ε where ε is an arbitrarily small constant

ε > 0, is given by:

P (α, j) = |ψR(αj, j)|2 + |ψL(αj, j)|2

= 2
π
√

1− 2α2j
cos2(−ωj + π

4 − ρ) + 2(1 + α)
π(1− α

√
1− 2α2j)

cos2(−ωj + π

4 )

(1.31)

where ω = αρ + θ,ρ = arg(−B +
√

∆),θ = arg(B + 2 +
√

∆),B = 2α
1−α , and

∆ = B2 − 4(B + 1). The exact calculation can found in [101].
Another method to derive the long-term behavior of the probability distribu-

tion is given by [61], called weak limit.
On the other hand, an other approach to compute the asymptotic probabil-

ity distribution of the DTQW, was developed by [79], based on combinatorial
methods.
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2 Quantum walks as a quantum
simulators

Summary
2.1 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.4 Domain wall model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Publication: "Fermion confinement via quantum walks in (2 + 1)-

dimensional and (3 + 1)-dimensional) space-time . . . . . . . . . . . 35
2.6 Bound states in the Dirac equation . . . . . . . . . . . . . . . . . . 42

2.1 Quantum simulation
Many quantum systems, due to the number of particles they involve, are very in-
efficient to simulate in classical devices, i.e the time and memory resources that
takes the simulation grows exponentially with the size of the system. Feynman
in 1982 [54] suggested that quantum devices would perform more efficient sim-
ulations of quantum systems, due to the quantum nature, than classical devices.
It does not mean that classical devices are not useful in the task of simulating
quantum models, for instance tensor network [37, 129], quantum monte carlo
algorithms [132], density functional theory [110], etc. are classical simulations
of physical systems that are quite useful, however all have their limitations.

Quantum computers are expected to overtake the efficiency in simulating
quantum models, specially when the size of the system is large enough. The
principal benefit of these devices is that they can storage and manipulate an
exponentially amount of information using the basic properties of quantum me-
chanics, i.e superposition and entanglement.

Being specific, Lloyd [84] shows that a quantum computer (i.e., an ensemble
of well-defined qubits that can be initialized, measured, and on which universal
quantum gates can be performed) can be used as an universal quantum simulator,
where universal means that the same device is able to solve a complete set of
task.

However, because of the technical difficulties that are well known in the build-
ing of a quantum computer, quantum simulators have been a subject of interest
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due to the applications in different fields: physics, chemistry or biology. Quan-
tum simulators are just specific quantum systems that mimic other quantum mod-
els, while loosing the universality is the price to pay1. However, it is also true
that experimental implementations of quantum simulators are easier than build-
ing an universal quantum computer with a sufficiently large number of qubits.

Experimental realization The most common designs of quantum simulators
are focused on the study of condensed-matter physics with different physical
implementations, such a:

Neutral atoms in optical lattices are flexible systems that are easily tunable
and defect free, also they can be adjusted to simulate different geometries like
kagome lattices [83] or triangular lattices [125]), but the individual control of
the qubits and readout is the main difficulty, for a further study [82, 41, 27].

Superconducting circuits [140, 38, 90] Each qubit is an LC circuits, composed
by an inductor and a capacitor. Manipulating the energy states of the circuits, it
can be created a superposition of |0〉 and |1〉. Then, by using resonators, these
circuits can be entangled, however connecting all these qubits is hard. In conse-
quence, not all the qubits are entangled with each other in the current quantum
devices, e.g in the 5 qubits IBM Q, there are 20 possible combinations, but only
6 are implemented. An extended review in the topic can be found [130].

Photons can also be used to implement quantum simulations, as they have long
coherence times which make them useful in the task of carrying information at
a long distance without decoherence or noise [20]. Although the flexibility and
scalability of quantum simulators based in photons is a difficult task, there are
some progress in the field which make this kind of simulators promising [64].

Some nice references in the topic of quantum simulations are [59]

Physical implementations of QWs Here we review the possible physical im-
plementations of the QW. Most of the experimental proposals are focused in the
realization of discrete-time quantum walks, thus this means that the physical
system requires some common characteristics.

First, the system should exhibit addressable states to describe the position
and also the coin states of the walk. Moreover the system needs to allow some
interaction with the internal states to implement the so-called coin operators.
Finally, it is indispensable to implement the translations operators depending on
the internal state.

On the other hand, almost all the proposals are for one-particle quantum
walks, and an inherently quantum system is not required strictly to implement
a quantum walk. The dynamics of the single-particle quantum walk is governed
by the interference features of the state in the discrete space. This phenomenon

1Quantum simulators are defined to solve specific problems
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can be found in quantum systems but also in many classical systems involving
waves.

Of course, there are new theoretical and experimental proposals of two parti-
cles and multi particle quantum walks [26, 111, 117, 12] which are not possible
to implement using classical systems due to the new rich dynamics which can
only be explained in terms of quantum systems and open up new perspectives
for applications in quantum algorithms and in quantum simulations (i.e quan-
tum field theory simulation). Although there is a huge number of proposals, it is
possible to divide them into the following classes:

Linear optics. This approach is related with the, already mentioned, fact that
a quantum system is not required to implement a one-particle quantum walk,
and that it properties can be effectively reproduced using the interference of a
classical field.

A proposal by Knight et al [77], based in an experiment in the context of
the optical Galton board [29], implements a discrete quantum walk in a optical
cavity just making use of the interference of light. In this scheme, the frequency
modes of the light field implement the walker, and the polarization plays the role
of the coin state. Also Knight et al [76] proposed a different design, a ring cavity,
where now the coin state is not implemented using a polarization cebit2, instead
it is used a position cebit which requires two different paths of light inside the
cavity.

It is possible to generalize this implementation for multi particle quantum
walks if one adds more than two optical paths, using coin states with more than
two components. It is interesting to mention that, in the context of cavity rings,
the use of optical feedback loop provides great advantages since the amount of
resources remains constant as the number of quantum walk steps increases.

There are other experimental realizations of coined quantum walks, using a
set of modified Michelson interferometers [109], or even employing optical net-
works [141]

Cavity QED. There are some proposals to implement quantum walks using
cavity quantum electrodynamics, based on the work of [3, 137]. It consists on
injecting a highly excited atom (Rydberg atom) into a optical cavity, and then
applying an external field. This atom is a two level system, which plays the role
of coin states, whereas the position states are the cavity modes. Also, there are
alternatives approach based in cavity QED [116, 49]

Neutral atoms Proposals based on neutral atoms traps have been studied
by several authors [34, 51, 39, 92] to implement quantum walks. One type
of traps used are the optical lattices [50], which consist in the interference of

2A cebit is a two-component complex vector representing the light-field, and can be used as a
classical counterpart of the qubit. In the case of polarization cebit, the polarization of the
field plays the role of the internal state of the walker, whereas in the position cebit, there are
different direction of propagation of the field, and these different paths play the role of the
walker’s coin state
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contra-propagating laser beams, producing a periodic trapping potential where
the atoms remain. Therefore, the position basis is represented by the location
at which the atom is in the 1D optical lattice, whereas the coin basis is played
by the internal state of the atom. Laser pulses can be used to alter their internal
state, then the conditional shift operators can be realized.

We mentioned some classes of physical implementations by which quantum
walks can be realized, but there are also other proposals such an ion traps [126],
where a single 9Be+ ion is used which is laser-cooled and confined in a coaxial
resonator radio frequency ion trap, thus the position states are encoded into the
motional states of the ion, and the electronic states of the ion are used as a coin
basis. There are also proposals based in solid state physics [91], using a 2D array
of interacting quantum dots.

An interesting implementation of quantum walks consist in making use of
quantum circuits, as the development of quantum computers is growing quite
fast in the recent years. There are some proposals based in this architecture [57,
22] that could be interesting to extend.

2.2 QW continuous limit
It is already well-studied the connections between the DTQW and their contin-
uous limit [45, 46], however it is necessary give an introduction to this topic
because it constitutes the basic mathematical technique to prove that DTQW can
be used for the purpose of quantum simulation.

Homogeneous QW In this basic example we consider a quantum walk defined
on a discrete one-dimensional space and discrete time. The evolution of this QW
is driven by a U(2) coin, which acts on a walker represented by a two-component
field ψ. The discrete space points are labeled by p ∈ Z, and the time steps are
labeled by j ∈ N. The finite difference equation reads(

ψ↑j+1,p
ψ↓j+1,p

)
= Q(α, θ, ξ, ζ)T

(
ψ↑j,p
ψ↓j,p

)
(2.1)

where the operators T and Q are given by:

Tψj,p =
(
ψ↑j,p+1
ψ↓j,p−1

)

Q(θ, ξ, ζ) = eiα
(

eiξ cos θ eiζ sin θ
−e−iζ sin θ e−iξ cos θ

)
(2.2)

We will consider the case with α = 0,ζ = π/2 and ξ = 0. In order to study the
continuous limit, it is introduced a time step εt ∈ R+ and a space-step εx ∈ R+.
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We assume that ψj,p coincides with the continuous space-time field ψ̃ at space-
time points (tj = jεt,xp = pεx), and let εt and εx go to zero. Therefore, Eq.(2.1)
then reads as (

ψ̃↑tj+εt,xp
ψ̃↓tj+εt,xp

)
= Q(0, θ, 0, π/2)

(
ψ̃↑tj ,xp+εx
ψ̃↓tj ,xp−εx

)
(2.3)

We also need some condition on the angle θ to have a sensible continuous limit.
We therefore write θ as

θ = θ0 + θ̄εm, (2.4)

where θ0 is the value of θ at zero order, when εt and εx go to zero and also
εm ∈ R+ goes to zero. θ̄ is an arbitrary parameter, which will act like the mass of
the particle. The wavefunction ψ has to be differentiable at least twice, in both
space and time variables so that we can Taylor expand at first order, in εx,εt and
εm, Eq.(2.3).

A requisite to the validity of the continuous limit is that the operatorQ(θ, 0, π/2)
has to tend to unity as (εx,εt, εm) tend to zero, therefore the zero order terms at
the left- and right- hand sides of Eq.(2.1) must be equal:(

ψ̃↑t,x
ψ̃↓t,x

)
=
(

cos θ0 i sin θ0
i sin θ0 cos θ0

)(
ψ̃↑t,x
ψ̃↓t,x

)
(2.5)

and the angle needs to be θ0 = nπ to satisfy the zero order condition. Being
satisfied the former condition, the existence of the continuous limit is guaranteed.
We write εm = ε, εt = εα and εx = εβ, to account for the fact that they can tend to
zero differently, although the most interesting case belongs to α = β = 1. Hence,
the partial differential equation we are looking for is calculated taking the first
order terms when ε→ 0, and reads as:

(∂t − ∂x)ψ↑ = iθ̄ψ↓

(∂t + ∂x)ψ↓ = iθ̄ψ↑ (2.6)

The former equation can be recast as

(iγµ∂µ −m) Ψ = 0, (2.7)

with µ = 1, 2 and the matrices gamma γ0 ≡ σ1, γ1 ≡ iσ2, being σ the Pauli
matrices and, as it is mentioned before, m ≡ −θ̄. This equation is the well-
known Dirac equation in flat-spacetime, for relativistic masive spin-1

2 fermions.

Inhomogeneous DTQWs Let us now consider the case where α, θ, ξ and ζ can
be space-time dependent, therefore the evolution reads as:(

ψ↑j+1,p
ψ↓j+1,p

)
= eiαj,p

(
eiξj,p cos θj,p eiζj,p sin θj,p
−e−iζj,p sin θj,p e−iξj,p cos θj,p

)(
ψ↑j,p+1
ψ↓j,p−1

)
(2.8)
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As we have done before, it is introduced a time step εt and a space step εx, which
will tend to zero. To study this continuous limit, it is necessary to take into
account the space-time dependency of the quantum coin, therefore following
the same procedure as in the former section with θ in Eq.(2.4), we split the
homogeneous and the in-homogeneous part, for every phase in the coin as:

ui = u0 + εiū(tj, xp) (2.9)

where the use of different εi ∈ R tending to zero take into account the fact that
the angles can tend to zero at a different rate. It is has been very well studied
the different choices of these angles to obtain different PDE in the continuous
limit. For instance, as a basic example, on can choose the following angles:

αj,p = εαᾱj,p

ξj,p = εξ ξ̄j,p

ζj,p = π

2 − εζ ξ̄j,p (2.10)

where εα = εξ = εζ = ε. The reason of this particular choice of the angles will be
clearer in the next section when we introduce the discrete gauge transformation
in the QW. Therefore, in the limit in which ε→ 0, the PDE obtained reads as

(iγµDµ −m) Ψ = 0 (2.11)

where Dµ = ∂µ − iAµ is the usual covariant derivative with the following cou-
plings,

A0 = ᾱ

A1 = −ξ̄ (2.12)

The above equation is the Dirac equation with the fermion coupled to an electric
potential. This result can be extended to higher dimensional DTQW [11, 9]
Also DTQW can be used to quantum simulate the action of gravity in relativistic
models [47], Sect.(5.5), or the simulation of brane theories which involve an
effective mass, which is the motivation of this chapter, Sect.(2.5).

2.3 Localization
Spatial localization of quantum particles in certain regimes has been studied ex-
tensively, appearing as a natural phenomenon. In 1958 Anderson studied the
absence of diffusion in lattice systems in the case of static disorder [7], i.e the
particle wave functionbecomes localized due to impurities in the lattice. Exper-
imental set up of this phenomena has been realized in different scenario such
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a semiconductors, [133], phonic lattices [119] or even in Bose-Einstein conden-
sates [94]. On the other hand, it is possible to observe localization in different
circumstances, e.g. using external periodic potentials [81, 60] In the context of
QWs (discrete and continuous time), Anderson localization and its consequences
have been studied theoretically [70, 68, 139] but also have been achieved exper-
imentally by photonics implementation [118, 40]. Also, localization appears due
to other causes such a spatial periodic coin [123], via non-linear effects [100],
or even via the choice of the coin operator in 2D QWs in square lattices [66] or
honeycomb lattices [88].

2.4 Domain wall model
The idea of developing theories with extra dimensions has been considered for
many years. The first suggestion of an extra dimension was made by Kaluza
and Klein [74] in the attempt of formulating a unified theory of gravitation and
electromagnetism, using an extra fifth dimension apart from the usual four of
space and time. This extra dimension would be compact and homogeneous,
therefore the space-time is essentially four dimensional at distances far from the
compactification range, which would be of the order of the Planck scale lP ≈
10−33 cm. Consequently, the energy scale necessary to have direct observation of
the indicated extra dimension is the order of MP ≈ 1019 GeV, comparing with
the actual collision energy at LHC 13 · 103 GeV, it is obvious that probing extra
dimensions is hopeless nowadays.

Other theories involving extra dimensions are the so-called "Brane-world" pic-
tures, which assume that matter fields are embedded in a sub-manifold (nor-
mally a three-dimensional space) -brane- of a multi-dimensional space. The
difference with the Kaluza-Klein scenario is that these extra-dimensions can be
large or even infinite. There is a lot of bibliography in this topic [135, 122, 8,
21], where the concept of brane can change depending on the context.

We are inspired in the brane-world model proposed by Rubakov in 1983 [114],
in which space-time has an extra dimension 3 + 1 + 1, with low-energy particles
confined in the 3D ordinary space -brane- via a potential well, which is narrow
along the extra spatial direction and flat in the brane. This potential well can be
explained as a scalar field in 4 + 1 dimensions, as described by the Lagrangian:

L = 1
2∂Aϕ∂

Aϕ− 1
2m

2ϕ2 − 1
4λϕ

4, A = 0, 1, 2, 3, 4, (2.13)

where gAB = diag (1,−1,−1,−1,−1) with coordinates xA. The classical equation
of motion admits a domain wall solution ϕcl(x4), which only depends on the

34



fourth extra-dimension.

ϕcl(x4) = m√
λ

tanh
(
mx4
√

2

)
(2.14)

This field provides a narrow potential well narrow in x4 if m is large. The former
model can account to (3 + 1) dimensional massless fermions if they are coupled
to the scalar field ϕcl,

LΨ = iΨ̄ΓA∂AΨ + hϕclΨ̄Ψ (2.15)

being Ψ is a four component spinor, whereas the γ-matrices are represented by:

Γµ = γµ, µ = 0, ..., 3, Γ4 = iγ5, (2.16)

where γµ and γ5 are the standard Dirac matrices. From Eq.(2.15), we arrive to
the corresponding Dirac equation in the presence of the domain wall Eq.(2.14),

ΓA∂AΨ + hϕclΨ = 0 (2.17)

which has a solution

Ψ(0)(x0, ~x, x4) = e−h
∫ x4

0 ϕcl(x′4)dx′4
ψ(x0, ~x) (2.18)

where ψ(x0, ~x) is a left-handed massless (3 + 1) dimensional spinor, γ5ψ = ψ and
iγµ∂µψ = 0. In Sect.(2.5), we will introduce a QW which recovers the former
Dirac equation in (1 + 1 + 1) space-time in the continuous limit. Because of the
confinement, we will be able to localize the walker along one of the axes, which
play the role of the extra dimension.

2.5 Publication: "Fermion confinement via quantum
walks in (2 + 1)-dimensional and
(3 + 1)-dimensional) space-time

In the present paper, we introduce a quantum walk model which simulates a
brane model, introduced in Sect.(2.4). We define a 2D and 3D quantum walk, in
which the domain wall potential is encoded in an inhomogeneous coin operator.
Therefore, as the parameter which controls the particle effective mass increases,
the particle probability distribution cannot access to the "extra" dimensions. For
instance, in the case of the 2D QW, the probability distribution is confined along
a line, whereas in the case of the 3D QW, the probability distribution lives on a
surface.

The existence of this localized state can be explained in Sect.(2.6). As our do-
main wall potential depends on one axis, we have regions with different masses.
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Resolving the Dirac equation, we realize that the solution is a bound state living
on the interface between these two regions, with different signs of the mass.

The fact that in the previous QW model, Sect.(2.5), the localized probability
distribution, in the regime of "low" energy, is an edge state, opens new questions
which deserve more study. One possibility to extend this model, is by introducing
spatial-dependent noise, to study the effects on the localized state, as it is done
in [128]. As it is a bound state what appears on the interface of different masses
regions, we expect that the probability distribution could be more robust to a
noisy environment, than the case of a standard QW.
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We analyze the properties of a two- and three-dimensional quantum walk that are inspired by the idea of a
brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model,
particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model
into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics
a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of
the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but
from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the
“ordinary” dimensions.

DOI: 10.1103/PhysRevA.95.042112

I. INTRODUCTION

The quantum walk (QW) is the quantum analog of the
classical random walk. As in the case of random walks, QWs
can appear either under its discrete-time [1] or continuous-time
[2] form. We will concentrate here on discrete-time QWs, first
considered by Grössing and Zeilinger [3] in 1988, as simple
one-particle quantum cellular automata, and later popularized
in the physics community in 1993, by Aharonov [1]. The
dynamics of such QWs consists of a quantum particle taking
steps on a lattice conditioned on its internal state, typically
a (pseudo) spin one-half system. The particle dynamically
explores a large Hilbert space associated with the positions
of the lattice and thus allows one to simulate a wide range of
transport phenomena [4]. With QWs, the transport is driven by
an external discrete unitary operation, which sets it apart from
other lattice quantum simulation concepts where transport
typically rests on tunneling between adjacent sites [5]: all
dynamic processes are discrete in space and time. It has
been shown that any quantum algorithm can be recast under
the form of a QW on a certain graph: QWs can be used for
universal quantum computation, this being provable for both
the continuous [6] and the discrete version [7]. As models of
coherent quantum transport, they are interesting both for fun-
damental quantum physics and for applications. An important
field of applications is quantum algorithmic [8]. QWs were
first conceived as a natural tool to explore graphs, for example,
for efficient data searching (see, e.g., [9]). They are also useful
in condensed matter applications and topological phases
[10]. A totally new emergent point of view concerning QWs
concerns quantum simulation of gauge fields and high-energy
physical laws [11–13]. It is important to note that QWs can be
realized experimentally with a wide range of physical objects
and setups, for example, as transport of photons in optical
networks or optical fibers [14], or atoms in optical lattices
[15].

Within the context of diffusion processes in lattices, spatial
localization appears as a natural phenomenon. It can result
from random noise on the lattice sites, giving rise to Anderson

*giuseppe.dimolfetta@lif.univ-mrs.fr

localization [16], but it can also be driven by the action of
an external periodic potential (see, e.g., [17–19]). Similarly,
one obtains localization for the one-dimensional QW when
spatial disorder is included [20–22], via nonlinear effects [23],
or using a spatially periodic coin [24]. For higher dimensions,
localization may appear, even in the noiseless case, from the
choice of the coin operator [25].

In this paper, we propose a different variant of the QW
that gives rise to localization, by introducing a site-dependent
nonperiodic coin operator. The model is inspired on a brane-
world proposal with extra dimensions [26], where particles
are confined to live in the ordinary 3+1 dimensions by the
action of a potential well created by some additional scalar
field. In its simplest form, one accounts for massless fermions
which are confined in the brane. This idea can be translated
to describe a QW where the potential well manifests as a
position-dependent coin operator. Differently to the situations
described above, the confining field is not random nor periodic,
being instead a monotonous function of the position. As we
show, this kind of QW produces a dynamical localization of the
QW as in the original model. In fact, it can be shown that, in the
continuous space-time limit, one reproduces the dynamics of a
massless Dirac fermion. In this way, we establish an interesting
parallelism between a high-energy quantum field theory and a
QW model that results in localization.

The rest of this paper is organized as follows. In Sec. II we
briefly introduce the original brane model [26] that motivated
our work. In Sec. III we make use of this model to introduce
a QW on two dimensions with a position-dependent coin that
simulates the domain wall “scalar field” along the second (or
“extra dimension”). We show that this QW in fact results in a
confinement of the walker, and that the space-time continuous
limit indeed reproduces the dynamics of a Dirac particle
coupled to the scalar field. These ideas are generalized to
three dimensions in Sec. IV. Finally, Sec. V is devoted to
summarizing and discussing our results.

II. DOMAIN WALL MODEL FOR PARTICLE PHYSICS

The possibility of extra dimensions of space was first
suggested by Kaluza and Klein [27,28], seeking for a unified

2469-9926/2017/95(4)/042112(5) 042112-1 ©2017 American Physical Society
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theory of electromagnetic and gravitational fields into a higher-
dimensional field, with one of the dimensions compactified.
However, experimental data from particle colliders restrict
the compactification radius to such small scales that they
become virtually impossible to access them experimentally.
A way to overcome this difficulty [29] makes use of the
ideas put forward by Rubakov and Shaposhnikov [26]. In
that paper, the authors propose a brane-world scenario in
which space-time has (3 + N + 1) dimensions, with ordinary
(low-energy) particles confined in a potential well which is
narrow along N spatial directions and flat along the remaining
three directions. The origin of this potential well is suggested to
have a dynamical origin. In the simplest case it can be created
by an extra scalar field in 4 + 1 dimensions, as described by the
Lagrangian

L = 1
2∂A∂Aϕ − 1

2m2ϕ − 1
4λϕ4, A = 0,1,2,3,4, (1)

with metrics gAB = (1, − 1, − 1, − 1, − 1). The classical
equations of motion derived from the above Lagrangian
admit a domain wall solution ϕ(x4) that depends only on the
coordinate x4 along the extra dimension and is given by

ϕ(x4) = m√
λ

tanh

(
mx4

√
2

)
. (2)

This model can account for left-handed massless fermions
living in 3 + 1 dimensions, if they are coupled to the scalar
fields, as in the following Lagrangian:

Lψ = i�̄�A∂A� + hϕ�̄�, (3)

where h is the coupling constant, and the 4 + 1-dimensional
γ matrices are �μ = γ μ, μ = 0, . . . 3, and �4 = iγ 5, with
γ μ,γ 5 the standard γ matrices. From Eq. (3) the corresponding
Dirac equation follows, which reads

i�A∂A� + hϕ� = 0. (4)

As discussed in [26], this equation has a solution that is
confined inside the domain wall, while the corresponding
particles are left-handed massless fermions in the 3 + 1-
dimensional world. In the next section, we make use of these
ideas to introduce a QW model in 1 + 1 + 1 dimensions that
leads to confined fermions in 1 + 1.

III. 2D QUANTUM WALKS INSIDE A 1+1
DOMAIN WALL

Consider a QW defined over discrete-time and discrete two-
dimensional (2D) space, with axis x, y. The discrete space
points are labeled by p and q, respectively, with p,q ∈ Z,
while time steps are labeled by j ∈ N. This QW is driven by
an inhomogeneous coin acting on the 2D Hilbert space Hspin.
The evolution equations read[

ψ
↑
j+1,p,q

ψ
↓
j+1,p,q

]
= SyQ

+(θq)SxQ
−(θq)

[
ψ

↑
j,p,q

ψ
↓
j,p,q

]
, (5)

with Q±(θq) defined as

Q±(θq) =
(

cos θ±
q i sin θ±

q

i sin θ±
q cos θ±

q

)
, (6)
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FIG. 1. Probability distribution ||�(tj ,xp,yq )||2 of the two-
dimensional QW for a value t = 10 of the time step and different
values of m. The rest of the parameters are fixed to λ = 60, h = 70,
with the lattice parameter ε = 0.04. The inset in the last subfigure
also shows the projected density profile along each direction of the
lattice (red dot-dashed line represents the x direction and blue dashed
line the y direction). The initial condition is a Gaussian wave packet
�(0,xp,yq ) = √

n(xp,yq ) ⊗ ( 1√
2
, 1√

2
)� centered at the point (64,64),

where the Gaussian distribution n(xp,yq ) has a width δ = 0.1.

where θ±
q = ±π

4 − εθ̄q is the coin angle, which depends
only on the coordinate q, and ε is a small parameter that
allows one to reach the appropriate continuous space-time
limit (see discussion below). The operators Sx and Sy are
the usual spin-dependent translations along the x direc-
tion and the y direction, respectively. They are defined as
follows:

Sx�j,p,q = (ψ↑
j,p+1,q ,ψ

↓
j,p−1,q )�, (7)

and

Sy�j,p,q = (ψ↑
j,p,q+1,ψ

↓
j,p,q−1)�. (8)

Equations (5) describe the evolution of a two-level system,
e.g., a fermion in two dimensions, and it has been shown
that each of them recover, in the continuous limit, the Dirac
equation [30], where the parameter θq corresponds to a
position-dependent potential. Let us now consider θ̄q of the
form

θ̄q = h
m√
λ

tanh

(
mq√

2

)
, (9)

and notice that it corresponds to a narrow potential in the
q direction when m, the “effective mass,” is sufficiently
large.

Figure 1 shows the evolved probability distribution of this
2D QW, starting from a symmetric Gaussian profile in both
directions. As the mass is increased, the probability becomes
strongly localized around the y axis, while it evolves as a
usual QW on the nonconfining x direction. These features are
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FIG. 2. Time evolution of the standard deviation divided by
the time step, i.e., σx(t)/t (in the inset) and σy(t)/t , calculated
independently along the x and y directions, for a localized (red
squares) and a free fermion (blue diamonds). The initial condition is
a Gaussian wave packet �(0,xp,yq ) = √

n(xp,yq ) ⊗ (0,1)� centered
around (128,128), and the parameters of the potential are λ = 60 and
h = 70, with the lattice parameter ε = 0.02.

clearly seen in Fig. 2, where we have represented the standard
deviation divided by the time step, i.e., σx(t)/t and σy(t)/t ,
calculated independently along the x and y directions. For
m = 0 (no confinement), both quotients tend to a constant,
which corresponds to the normal spreading of a 2D QW in
both directions. As m increases, localization acts on the y

direction and manifests as an exponential decay of σy(t)/t .
On the other hand, the standard deviation corresponding to
the x axis behaves as a free-evolving QW, with a spreading
velocity that depends on the parameters of the potential
well.

As we show below, in the continuous limit Eqs. (5) are in
correspondence with Eq. (4), describing the propagation of a
massless fermion in a space-time manifold M (1+N,1), the usual
Minkowski space with 1 + N spatial dimensions. When m is
nonvanishing, the fermion is confined inside a potential well,
which is sufficiently narrow along N directions and flat along
the other one (in our case N = 1).

Let us introduce new space-time coordinates tj , xp, and yq

such that tj = jε, xp = pε, and yq = qε. In the limit when
ε −→ 0, these coordinates become continuous, labeled by t ,
x, and y, respectively. If we Taylor expand Eqs. (5) around
ε = 0, we recover the following equation:

∂t�(t,x,y) = [σz∂x − σy∂y − iσx θ̄(y)]�(t,x,y), (10)

which can be recast in covariant form:

i�A∂A� + h
m√
λ

tanh

(
my√

2

)
� = 0, (11)

where �A = {γ μ,γ c}, μ = 0,1, and γ c = iγ 5 = iγ 0γ 1 =
−iσz. In this equation, γ 0 = −σx , γ 1 = −iσy . As can be

easily seen, Eq. (11) takes the same form as (4) if we make the
identification x4 −→ y and ϕ −→ m√

λ
tanh( my√

2
).

IV. 3D QUANTUM WALKS INSIDE A 2+1 DOMAIN WALL

The extension of the previous case to the higher-
dimensional case is straightforward. In this section we adopt
the same techniques introduced in the last section but we
double the spin Hilbert space, in order to recover the standard
Dirac equation in 3+1 space-time. Let us recall that in 3+1,
γ matrices appearing in Eq. (4) are four dimensional. In the
Weyl representation they read

γ 0 =
(

0 I
I 0

)
γ i =

(
0 σ i

−σ i 0

)
γ 5 =

(−I 0
0 I

)
. (12)

Now, consider the QW defined over discrete three-
dimensional (3D) space, with axes x, y, and z. The discrete
space points are labeled by p, q, and r , respectively, with
p,q,r ∈ Z. This QW is driven by an inhomogeneous coin
acting on the spinor (ψ1

j,p,q,r ,ψ
2
j,p,q,r )

�
, where each ψi

j,p,q,r

belongs to Hspin for i = 1,2.
The evolution equations read[

ψ1
j+1,p,q,r

ψ2
j+1,p,q,r

]
= �rSzRzSxRxSyRy

[
ψ1

j+1,p,q,r

ψ2
j+1,p,q,r

]
, (13)

where

�r =
(

cos θ̄r ε i sin θ̄r ε

i sin θ̄r ε cos θ̄r ε

)
⊗ I2 (14)

and

S i =
(

Si 0
0 Si †

)
Ri =

(
Ri 0
0 Ri

)
, (15)

where the operators Si are the usual spin-dependent transla-
tions along each direction of the cubic lattice, and each unitary
rotation Ri , for i = x,y,z, is an element of U(2).

Notice that �r encodes the coupling between the spinor
components, and θr is an arbitrary position-dependent func-
tion, which can model either the mass term or any other scalar
potential. If θr identically vanishes, Eq. (13) represents simply
a couple of independent split-step QW operators acting on
each component of the spinor. In the following, this mass
term is defined by Eq. (9) and will model the narrow potential
in the r direction, embedding a 3D QW in a 2D space-time
lattice.

In order to validate the model, we compute the formal con-
tinuous limit of Eq. (13) with the same technique introduced
in the previous section. Thus, let us introduce the new spatial
coordinate zr , such that zr = rε, and again assume that in the
limit when ε −→ 0, this coordinate, together with tj , xp, yq ,
become continuous, labeled by z and t , x, y, respectively. If we
Taylor expand Eqs. (13) around ε = 0, the zero order restricts
the four-dimensional coins, Ri = Ri ⊗ I2:[

ψ1

ψ2

]
= RzRxRy

[
ψ1

ψ2

]
+ O(ε), (16)

which leads to the condition

RzRxRy = I4. (17)
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FIG. 3. Density plot in 3D at time j = 12 with Gaussian initial
wave packet �(0,xp,yq,zr ) = √

n(xp,yq,zr ) ⊗ (1,i,1,i)� centered
around (0,0) and for m = 0.

Then the first-order term of the Taylor expansion reads

∂t

[
ψ1

ψ2

]
= [Bz∂z + Bx∂x + By∂y + iB0θ̄ (z)]

[
ψ1

ψ2

]
+ O(ε),

(18)
where

Bz = ZRzRxRy

Bx = RzZRxRy (19)

By = RzRxZRy,

and

B0 = σx ⊗ I2

Z = I2 ⊗ σz. (20)

Now, comparing Eq. (18) with Eq. (4), we derive—up to a U(2)
rotation—the explicit form of each rotation Ri . In particular,
we need to satisfy γ 0γ 1 = Bx , γ 0γ 2 = By , and γ 0γ 3 = Bz,
which leads to

Rx = 1√
2

(
1 1
1 −1

)
, Rz = 1√

2

(
1 −i

i −1

)
,

Ry = RxRz. (21)

Thus, numerical simulations of the above QW can model
the behavior of a fermion in a 3+1 space-time. In particular,
in Fig. 3, the quantum walker spreads on the 3D cubic lattice,
starting from a symmetric initial condition, recovering, in the
continuous limit, a massless fermion in vacuum (θ̄ = 0). In
contrast, Fig. 4 shows the evolved probability distribution
of this 3D QW when the mass term is different from zero
and is position dependent. As in the lower-dimensional case,
the probability dynamically localizes on the x-y plane and
corresponds to a standard 2D QW, while it possesses a finite
size on the z direction, which typically decreases with the
lattice parameter ε.

FIG. 4. Density plots in 3D at time j = 20 with Gaussian initial
wave packet �(0,xp,yq,zr ) = √

n(xp,yq,zr ) ⊗ (0,1,0,1)� centered
around (0,0). The parameters of the potential are λ = 90, h = 4, and
m = 11. The two subfigures at the bottom display the x-z side view
(left) and the x-y side view (right) of the 3D density plot.

V. DISCUSSION

In this paper we have studied the properties of a two- and
a three-dimensional QW that are inspired by the idea of a
brane-world model put forward by Rubakov and Shaposhnikov
[26]. In that model, particles are dynamically confined in the
brane due to the interaction with a scalar field. We translated
this model into an alternate QW with a coin that depends on
the external field, with a dependence which mimics a domain
wall solution. As in the original model, fermions (in our case,
the walker) become confined in one of the dimensions, while
they can move freely on the “ordinary” dimensions. In this
way, we can think of the QW as a possibility to simulate brane
models of quantum field theories. In the opposite direction of
thought, we obtain a QW that shows localization, not from
random noise on the lattice or from a periodic coin, as in
previous models, but from a coin which changes in space in
a regular, nonperiodic manner. In our opinion, this interplay
between QWs and high-energy theories can be beneficial for
both fields.
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2.6 Bound states in the Dirac equation
In the previous article, we observe that, by tuning the coin parameter, it is possi-
ble to confine the QW probability distribution along a line, in the case of the 1D
QW, or to confine the probability distribution on a surface, in the case of the 2D
QW.

We have seen, based on the brane model, that we can couple the Dirac La-
grangian to a scalar field of the form, φcl(x4) = m√

λ
tanh

(
mx4
√

2

)
, which results on a

Dirac equation with a position-dependent (along the extra dimension) effective
mass.

The localization along the "extra dimension" can be explained by studying the
analytical solution of the Dirac equation, in the case of having a in-homogeneous
mass. This localized state is therefore a bound state of the Dirac equation, which
lives on interface of two regions with different masses m1 and m2. We can con-
sider the 2D Dirac equation, with an in-homogeneous mass m(y) = m for y > 0
and −m for y < 0. Resolving analytically the equation, two solutions localized
along y = 0, can be found, given by:

ψ1 =
√
m

2


i
0
0
1

 e−|m(y)y|+ikxx

ψ2 =
√
m

2


0
i
1
0

 e−|m(y)y|+ikxx (2.19)

with ~ = c = 1. The first solution has a dispersion relation ω1 = kx and the
second one ω2 = −kx. From these expressions, we observe that the probability
amplitude decays exponentially away from the mass interface. These states prop-
agate along the line y = 0, but moving in opposite directions. It is also possible
to generalize this result to the 3D case, thus observing a bounded surface state.
For a further insight in the topic of the Dirac equation and topological states see
[120] and the chapter 7 of [19].
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3 Gauge invariance in DTQW

Summary
3.1 Gauge invariance in electromagnetism . . . . . . . . . . . . . . . . . 43

3.1.1 Gauge invariance in quantum mechanics . . . . . . . . . . . 45
3.1.2 Electromagnetic gauge invariance in relativistic quantum

mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Discrete local invariance in LGT . . . . . . . . . . . . . . . . 47
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3.1 Gauge invariance in electromagnetism
Since its introduction in the electromagnetic theory, gauge invariance has been
a paradigm in physics. It’s been introduced at the beginning to help to solve
the Maxwell equations, however it plays a more fundamental role in theoretical
physics, as it constitutes one of the main properties of successful theories such a
the standard model of particle interactions. From the Electromagnetism theory,
the electric field ~E(x, t) and magnetic field ~B(x, t) can be written in terms of a
scalar potential φ(x, t) and a vector potential ~A(x, t),

~E = −∇φ− ∂t ~A
~B = ∇× ~A, (3.1)

where φ and ~A are referred to as the gauge fields. The Lagrangian for a charged
particle under the effect of an electromagnetic field is given by:

L = 1
2m~̇x

2 + q~̇x · ~A− qφ, (3.2)
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where q refers to the particle charge. Using the classical mechanics theory, from
the Lagrangian, it is straightforward to arrive to the equation of motion:

∂xiL =− q∂xiφ+ q
∑
j

ẋj∂xiAj

∂ẋiL =mẋi + qAi
d

dt
∂ẋiL =mẍi + q∂tAi + q

∑
∂xjAiẋj,

(3.3)

where the index i refers to the component of the vector. Therefore, the equations
of motion are:

mẍi = −q∂xiφ− q∂tAi + q
∑
j

ẋj
[
∂xiAj − ∂xjAi

]
. (3.4)

Making use of Eq.(3.1), we can recognize the electric and magnetic field. Hence,
the equation of motion can be rewritten as:

mẍi = q
(
~E + ~̇x× ~B

)
(3.5)

Gauge transformation The gauge fields are not uniquely defined since they can
be transformed by a gauge transformation, however yielding to the same electric
and magnetic fields.

φ→ φ− ∂tα
~A→ ~A+ ~∇α (3.6)

for any function α(x, t). In spite of leaving the fields unchanged, the Lagrangian,
Eq.(3.2) is not invariant under gauge transformations, but still the equations
of motions are invariant. Applying the transformation Eq.(3.6), the Lagrangian
transforms as:

L(t)→ L′(t) = L+ q
d

dt
α (3.7)

Although the Lagrangian is clearly not invariant, the action
∫
Ldt is gauge in-

variant (assuming that α vanished as t → ±∞). As the equations of motion are
given by the principle of least action, which state that the action is stationary
under small variations of the dynamical parameters, they are also gauge invari-
ant. Therefore, the existence of gauge transformation implies that systems which
differ under the transformation Eq.(3.6), describe the same physical model.
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3.1.1 Gauge invariance in quantum mechanics
In the quantum theory we can also apply gauge transformations. In this case
we ask the field ψ(~x, t), which is solution of the Schrödinger equation, to be
transformed as:

ψ(~x, t)→ ψ′(~x, t) = eiαψ(~x, t) (3.8)

where α is the gauge parameter. If α is constant, we are applying a global gauge
transformation. Thus, substituting ψ′(~x, t) in the Schrödinger equation, we get:

i~∂tψ′(~x, t) = − ~2

2m∇
2ψ′(~x, t) + U(~x)ψ′(~x, t), (3.9)

thus obtaining the same equation, meaning that the Schrödinger equation is
invariant under global gauge transformations, and therefore the probability den-
sity is also invariant.

If the gauge parameter depends on the space-time coordinates, we call this
transformation a local gauge transformation:

ψ(~x, t)→ ψ′(~x, t) = eiα(~x,t)ψ(~x, t). (3.10)

In this case the space and time partial derivatives will act on the gauge parameter.
Assuming that ψ′(~x, t) is a solution of the Schrödinger equation, we realize that
ψ(~x, t) is not:

i~∂tψ(~x, t) = − ~2

2m (∇+ i∇α(~x, t))2 ψ(~x, t) + (U(~x) + ~∂tα(~x, t)) . (3.11)

Therefore, we can conclude that without further modifications, the Schrödinger
equation does not preserve local gauge invariance, although the probability den-
sity does |ψ|2 = |ψ′|2. Luckily, the Shrödinger equation is local gauge invari-
ance, by introducing new functions that allow us to cancel out the spoiler terms.
Hence, the Schrödinger equation should read as:

i~∂tψ(~x, t) = − ~2

2m
(
∇+ iq ~A(~x, t)

)2
ψ(~x, t) + (U(~x) + ~φ(~x, t)) (3.12)

where the new functions are ~A(~x, t) and φ(~x, t), and q is a constant. In order to
preserve gauge invariance, the new functions need to be transformed as:

φ(~x, t)→ φ(~x, t)− ∂tα(~x, t)

~A(~x, t)→ ~A+ 1
q
∇α(~x, t) (3.13)

If we compare with the gauge transformation in classical electrodynamics, Eq.(3.6),
the functions that we have introduced are completely equivalent to gauge fields,
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in this case they play the role of the vector and scalar potential. Therefore, to
preserve local gauge transformation, the Schödinger equation demands the pres-
ence of electromagnetic fields.

3.1.2 Electromagnetic gauge invariance in relativistic quantum
mechanics

We can take a look to the relativistic quantum theory. Let us consider the La-
grangian of a free Dirac field describing a particle of mass m,

L = ψ̄ (iγµ∂µ −m)ψ. (3.14)

Again, we can transform the Dirac spinor under a global phase ( global gauge
invariance) that leaves the Lagrangian invariant,

ψ → ψ′ = eiαψ. (3.15)

Therefore, the equation of motion is also invariant under this global transforma-
tion:

(iγµ∂µ −m)ψ → (iγµ∂µ −m)ψ′ = (iγµ∂µ −m) eiαψ = 0. (3.16)

Following the same procedure as in Sect.(3.1.1), the question that arises is what
happen if the phase is space-time dependent ( local gauge invariance) transform-
ing the field as:

ψ → ψ′ = eiα(x)ψ. (3.17)

In this case, the derivative gives an extra term:

∂µψ → ∂µψ
′ = eiα(x) (∂µψ + i (∂µα(x))ψ) , (3.18)

and Gauge invariance is spoiled. However, local gauge invariance can be achieved
by replacing the derivative by the so-called covariant derivative:

∂µ → Dµ = ∂µ + iqAµ, (3.19)

where q is the charge of the particle and Aµ is the field, which transforms as:

Aµ → A′µ = Aµ −
1
e
∂µα(x). (3.20)

Hence, similarly to the Schrödinger equation, in order to achieve local gauge
invariance it is necessary to introduce an additional field, which is coupled to the
particle. This additional field is the electromagnetic potential Aµ in our example.

Fermion current In order to define a conserved current for a particle described
by the Dirac equation, we need to define a Lorentz invariant quantity. We define
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the adjoint spinor ψ̄ ≡ ψ†γ0, where ψ† is the hermitian conjugate of ψ. The
adjoint Dirac equation is written as:

i∂µψ̄γ
µ +mψ̄ = 0. (3.21)

Multiplying the former equation by ψ from the right, gives the continuity equa-
tion:

∂µ(ψ̄γµψ) = ∂µj
µ = 0, (3.22)

where jµ is the four-vector fermion current:

jµ = (ρ,~j), (3.23)

where ρ is the probability density ρ = ψ†ψ.

Maxwell’s equation Making use of the four-vector fermion current, it is possi-
ble to write the Maxwell’s equations in a Lorentz covariant form:

∂2Aµ = 4πjµ

∂µA
µ = 0

∂µj
µ = 0 (3.24)

where ∂2 = ∂µ∂
µ.

3.1.3 Discrete local invariance in LGT
Introducing a U(1) gauge invariance in lattice theories is not a trivial problem.
In fact, going from the continuum to a lattice formulation is plagued with diffi-
culties and new features [96, 99]. There is not an unique way to define gauge
invariance in a lattice model, since different approaches can lead to the same
limit in the continuum.

Our proposal to achieve U(1) gauge invariance for the DTQW exhibits close
analogies with the method used in lattice quantum field theory [134]. There
are some analogies and differences with some recent works, where U(1) gauge
invariance is also defined in DTQWs [48, 9].

The method introduced by Wilson [134], to discretize the action on a 4-D
hyper-cubic lattice in Euclidean space, breaks translation, rotation and Lorentz
symmetry, however it preserves gauge invariance for any lattice spacing. The
derivatives are discretized using a symmetric difference:

∂µψ(x)→ ψ(n+ µ)− ψ(n− µ)
2a , (3.25)

where n is the discrete position and a is the lattice spacing, while µ is the unit
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vector along the x direction, Fig.(3.1).
The Dirac action for the electron field transforms as∫
d4xψ̄(x)γµ∇µψ(x)→ a3

2
∑
n

∑
µ

(
ψ̄(n)γµψ(n+ µ)− ψ̄(n+ µ)γµψ(n)

)
. (3.26)

ψ (n) ψ (n + ⃗μ )θμ(n)

θν(n + ⃗μ )

θ−μ(n + ⃗μ + ⃗ν )

θ−ν(n + ⃗ν )

ψ (n + ⃗μ + ⃗ν )ψ (n + ⃗ν )

Figure 3.1: A closed path in the basic plaquette. The electron field lives on the
sites while the photon field lives on the links. µ is the unit vector in
the x direction, whereas ν is the unit vector in the y direction

As this discretization couples the electron field at neighboring sites, the local
gauge invariance is broken as the interaction term is discretized,∫

d4xψ̄(x)γµAµψ(x)→ a4∑
n

∑
µ

ψ̄(n)γµAµ(n)ψ(n). (3.27)

The solution for preserving gauge invariance consists in replacing the photon
field with a periodic angular variable,

θµ(n) = −θ−µ(n+ µ), 0 < θ < 2π, (3.28)

associating the photon field to the links between neighbors n→ n+ µ, Fig.(3.1).
Finally local gauge invariance will be preserved, if the electron field and the
photon field transform as follows:

ψ(n)→ eieξ(n)ψ(n) θµ → θµ − e (ξ(n+ µ)− ξ(n)) . (3.29)

As mentioned in Sect.(3.2), our additional phases required to preserve gauge
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invariance in DTQWs are treated in similar way in terms of discrete derivatives
as in Eq.(3.29).

3.2 Publication: "Electromagnetic lattice gauge
invariance in two-dimensional discrete-time
quantum walks"

In the present paper we discuss the concept of gauge invariance in DTQWs, in
one and two dimensions, when there are involved external, synthetic electro-
magnetic fields. There are some works that discuss this topic already [48, 9].
There are some analogies and differences, however the main contrast is that our
discrete derivatives, which intervene in this lattice gauge invariance, treat time
and space in the same footing, being very similar to Eq.(3.29). For example, in
our 1D DTQWs the gauge fields transform as follows, when we impose a U(1)
lattice gauge invariance:

(A′µ)j,p = (Aµ)j,p − (dµξ)j,p, (3.30)

being (j, p) the discrete time and position coordinate, for µ = 0, 1, with:

d0 = 1
ε
∆0Σ1

d1 = 1
ε
∆1Σ0, (3.31)

and the ∆ and Σ are defined to act on an arbitrary function Qj,p defined on the
lattice as,

(ΣµQ)pµ = Qpµ+1 +Qpµ

(∆µQ)pµ = Qpµ+1 −Qpµ . (3.32)

Therefore, the discrete derivatives, Eqs.(3.31), treat time and space on the same
footing, contrary by to those of [48, 9].

On the other hand, as we mentioned, in standard LGT the gauge fields live on
the links, whereas in DTQW the gauge fields live on the sites, as the fermion field
does. The fact that our derivatives are a composition of Σ and ∆, underline that
it could be appropriate to define the gauge fields and the local phase change on
the links rather than on the sites.

We then extend this gauge invariance to two dimensional DTQW following the
same procedure, and we also define a continuity equation and conserved current
for the 2D QW.

There is a later work [31] which presents a unified framework to understand
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U(1) gauge invariance, in discrete-time quantum walks with coin spaces of arbi-
trary dimensions.

Another related work related which is interesting to mention is [95]. They
present a general framework of gauge invariance in 1D DTQW. What it is re-
markable is that, apart from studying the electromagnetic gauge invariance in
1D QWs, it is studied the case in which different phases are introduced in both
components of the two-dimensional internal space, i.e it considers a local chiral
transformation, although it is not mentioned in the paper.

A clear example showing that there is not an unique procedure to arrive to
the same continuum limit is presented by [67], where it is introduced a 2D
DTQW on a honeycomb and triangular lattice. In this case, three components
are necessary to describe the electromagnetic field in the continuum, whereas
our phases match exactly with the fields in the continuum theory. This difference
indicates that the relation between the connectivity of the lattice and the theory
in the continuum deserves a deeper understanding, although some progress has
been made [43, 67] and Sect.(4.2).
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Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with
the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the
interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases
that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous
works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and
space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps
of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit,
the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the
conserved current satisfies the corresponding conservation equation.

DOI: 10.1103/PhysRevA.98.032333

I. INTRODUCTION

Since its introduction in the electromagnetic theory, gauge
invariance has been a paradigm in physics, and constitutes
one of the main properties of successful theories such as the
standard model of particle interactions [1]. On the one side,
the gauge principle can be used as a guiding principle to de-
fine new theories, where the development of the electroweak
interaction theory is just an example. On the other side,
the symmetry predicts the existence of a conserved current,
which constitutes a powerful tool in the analysis of dynamical
phenomena.

In this paper, we discuss the manifestation of U(1) gauge
invariance within the context of a discrete-time quantum walk
(DTQW) in a two-dimensional (2D) lattice, which could be
generalized to 3D lattices. The dynamics of such DTQWs
is driven by the action of unitary operators that act both on
the spatial and internal degrees of freedom [2]. A particular
interest in this gauge-invariant dynamical scheme arises from
the possibility of describing with it, artificially, i.e., by engi-
neering an appropriate space-time dependence of the walker’s
phase, the effect of a magnetic field, or even a combination
of electric and magnetic fields, on charged matter. By itself,
the magnetic field gives rise to interesting phenomena such
as localization or controlled spreading [3] and Landau levels
[4]. The magnetic field is also one of the main ingredients of
the quantum Hall effect, with associated topological effects
[5,6] and edge currents [7]. On the other hand, the combina-
tion of both a magnetic and an electric field exhibits richer
features, like Bloch oscillations and the �E × �B drift [8]. The
observation of these effects with discrete-time schemes as we

*ivan.marquez@uv.es
†pablo.arnault@ific.uv.es
‡giuseppe.dimolfetta@lis-lab.fr
§armando.perez@uv.es

study here may be available in the future using internal-state-
dependent transport of atoms in 2D optical lattices [9–11],
or of photons in 3D integrated-photonics circuits [12]. In
continuous-time schemes, atoms in optical lattices are also a
promising platform [13–16] to observe such effects.

In order to consistently describe these effects with
DTQWs, one needs to understand how U(1) gauge invariance
can be incorporated within this framework, which differs
notably from the electromagnetic theory in the continuum
(i.e., in continuous space-time). In fact, this is a general
(serious) problem in physics, since going from the continuum
to a lattice formulation is plagued with difficulties and new
features [17–19]. Moreover, the way of implementing gauge
invariance in lattice models is usually not unique, with dif-
ferent approaches leading to the same limit in the continuum.
Our proposal to achieve U(1) gauge invariance on the lattice
exhibits close analogies both with the method used in quantum
field theory [20] and with recent works exhibiting similar but
different U(1) lattice gauge invariances, in DTQWs [8,21,22]
or in reversible cellular automata [23]. We comment on the
similarities and differences with these recent works.

This paper is organized as follows. In Sec. II, we define
a family of DTQWs on a line, which satisfy a U(1) gauge
invariance on the (1+1)D lattice. The discrete derivatives
which intervene in this lattice gauge invariance treat time and
space on the same footing, and are very much like those used
in standard LGTs, in contrast with those of Refs. [8,22]. This
is achieved by applying the gauge-field exponentials either
before or after the spatial shift, depending on whether the
internal state of the walker is, say, up or down, respectively.
We formally compute the continuum limit of these DTQWs,
which concides, as desired and as in Refs. [21,22], with the
dynamics of a Dirac fermion in (1+1)D space-time, coupled
to a U(1), i.e., electro(magnetic) gauge field. In Sec. III,
we extend the previous results to 2D walks, constructed by
alternating 1D walks in the x and y directions of the spatial
lattice. The way we ensure the U(1) lattice gauge invariance

2469-9926/2018/98(3)/032333(8) 032333-1 ©2018 American Physical Society
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of this 2D scheme is by requiring it for each one-dimensional
substep, in contrast with the gauge invariance of Ref. [8].
This ensures that time and space are still treated on the same
footing at the level of the discrete derivatives, up to the fact
that there are now, in 2D, two discrete derivatives in time, one
for the even discrete-time coordinates, corresponding to the
motion in the, say, x direction and another one for the odd
ones, corresponding to the motion in the y direction. In Sec.
IV, finally, we derive analytically a lattice continuity equation,
stating the conservation of a certain current on the lattice
which is computed exactly. We comment on the differences
between this continuity equation and that of Ref. [8].

II. NEW U(1) LATTICE GAUGE INVARIANCE
FOR THE DTQW ON THE LINE

A. Defining the 1D walk

The state |ψj 〉 of the walker at some arbitrary discrete
time j ∈ N belongs to a Hilbert space H = Hcoin ⊗ Hposition.
The Hilbert space Hposition describes the external, spatial
degree of freedom of the walker and is spanned by the
basis states {|x = pε〉}p∈Z, where ε is the lattice spacing.
The two-dimensional Hilbert space Hcoin = span{|R〉 , |L〉}
describes the internal, so-called coin degree of freedom of the
walker, where “R” and “L” stand for “right” and “left.” The
projection of the walker’s state on the position state |x = pε〉
at time j is ψj,p ≡ 〈x = pε|ψj 〉. We identify |R〉 = (1, 0)�
and |L〉 = (0, 1)�, where � denotes matrix transposition.
The dynamics of the DTQW is defined by its one-time-step
evolution operator Uj , which is unitary and may depend on j ,

|ψj+1〉 = Uj+1 |ψj 〉 . (1)

As usual for DTQWs, the dynamics alternates between (i)
rotations, C, of the coin degree of freedom and (ii) spatial
coin-state-dependent shifts, S:

U = SC, (2)

where, to lighten notations, the multiplication of C by the
identity tensor factor of the position Hilbert space has been,
and will be, in similar cases, omitted. We choose, for the coin
rotation, the following one:

C(θ ) = eiσ 1 θ
2 =

[
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

]
, (3)

where σn is the nth Pauli matrix and θ is some angle, constant
in time and uniform in position.

Now, one of the distinctive features of the present work is
the way we gauge our walk. In Refs. [8,21,22], gauging the
walk amounts to gauging the standard coin-state-dependent
shift, Sfree = e−iσ 3K, where K is the quasimomentum operator,
as Sfree → eiαj Sfree e−iσ 3ξj , where αj,p and ξj,p are lattice
counterparts of the temporal and spatial components of an
electric potential of the continuum, (A0, A1), with which
they coincide in the continuum limit of the DTQW. We have
used the notation ϕj : p 
→ ϕj,p for diagonal operators in the
position basis, such as αj and ξj . In the present work, we
gauge the shift as follows: the relative order in which the shift
and the gauge-field exponentials are applied depend on the
coin state, that is,

S(αj , ξj ) =
[
e−iKei(ξj −αj ) 0

0 e−i(ξj +αj )eiK

]
(4a)

= T ei(β− )j �R + e−i(β+ )j T †�L, (4b)

where † denotes Hermitian conjugation. We have introduced
the following objects: (i) the translation operator by one lattice
site to the right,

T = e−iK, (5)

(ii) the two projectors associated to the coin space,

�s = |s〉 〈s| , s = R,L, (6)

and (iii) the difference and sum of ξ and α,

β− = ξ − α, (7a)

β+ = ξ + α. (7b)

The nongauged coin-state-dependent shift is of course
Sfree = S(0, 0). We have chosen the superscripts R and L for,
respectively, the upper and lower components of the wave
function, because Sfree shifts the upper one to the right and the
lower one to the left. To make notations clear, we introduce an
auxiliary notation Ũ for the evolution operator, such that

Uj ≡ Ũ (αj , ξj , θ ) (8a)

≡ S(αj , ξj )C(θ ). (8b)

B. Continuum limit of the 1D walk

A first fact to mention is that this way of gauging the
walk does not change the continuum limit ε → 0 obtained in
Refs. [8,21,22]. Indeed, the fact that eiK and eif (P ), where P is
the position operator and f an arbitrary function, do not com-
mute, does make an important difference between the gauge
procedure of the present work and that of Refs. [8,21,22] at the
level of the DTQW, i.e., for a finite space-time-lattice spacing.
However, this becomes irrelevant in the continuum limit, since
the latter is obtained by Taylor expanding all exponentials
in their argument, and keeping only the first-order terms: in
other words, at first order in their arguments, the exponentials
always commute.

Let us now recall this continuum limit ε → 0. Assume
that, for a given quantity Q defined on the space-time lattice,
Qj,p coincides with the value Q(t = jε, x = pε) of some
continuous function Q of t and x. First, rotate the coin state
by a small amount at each time step, that is, set

θ = −2εmm, (9)

with εm going to zero with ε, which is the necessary condition
for the continuum limit to exist; now, when going to the con-
tinuum, we will actually choose εm = ε and the parameter m

will be identified as the mass of the walker. Second, consider
small gauge fields, that is, set

αj,p = εAqA0
j,p, (10a)

ξj,p = εAqA1
j,p, (10b)
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with εA going to zero with ε, which is also a necessary
condition for the continuum limit to exist; again, when going
to the continuum, we will actually choose εA = ε and the
parameter q will be identified as the electromagnetic charge of
the walker. Assuming now that all Q’s are twice differentiable
in both t and x, and Taylor expanding the dynamics of the
walker, Eq. (1), at first order in ε, delivers (i) zeroth-order
terms that, by construction of our walk, cancel each other,
which is a necessary condition for the continuum limit to
exist, and (ii) first-order terms, which deliver a Hamiltonian
equation that can be identified as the Dirac equation in (1+1)D
space-time, with a coupling to a U(1) (and thus Abelian)
gauge field. This equation reads, in manifestly covariant form,(

iγ
μ

1DDμ − m
)
ψ = 0, (11)

with μ = 0, 1, the covariant derivative Dμ = ∂μ + iqAμ,
where

A0 = A0, A1 = −A1, (12)

are the covariant components of the electric potential, and
with the following gamma matrices:

γ 0
1D = σ 1, γ 1

1D = −iσ 2. (13)

As announced, we obtain, in the limit of small coin-rotation
angles and small phases, the same continuum limit as if we
had used the gauge procedure of Refs. [8,21,22].

C. New U(1) lattice gauge invariance

Our DTQW, Eq. (1), exhibits a remarkable U(1) lattice
gauge invariance: it is invariant under local phase shifts of
the form ψj,p → ψ ′

j,p = eiqχj,pψj,p, where χj,p is an arbitrary
space- and time-dependent quantity, provided the gauge fields
become

(A′
μ)j,p = (Aμ)j,p − (dμχ )j,p, (14)

for μ = 0, 1, with

d0 = 1

εA

�0�1, (15a)

d1 = 1

εA

�1�0, (15b)

where the �’s and �’s act on sequences Qj,p of time and
space as

(�μQ)pμ
= Qpμ+1 + Qpμ

, (16a)

(�μQ)pμ
= Qpμ+1 − Qpμ

, (16b)

having introduced p0 ≡ j and p1 ≡ p for a more compact
notation. The discrete derivatives, Eqs. (15), treat time and
space on the same footing, on the contrary to those of
Refs. [8,22]. Morever, the �’s and �’s defined here are sums
and differences over one lattice spacing, or link between two
sites, while in Refs. [8,22] they were over two links. Notice
that the �’s are nothing but standard finite differences over
one link. The fact that, here, one has to apply the �’s in
addition to the �’s underlines that it may be appropriate that
the gauge variables, that is, both the gauge fields and the local
phase change, be defined on the links rather than on the sites,

as in standard LGTs. We leave this matter to future work.
Up to these extra �’s, the discrete derivatives involved in
Eqs. (15) are the same as those used in standard LGTs, that
is, standard finite differences.

As done in Ref. [22] for the 1D case, Ref. [8] for the 2D
case, and Ref. [24] for the non-Abelian 1D case, one can
define a lattice counterpart to the electromagnetic tensor in
the continuum,

(Fμν )j,p = (dμAν )j,p − (dνAμ)j,p, (17)

which is antisymmetric by construction. Since we are in
1D space, the only nonvanishing components are (F01)j,p =
−(F10)j,p, which encode a lattice counterpart to the electric
field, and there is no magnetic field. This quantity, (Fμν )j,p, is,
as in the continuum, gauge invariant by construction (on the
space-time lattice, obviously), since the dμ’s commute with
each other.

In the continuum limit, dμ tends towards the partial deriva-
tive ∂μ, the gauge transformation of Eq. (15) becomes the
standard one of the continuum, and the lattice counterpart
to the electro(magnetic) tensor, Eq. (17), becomes that elec-
tro(magnetic) tensor.

III. 2D GENERALIZATION BY ALTERNATING 1D WALKS
ALONG THE x AND y DIRECTIONS

A. Defining the 2D walk

The walker can now move on a 2D lattice, and has spatial
coordinates x = pε and y = qε, where p, q ∈ Z. We will
also use the notation p = p1 and q = p2. Now, the 1D walk
defined in the previous section admits a 2D generalization via
a walk which alternates 1D walks in the x and y directions of
the 2D lattice. This generalization reads

|ψ2l〉 = U
(1)
2l |ψ2l−1〉 , (18a)

|ψ2l+1〉 = U
(2)
2l+1 |ψ2l〉 , (18b)

with l ∈ N and where, for i = 1, 2,

U
(i)
j ≡ Ũ (i)

(
1
2αj , ξ

i
j , θ

i
)

(19a)

≡ S (i)
(

1
2αj , ξ

i
j

)
C(θ i ) (19b)

and

S (i)( 1
2αj , ξ

i
j

) = Tie
i(β (i)

− )j �R + e−i(β (i)
+ )j T

†
i �L, (20)

where

Ti = e−iKi , (21)

Ki being the quasimomentum operator along direction i, and

(β (i)
− )j,p,q = ξ i

j,p,q − 1
2αj,p,q , (22a)

(β (i)
+ )j,p,q = ξ i

j,p,q + 1
2αj,p,q . (22b)

When the gauge fields, αj , ξ 1
j , and ξ 2

j , vanish, the alternate
walk is translationally invariant in both time and space every
two time steps. We will thus sometimes use the wording
“substep” for the time evolutions 2l − 1 → 2l and 2l →
2l + 1, and the wording “step” for 2l − 1 → 2l + 1. We also
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introduce the two-substep walk,

|ψ2l+1〉 = U 2D
2l+1 |ψ2l−1〉 , (23)

where

U 2D
2l+1 = U

(2)
2l+1U

(1)
2l . (24)

B. Continuum limit for the 2D walk

We perform the continuum limit of the two-substep walk.
Adapting the 1D-case procedure, we write

αj,p,q = εAqA0
j,p,q , (25a)

ξ i
j,p,q = εAqAi

j,p,q , (25b)

for i = 1, 2. Moreover, we choose

θ1 = π

2
− εmm, (26a)

θ2 = −π

2
− εmm. (26b)

Assume now that, for a quantity defined on the space-
time lattice, Qj,p,q coincides with the value Q(t = jε/2, x =
pε, y = qε) of some continuous function Q(t, x, y). The
factor 1/2 in the time variable is necessary to make the
continuum limit of this two-substep DTQW match with the
standard form of the Dirac equation. Taking the continuum
limit, ε → 0, of Eq. (18), with εA = εm = ε, we obtain

(iγ μDμ − m)ψ = 0 , (27)

with

γ 0 = σ 1, γ 1 = −iσ 3, γ 2 = −iσ 2. (28)

C. Two-substep U(1) lattice gauge invariance

By construction from 1D gauge-invariant walks, the 2D
walk we have introduced, Eq. (18), is invariant under the
local phase shift ψj,p,q → ψ ′

j,p,q = eiqχj,p,q ψj,p,q , provided
the gauge fields become

(A′
0)j,p,q =

{
(A0)j,p,q − (

d1
0χ

)
j,p,q

for j even,

(A0)j,p,q − (
d2

0 χ
)
j,p,q

for j odd,
(29a)

(A′
i )j,p,q = (Ai )j,p,q − (diχ )j,p,q , (29b)

for i = 1, 2, with

dk
0 = 1

εA

�0�k, (30a)

di = 1

εA

�i�0. (30b)

A first comment to make is that this 2D U(1) lattice gauge
invariance differs from that of Ref. [8] in the following:
we have required, here, the gauge invariance for each one-
dimensional substep; we thus call this 2D U(1) lattice gauge
invariance a two-substep gauge invariance. In such a two-
substep gauge invariance, A0 transforms, by construction, dif-
ferently at even and odd times: indeed, we have two different
difference operators in time, d1

0 for even times, and d2
0 for odd

times, which manifests the alternate construction of the walk.

Apart from this, the difference operators of Eq. (30) are a
straightforward generalization of those used above in the 1D
case, Eq. (15). As in the 1D case, the difference operators
of Eq. (30) treat space and time on the same footing (up
to the two discrete derivatives in time), in constrast with
Ref. [8]. Additionally, in the present 2D case, these difference
operators also treat the two directions of the lattice on the
same footing, which is also in contrast with Ref. [8].

Finally, one can define a lattice counterpart to the elec-
tromagnetic tensor, by generalizing the 1D lattice tensor,
Eq. (17), to the present 2D setting. Notice that one has to
use the discrete temporal derivative di

0 in the definition of
F0i , so that F01 and F02 involve different discrete temporal
derivatives. This 2D lattice tensor has by construction the
same properties of antisymmetry and of U(1) lattice gauge
invariance as in the 1D case, and contains, additionally, a
“lattice magnetic field” orthogonal to the 2D plane, namely,
(F12)j,p,q , for which there is no room in the 1D case.

In Ref. [25], a three-substep U(1) lattice gauge invariance
is suggested for a 2D DTQW on an equilateral triangular
lattice, which is likely to be generalizable to the other DTQWs
presented in this reference (isosceles triangular and honey-
comb lattices). There are two main differences between this
work and the present one. First, the correspondence between
the spatial components of the lattice gauge field and those
of the continuum is, in Ref. [25], not one to one: three
such components are needed on the lattice—one for each
substep—while, the scheme being in 2D space, only two
such components are needed in the continuum, which can be
expressed as linear combinations of the three former ones; see
Eqs. (18) of that reference. In the present work, in contrast,
the spatial components of the lattice gauge field match exactly
those of the continuum. This difference between Ref. [25] and
the present work reflects the connectivity of the lattice, and
calls for an understanding, in arbitrary nD lattices, n ∈ N, of
the coupling of DTQWs to lattice counterparts of the electric
and magnetic fields of the nD continuum. Reference [26]
opens the way to such an understanding.

The second main difference between Ref. [25] and the
present work is that, in the former, the relative order in
which one applies the gauge field and the shift is not coin-
state dependent, in contrast with ours. As a consequence, the
difference operators appearing in Ref. [25] do not treat time
and space on the same footing as we do. More precisely,
the temporal difference operator of Ref. [25], see, e.g., the
first equation of Eqs. (17) of that reference, is the same as
that of the earlier work already mentioned previously, namely,
Ref. [8] (see Ref. [27]), and we already mentioned above that,
in that earlier work, time and space are not treated on the same
footing at the level of the difference operators, in contrast with
the present work.

Eventually, notice the two following facts. If one tries
to impose to the 2D walk of Ref. [8] a U(1) lattice gauge
invariance for each one-dimensional substep, one needs at
least to choose, for the corresponding gauge fields, linear
combinations of those introduced in that reference—for the
no-substep gauge invariance—but at different space-time-
lattice sites. The same thing happens when trying to impose,
conversely, a no-substep U(1) lattice gauge invariance to the
present 2D walk.
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IV. CONTINUITY EQUATION AND CONSERVED
CURRENT FOR THE 2D WALK

In this section, we derive a lattice continuity equation from
the dynamics of the DTQW, allowing us to introduce a current
density which is both conserved and gauge invariant. In the
whole section, we work on the space-time lattice, and use
the notations t = jε, x = pε, and y = qε, already introduced
previously. By construction, the probability density at time t

and point (x, y) is

J 0(t, x, y) = 〈ψt | �x,y |ψt 〉 , (31)

where �x,y = |x, y〉〈x, y| is the projector on state |x, y〉.
Now, another distinctive feature of the present work with

respect to Ref. [8], apart from the way we gauge our walk,
discussed in the previous sections, is that we are going to
derive our continuity equation and define the current density
over two time steps, i.e., 2ε, of evolution (23), i.e., four
integers steps in the discrete-time variable j , since t = jε/2,
while Ref. [8] considers a single time step of this evolution to
define the current density. As the reader shall see, this—i.e.,
considering two time steps to derive the continuity equation,
instead of a single one—will lead to the appearance of the
standard (symmetric) finite difference as discrete derivatives,
both in time and space, while the discrete derivatives of
Ref. [8] are more complicated, in particular the temporal one.

So, from this evolution over two time steps, one can easily
derive a formula for the difference J 0(t + ε, x, y) − J 0(t −
ε, x, y), which can be written as[

�
sym
0 J 0

]
(t, x, y)

= 1
2 〈ψt |

(
U 2D

t+ε

†
�x,yU

2D
t+ε − U 2D

t−ε�x,yU
2D
t−ε

†)|ψt 〉, (32)

where note that we have used the following notation
of the Hermitian conjugate for the backwards evolu-
tion: U 2D†

t−ε ≡ U (1)†
t−ε/2 U (2)†

t , and where [�sym
0 f ](t, x, y) ≡

1
2 [f (t + ε, x, y) − f (t − ε, x, y)], which defines a symmet-
ric finite difference in time. We compute this quantity in
Appendix A, and the result is given by Eq. (A6). We can then
recast Eq. (A6), i.e., Eq. (32), as

�sym
μ Jμ = 0, (33)

with implicit sum over μ = 0, 1, 2, and where we have intro-
duced the symmetric finite differences in the x and y direc-
tions, [�sym

1 f ](t, x, y) ≡ 1
2 [f (t, x + ε, y) − f (t, x − ε, y)]

and [�sym
2 f ](t, x, y) ≡ 1

2 [f (t, x, y + ε) − f (t, x, y − ε)].
Equation (33) has the form of a continuity equation on the
lattice. J 1 = J x and J 2 = J y , appearing naturally as the
current densities along the x and y directions, respectively,
are defined by

J x (t, x, y) = 〈ψt | �x

[
eiβ

y
−(t,x,y)eiβ

y
+(t,x,y−ε)D2M

(1)
x

+ e−iβ
y
+(t,x,y−ε)e−iβ

y
−(t,x,y)D

†
2M

(2)
x

+�y−εM
(3)
x + �y+εM

(4)
x

] |ψt 〉 (34)

and

J y (t, x, y) = 〈ψt | �y

[
eiβx

+(t+ ε
2 ,x,y)eiβx

−(t+ ε
2 ,x−ε,y)D1M

(1)
y

+ e−iβx
−(t+ ε

2 ,x−ε,y)e−iβx
+(t+ ε

2 ,x,y)D
†
1M

(2)
y

+�x+εM
(3)
y + �x−εM

(4)
y

] |ψt 〉 , (35)

where we have used the following notations:

βx
± = β

(1)
± , β

y
± = β

(2)
± , (36a)

Sx = S (1), Sy = S (2), (36b)

Cx = C(θ1), Cy = C(θ2). (36c)

The rest of the notations we have introduced are defined in
Appendix A.

Both the time and space differences are symmetric, which
implies that they can be used to approximate true derivatives
with a truncation error O(ε3), in contrast with the difference
schemes over one time step, as that in Ref. [8], where the
error is O(ε2). There is a price to pay for this at the level
of the discrete-space-time scheme: the current is only defined
at times t which are even multiples of the time step �t , while
the walk is defined at all times—less importantly, one needs
in practice, in order to compute the current dynamics over a
given area on a finite-size 2D lattice, more sites on the edges
of that area with a two-step current than with a single-step
one.

In terms of formal simplicity and connection to standard
lattice gauge theories, notable advantages of the present con-
tinuity equation, Eq. (33), with respect to that of Ref. [8], is
that the difference operators involved in it, i.e., the �sym’s,
not only (i) treat all three space-time coordinates on the same
footing (while all three are treated differently in Ref. [8]),
but (ii) correspond, in addition, to standard symmetric finite
differences, while more complicated operators are used in
Ref. [8]. As in Ref. [8], however, the present difference oper-
ators intervening in the continuity equation are still different
from those intervening in the gauge invariance.

It is easy to check (i) that the current densities de-
fined above are gauge invariant under the transformations of
Eq. (29), and (ii) that Eq. (33) ensures the conservation of the
total probability, i.e.,

∑
x,y J 0(t, x, y) does not change with

time.
Eventually, we notice the following. On the one hand, one

can check that the present 2D DTQW, defined by Eqs. (18),
satisfies, in addition to the present two-step lattice continuity
equation, a single-step one—obtained by comparing the prob-
ability densities between two consecutive instants—which
has the same structure as that of Ref. [8], and involves, in
particular, the same discrete derivatives—the corresponding
current is gauge invariant under the gauge transformations
defined in the present work. On the other hand, one can also
check that the 2D DTQW defined in Ref. [8] satisfies, in ad-
dition to the single-step lattice continuity equation presented
in that reference, a two-step one, which has the same struc-
ture as that of the present work, and involves, in particular,
also symmetric finite differences as discrete derivatives—the
corresponding current is gauge invariant under the gauge
invariance of Ref. [8], which, we recall, is different from
the present one. These two combined results indicate that the
“symmetrization” of the discrete derivatives when going from
single-step to two-step continuity equations is independent
from the way one gauges the walk and is solely due to the
alternate construction of the 2D walk.
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V. CONCLUSION

In this paper we have discussed some of the subtleties
related to gauge invariance on discrete-time quantum walks
that include the interaction with external, synthetic electro-
magnetic fields, appearing as additional phases related to
those fields. As in standard lattice gauge theories, the way
to introduce such interactions is not unique and can lead to
interesting new features. We introduce these additional phases
in a way that differs from previous works in the literature.
We have first described how this definition works for one-
dimensional discrete-time quantum walks. This procedure has
the advantage that the discrete derivatives which intervene in
this lattice gauge invariance treat time and space on the same
footing, and are very much like those used in standard LGTs,
in contrast with those of Refs. [8,22].

We extended the above dynamics to 2D lattices, by alter-
nating 1D walks in the x and y directions of the spatial lattice,
where we ensure the U(1) lattice gauge invariance of this 2D
scheme by requiring it for each one-dimensional substep, in
contrast with the gauge invariance of Ref. [8]. Also, here,
time and space are treated on the same footing at the level
of the discrete derivatives—up to the fact that there are now,
in 2D space, two discrete derivatives in time, one for the
even discrete-time coordinates, corresponding to the motion
in the, say, x direction, and another one for the odd ones,
corresponding to the motion in the y direction.

By taking two time steps of the alternate walk, we intro-
duced a density current which is both conserved and gauge
invariant. Both in the 1D and in the 2D cases, we have com-
puted the continuum limit of these DTQWs. They coincide,
as desired and as in Refs. [21,22] and [8,22], respectively,
with the dynamics of a Dirac fermion in (1+1)D and (1+2)D
space-time, respectively, coupled to a U(1), i.e., electromag-
netic gauge field. We also showed that, in two dimensions,
the current conservation reproduces, in the continuum, that
corresponding to the Dirac field. The procedure discussed here
could be easily extended to the case of 3D lattices.

In our opinion, this work represents a sensible step on the
way to quantum simulating the dynamics of a Dirac particle
coupled to an external electromagnetic field. In addition to
this, the quantum walk, as a dynamical process taking place on
a lattice, introduces by itself interesting phenomena, which are
still to be fully explored even in the case of two-dimensional
lattices, which is the minimum dimensionality allowing for
the description of both an electric and a magnetic field.

Let us finally mention that a recent work [28] presents
a unified framework to understand U(1) gauge invariance in
discrete-time quantum walks on lattices and with coin spaces
of arbitrary dimensions. This work should at the very least
enlighten this field.
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APPENDIX A: DERIVATION OF THE CONTINUITY
EQUATION

We start from Eq. (32), with the purpose of obtaining the
continuity equation, Eq. (33). First, we work out the term

U 2D
t−ε�x,yU

2D
t−ε

†

≡ (
Tye

iβ
y
−(t,x,y)MRy

+ e−iβ
y
+(t,x,y)T †

y MLy

)
× (

Txe
iβx

−(t− ε
2 ,x,y)MRx

+ e−iβx
+(t− ε

2 ,x,y)T †
x MLx

)
�x,y

× (
e−iβx

−(t− ε
2 ,x,y)T †

x M
†
Rx

+ Txe
iβx

+(t− ε
2 ,x,y)M

†
Lx

)
× (

e−iβ
y
−(t,x,y)T †

y M
†
Ry

+ Tye
iβ

y
+(t,x,y)M

†
Ly

)
, (A1)

having used the notations

Tx = T1, Ty = T2, (A2a)

Msi
= �sCi, s = R,L, i = x, y. (A2b)

After some tedious algebra, we arrive at

U 2D
t−ε�x,yU

2D
t−ε

†

= �x+ε,y+εMRy
MRx

M
†
Rx

M
†
Ry

+ eiβ
y
−(t,x+ε,y)eiβ

y
+(t,x+ε,y−ε)�x+εD2M

(1)
x

+�x−ε,y+εMRy
MLx

M
†
Lx

M
†
Ry

− eiβ
y
−(t,x−ε,y)eiβ

y
+(t,x−ε,y−ε)�x−εD2M

(1)
x

+ e−iβ
y
+(t,x+ε,y−ε)e−iβ

y
−(t,x+ε,y)�x+εD

†
2M

(2)
x

+�x+ε,y−εMLy
MRx

M
†
Rx

M
†
Ly

− e−iβ
y
+(t,x−ε,y−ε)e−iβ

y
−(t,x−ε,y)�x−εD

†
2M

(2)
x

+�x−ε,y−εMLy
MLx

M
†
Lx

M
†
Ly

. (A3)

Similarly, the Hermitian conjugate is given by

U 2D
t+ε

†
�x,yU

2D
t+ε

= �x−ε,y−εM
†
Rx

M
†
Ry

MRy
MRx

+ e−iβx
−(t+ ε

2 ,x−ε,y−ε)e−iβx
+(t+ ε

2 ,x,y−ε)D
†
1�y−εM

(2)
y

+�x−ε,y+εM
†
Rx

M
†
Ly

MLy
MRx

− e−iβx
−(t+ ε

2 ,x−ε,y+ε)e−iβx
+(t+ ε

2 ,x,y+ε)D
†
1�y+εM

(2)
y

+ eiβx
+(t+ ε

2 ,x,y−ε)eiβx
−(t+ ε

2 ,x−ε,y−ε)D1�y−εM
(1)
y

+�x+ε,y−εM
†
Lx

M
†
Ry

MRy
MLx

− eiβx
−(t+ ε

2 ,x−ε,y+ε)eiβx
+(t+ ε

2 ,x,y+ε)D1�y+εM
(1)
y

+�x+ε,y+εM
†
Lx

M
†
Ly

MLy
MLx

. (A4)
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In the above equations, we have introduced the projectors
�x = |x〉〈x|, �y = |y〉〈y|, the operators D1 = |x + ε〉〈x − ε|,
D2 = |y + ε〉〈y − ε|, and

M (1)
x = MRy

MRx
M

†
Rx

M
†
Ly

, (A5a)

M (2)
x = MLy

MRx
M

†
Rx

M
†
Ry

, (A5b)

M (1)
y = M

†
LxM

†
Ry

MRy
MRx, (A5c)

M (2)
y = M

†
Rx

M
†
Ry

MRy
MLx

. (A5d)

Performing in Eq. (32) the substraction U 2D
t+ε

†
�x,yU

2D
t+ε −

U 2D
t−ε�x,yU

2D
t−ε

†
with the expressions obtained just above

yields

2
[
�

sym
0 J 0

]
(t, x, y) = �x+ε,y+εM

(2)
� + �x−ε,y+εM

(4)
� + �x+ε,y−εM

(1)
� + �x−ε,y−εM

(3)
�

+ (
eiβx

+(t+ ε
2 ,x,y−ε)eiβx

−(t+ ε
2 ,x−ε,y−ε)�y−ε − eiβx

+(t+ ε
2 ,x,y+ε)eiβx

−(t+ ε
2 ,x−ε,y+ε)�y+ε

)
D1M

(1)
y

+ (
e−iβx

−(t+ ε
2 ,x−ε,y−ε)e−iβx

+(t+ ε
2 ,x,y−ε)�y−ε − e−iβx

−(t+ ε
2 ,x−ε,y+ε)e−iβx

+(t+ ε
2 ,x,y+ε)�y+ε

)
D

†
1M

(2)
y

+ (
eiβ

y
−(t,x−ε,y)eiβ

y
+(t,x−ε,y−ε)�x−ε − eiβ

y
−(t,x+ε,y)eiβ

y
+(t,x+ε,y−ε)�x+ε

)
D2M

(1)
x

+ (
e−iβ

y
+(t,x−ε,y−ε)e−iβ

y
−(t,x−ε,y)�x−ε − e−iβ

y
+(t,x+ε,y−ε)e−iβ

y
−(t,x+ε,y)�x+ε

)
D

†
2M

(2)
x , (A6)

having introduced

M
(1)
� = M

†
Lx

M
†
Ry

MRy
MLx

− MLy
MRx

M
†
Rx

M
†
Ly

, (A7a)

M
(2)
� = M

†
Lx

M
†
Ly

MLy
MLx

− MRy
MRx

M
†
Rx

M
†
Ry

, (A7b)

M
(3)
� = M

†
Rx

M
†
Ry

MRy
MRx
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†
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†
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. (A7d)

Now, one can check that the following relations hold:

M
(1)
� = M (3)

y − M (3)
x , (A8a)

M
(2)
� = −M (3)

y − M (4)
x , (A8b)

M
(3)
� = M (4)

y + M (3)
x , (A8c)

M
(4)
� = −M (4)

y + M (4)
x , (A8d)

having introduced

M (3)
x = �LCy�RC†

y�L, (A9a)

M (4)
x = �RCy�RC†

y�R − C†
x�LCx, (A9b)

M (3)
y = C†

x�LC†
y�RCy�LCx, (A9c)

M (4)
y = C†

x�RC†
y�RCy�RCx − �L, (A9d)

so that the above continuity equation, Eq. (A6), can be recast
as Eq. (33).

APPENDIX B: CONTINUUM LIMIT OF THE CURRENT

Let us check that the lattice continuity (or current-
conservation) equation, Eq. (A6), tends, in the continuum
limit, towards the standard continuity equation involving the
Dirac current jμ = ψ̄γ μψ . Taylor expanding the following

quantities at first order in ε yields

J0(t + ε, x, y) − J0(t − ε, x, y) = 2ε∂tJ0(t, x, y), (B1a)

(�x−ε − �x+ε ) = −2ε∂x�x, (B1b)

(�y−ε − �y+ε ) = −2ε∂y�y. (B1c)

Making use of Eqs. (34) and (35), one arrives at

∂tJ0(t, x, y)

= −∂x〈ψt |�xy

(
M (1)

x + M (2)
x + M (3)

x + M (4)
x

)|ψt 〉
− ∂y〈ψt |�xy

(
M (1)

y + M (2)
y + M (3)

y + M (4)
y

)|ψt 〉. (B2)

In our particular case, the coin matrices are, at zeroth order in

ε, Cx = 1√
2

[
1 i

i 1

]
and Cy = 1√

2

[
1 −i

−i 1

]
, so that

M (1)
x + M (2)

x + M (3)
x + M (4)

x =
[

0 i

−i 0

]
= γ 0γ 1, (B3a)

M (1)
y + M (2)

y + M (3)
y + M (4)

y =
[

1 0

0 −1

]
= γ 0γ 2. (B3b)

Finally, the continuum limit of our continuity equation
reads

∂tJ0(t, x, y) = −∂x〈ψt |�xyγ
0γ 1|ψt 〉

− ∂y〈ψt |�xyγ
0γ 2|ψt 〉. (B4)

This equation can be recast as ∂μ(ψ̄γ μψ ) = 0, the expected
current-conservation equation.
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gauge potential for neutral atoms, Rev. Mod. Phys. 83, 1523
(2011).

[15] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations
with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

[16] J. Dalibard, Introduction to the physics of artificial gauge fields,
arXiv:1504.05520.

[17] I. Montvay and G. Münster, Quantum Fields on a Lattice,
Cambridge Monographs on Mathematical Physics (Cambridge
University Press, Cambridge, UK, 1994).

[18] G. Münster and M. Walzl, Lattice gauge theory - a short primer,
arXiv:hep-lat/0012005.

[19] J. Smit, Introduction to Quantum Fields on a Lattice, Cam-
bridge Lecture Notes in Physics (Cambridge University Press,
Cambridge, UK, 2002).

[20] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445
(1974).

[21] G. Di Molfetta, F. Debbasch, and M. Brachet, Quantum walks
in artificial electric and gravitational fields, Physica A 397, 157
(2014).

[22] P. Arnault, Discrete-time quantum walk and gauge theories,
Ph.D. thesis, Université Pierre et Marie Curie, 2017.

[23] P. Arrighi, G. D. Molfetta, and N. Eon, A gauge-invariant re-
versible cellular automaton, in Cellular Automata and Discrete
Complex Systems (Springer International Publishing, Cham,
2018), pp. 1–12.

[24] P. Arnault, G. Di Molfetta, M. Brachet, and F. Debbasch,
Quantum walks and non-Abelian discrete gauge theory, Phys.
Rev. A 94, 012335 (2016).

[25] G. Jay, J. B. Wang, and F. Debbasch, Dirac quantum walks on
triangular and honeycomb lattices, arXiv:1803.01304.

[26] F. Debbasch, Action principles for quantum automata
and Lorentz invariance of discrete time quantum walks,
arXiv:1806.02313.

[27] This is of course true up to the fact that only one “spatial
symmetrization” σi , i labeling the direction taken by the walker
at each sub time step, appears in Ref. [25], instead of the double
one, �2�1, of the earlier reference [8]; see the first equation of
Eqs. (9) in that reference. This difference is simply due to the
fact that, in the earlier reference, the lattice gauge invariance is
not multisubstep.

[28] C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, Quantum
walks in external gauge fields, arXiv:1808.10850.

032333-8

58



4 Quantum walks over the
honeycomb and triangular lattice
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4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Spatial search on hexagonal and triangular lattices . . . . . 60
4.1.2 Localization on the honeycomb and triangular lattices . . . . 62
4.1.3 Topological phases in the triangular lattice . . . . . . . . . . 63
4.1.4 Quantum walks over graphene structures . . . . . . . . . . . 65

4.2 Publication: "Dirac equation as a quantum walk over the honeycomb
and triangular lattices" . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Motivation
In the present chapter we present QW-based schemes which do not rely on the
regular grid, indeed the QW models that we will describe are defined on the
honeycomb and triangular lattices.

There are already DTQWs studies on these type of lattices such a the imple-
mentation of the Grover quantum search on the honeycomb lattice [2] and the
triangular lattice [1]. As the graphene has a hexagonal structure, QWs-based
scheme on the honeycomb can be used to study the possibility of using graphene
armchair and zigzag nanoribbons 1 to implement quantum gates [69] and QWs
also can be used to explore transport properties in these graphene structures
[28]. On the other hand, QWs have been defined over triangular lattices to
study topological phases due to their non-trivial topology [73]; however no ac-
tual continuum limit is studied in these works, what it will be introduced in
Sect.(4.2).

Our motivation is proving that quantum simulation schemes do not depend on
the type of lattice, therefore being possible to simulate physical theories in the
continuum limit, in our case the Dirac equation, on honeycomb and triangular
lattices, Sect.(4.2). Apart from the mathematical interest itself, there are other
motivations for this departure from the rectangular lattice to the honeycomb
and triangular lattices. As it is mentioned in Sect.(2.1), quantum simulation of

1The carrier velocity is determined by the shape of the nanoribbon border.
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condensed-matter system dynamics is a hot topic nowadays, e.g. systems driven
by the Dirac-like Hamiltonian in the honeycomb graphene [104, 115],

Other important topic is related to topological phases. QWs on triangular and
hexagonal lattices would help to study the transport properties of systems which
converges to the Dirac equation in the continuum, in lattices with non-trivial
topological phases [73].

Before introducing our model, we would like to give an introduction on quan-
tum walks in triangular and honeycomb lattices by reviewing other previous
model and their motivations.

4.1.1 Spatial search on hexagonal and triangular lattices
This section is based on the works by G. Abal et al [2, 1] in which QWs models
are defined on the honeycomb and triangular lattices for the purpose of building
quantum algorithms in QW-based schemes, in particular for doing spatial search.
Spatial search is defined as the problem of finding a marked location in a rigid
structure using local operators. The most efficient QW-based spatial search algo-
rithm in two-dimensional square lattice has a time complexity of O(

√
N logN),

proposed by Tulsi [127], which algorithm is based on the work of Ambainis,
Kempe and Rivosh (AKR) [6]. The aim of these QWs-based spatial search on
different type of lattices is to study whether the time complexity of the search al-
gorithm depends on the number of connection of each node. In both articles they
prove that the time complexity remains equal as in the case of the rectangular
grid O(

√
N logN).

We are not going to enter in the details of the search algorithm because what
we would like to do is introducing their DTQWs definitions, in both kind of
lattices, in order to compare with our QW proposals.

Quantum walk on the honeycomb lattice Since the hexagonal lattice is not a
Bravais lattice, the connection number per node is d = 3, and can be divided into
two sub-lattices with N/2 vertices each, Fig.(4.1). Therefore the vectors a1 and
a2 connects neighbors of the same sub-lattice whereas the unit vector b moves
from one sub-lattice to the other, from the white to the black or vice versa. Hence
any arbitrary point can be addressed as r = n1a1 +n2a2, taking into account that
each point has a reciprocal in the other sub-lattice r + b. Thus, we can express
a state in the position subspace as |s, n1, n2〉, where s = 0, 1 indicates in which
sub-lattice the state is.

On the other hand, at every site the walker has three possible direction of
motion, for this reason it is encoded in a three dimensional coin space, referred
with the index j = 0, 1, 2 for each direction.
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a1

a2
b

1

(a) Honeycomb lattice (b) Triangular lattice

Figure 4.1: (a) On the honeycomb lattice there are two sub-sublattices, the white
and black sites. a1 and a2 are the vectors which connect to the sites
living in the same sublattice whereas b is the moves from the white to
the black sub-lattice. (b) On the triangular lattice, the walker has six
direction of motion which are labeled by j. Images taken from [2, 1]

The entire Hilbert space H = HC ⊗ HP is spanned by |j, s;~n〉 where ~n refers
(n1, n2). In this basis, the walker ψ ∈ H can be written as:

ψ =
∑

j;n1,n2

aj;n1,n2 |j; 0, ~n〉+ bj;n1,n2 |j; 1, ~n〉 . (4.1)

Then, the conditional shift operator is defined as:

S =
∑
j,s,~n

|j, s⊕ 1, ~n− (−1)svj〉 〈j, s, ~n| , (4.2)

where ⊕ refers to the binary sum and ~vj are the directional vectors:

v0 = (0, 0) v1 = (1, 0) v2 = (0, 1). (4.3)

According to the propagation rule, the walker change the sub-lattice at every
step. The evolution operator reads as:

U = S(G3 ⊗ IP ), (4.4)

where IP is the identity in HP and G3 is the 3-dimensional standard Grover
matrix:

G3 = 1
3

−1 2 2
2 −1 2
2 2 −1

 , (4.5)

coin proposed by [97], which is given for any dimension as Gd
ij = 2

d
− δij. The

Grover coin is symmetric, treating all d directions equally, and also it is the per-
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mutation invariant operator farthest away from the identity operator.

Quantum walk on the triangular lattice G.Abal et al [1] propose another QW-
based scheme for doing spatial search, however the use a triangular network,
with connection number per node d = 6. Since it is obtained the same time com-
plexity scaling of the previous models in different type of lattices, O(

√
N logN),

they suggest that the time complexity does not depend on the degree of the
lattice.

Considering N sites arranged in a triangular network paving a 2D region, an
arbitrary point is identified as r = n1a1 + n2a2, where a1 and a2 are showed in
Fig.(4.1). As there are not two kind of sub-lattices this time, it is not necessary to
include an extra label s. Therefore, the entire position Hilbert space is spanned
by |n1, n2〉. As it is indicated before the connectivity of the lattice is d = 6, hence
the walker has six possible directions to hop, labeled by j ∈ [0, 5]. These six
possible directions are encoded in the coin space HC .

Then, the entire Hilbert space H = HC ⊗ HP is 6N- dimensional, a state |ψ〉
being written as:

|ψ〉 =
∑
j,~n

aj,~n |j, ~n〉 , (4.6)

where aj,~n are the complex amplitudes and we define again ~n = (n1, n2).
The shift operator acting on the states |j, ~n〉 is defined as:

S |0, ~n〉 = |3, ~n+ (1, 0)〉
S |1, ~n〉 = |4, ~n+ (1,−1)〉
S |2, ~n〉 = |5, ~n+ (0,−1)〉
S |3, ~n〉 = |0, ~n+ (−1, 0)〉
S |4, ~n〉 = |1, ~n+ (−1, 1)〉
S |5, ~n〉 = |2, ~n+ (0, 1)〉 , (4.7)

whereas the coin operator is the usual Grover coin, which elements are given by
Gd
ij = 2

d
− δij, for d = 6.

4.1.2 Localization on the honeycomb and triangular lattices
We introduce in Sect.(4.1.1) a QW-based scheme over the honeycomb lattice.
QWs over honeycomb lattices present some interesting features, such as localiza-
tion phenomena [88, 89, 65, 88] (see Sect.(2.3)). In contrast, it seems that this
phenomenon is not usual in the triangular lattice [78].

In particular, Changyuan Lyu et al [88], study in great detail the localization
effect on a QW over the honeycomb network, focusing on the Grover walk. They
derive analytically the long time limit of the walker’s state, depending on the
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initial condition. They also introduce other coin operators, and study the suffi-
cient conditions for localization. Based on the average probabilities of finding
the particle at the starting position, they conclude that the trapping effect of a
honeycomb network is relatively strong. In addition there are previous works
that analyzed the localization in quantum walks on hexagonal lattices [89, 65]
which are in concordance with the results exhibited in [88].

On the other hand, Kollár et al in [78] studied a QW model in the triangular
network 2. They found that, despite of using a Grover’s operator, the walker has
a rapidly decaying probability to be localized at the origin. Instead of getting
localization of the walker around the starting point, they find a subclass of coin
operators that transform the quantum walk on the 2D plane to a quantum walk
confined along a quasi one-dimensional line.

4.1.3 Topological phases in the triangular lattice
Motivated by a variety of exotic phenomena, from the quantum Hall effect to a
new class of materials known as topological insulators, the study of nontrivial
topological phases has been increased considerably in the recent years in quan-
tum walks-based schemes [32, 18, 23, 136, 17, 105].

Kitagawa et al [73] introduce the study of topological phases very nicely, clas-
sifying the different kind of nontrivial topologies in 1D and 2D QWs, depending
on the type of symmetry the system has. To analyze the two-dimensional case,
they define a quantum walk on the triangular lattice. Apart from the interest
itself in studying topological phases, what it is also noticeable is that the model
is quite similar to our honeycomb 3 quantum walk.

In contrast to the previous models , the Hilbert space of the coin HC is two
dimensional. In our case, the one step operator is defined as:

U2D(θ1, θ2) = T3R(θ1)T2R(θ2)T1R(θ1), (4.8)

where R(θ) is given by:

R(θ) =
(

cos( θ2) − sin( θ2)
sin( θ2) cos( θ2)

)
(4.9)

and Ti, i = 1, 2, 3, are the usual translation operators which shift the spin up
(down) in the +(-)vi direction, Fig.(4.2). The evolution in one time step is equiv-
alent to that generated by an effective Hamiltonian H(θ1, θ2) over the time step

2They define the QW over the triangular network using a three dimensional coin, whereas the
QW we have introduced in the previous section (4.1.1), has a six dimensional coin. It could
be interesting studying the connection between both models

3We define the honeycomb and triangular lattice contrary to the standard definitions in literature.
What we call ’honeycomb’ lattice is equivalent to a triangular lattice, and our ’triangular’
lattice is equivalent to the honeycomb lattice (see explanation in Sect.(4.2))
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δt:
U(θ1, θ2) = e−iH(θ1,θ2)t. (4.10)

Since the DTQW is translationally invariant, it is possible to diagonalize the evo-
lution operator U(θ1, θ2) and the effective Hamiltonian H(θ1, θ2) in the Fourier
basis. Thus the effective Hamiltonian can be written as:

H(θ1, θ2) =
∫
BZ

d2k (E(k)~n · ~σ) , (4.11)

where ~σ = (σ1, σ2, σ3) is the vector of Pauli matrices, BZ refers to the first Bril-
louin zone for k̃ = (k1, k2), and E(~k) represents by the eigenvalues of H(θ1, θ2).
The unit vector ~n = (nx, ny, nz) defines the quantization axis for the spinor eigen-
states at each momentum ~k, i.e. the eigenstates of H(θ1, θ2) are the superposition
of spin up and spin down states, hence they can be represented as a point on the
Bloch sphere. The vector ~n determines the direction of this point.

The topological phases can be characterized by an integer-valued topological
invariant called the Chern number, determined by:

C = 1
4π

∫
BZ

d2k
[
~n ·

(
∂kx~n× ∂ky~n

)]
. (4.12)

The Chern number can be calculated numerically for the full range of angle
parameters (θ1, θ2), Fig.(4.2). The nontrivial topology of the model can be mani-
fested in the interface between two regions with topologically distinct phases. In-
troducing an initial condition in this interface, the presence of protected midgap
modes is manifested. This gapless modes are bound to the interface, and they are
robust against perturbations. Following the example of Kitagawa et al, we define
two regions in the 2D QW by taking the spin-rotation angles to be site indepen-
dent. Hence there are two regions with different Chern number, C = −1 for
25 ≤ y < 75, and C = 0 for the rest, Fig.(4.2). To confirm these edge modes they
calculate the quasienergies numerically, Fig.(4.2). Two counter-propagating chi-
ral edge modes appears in the interface between the two regions with different
topological phases.
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Figure 4.2: (a) Possible directions that the walker can take on the triangular lattice.
(b) Chern number for different values of the coin angles θ1 and θ2. (c)
Two different regions in the 2D QW with different Chern number. In the
red region the Chern number is equal to -1 with θ1 = θ2 = 3π

2 , whereas
in the white region the Chern number is 0 with θ1 = θ2 = 7π

6 . The
arrows refer to the propagation of the edge modes at the boundaries.
(d) Quasi-energy spectrum of the 2D QW with the two different regions.
Two edge state appears with energies connecting the upper and lower
branches. Image taken from [73]

It would be interesting, using our QW proposal over the honeycomb and trian-
gular lattice, Sect.(4.2), to study nontrivial topological systems, e.g. the model
proposed by Haldane [63], which is a 2D model on a honeycomb lattice exhibit-
ing the quantum Hall effect without an external magnetic field.

4.1.4 Quantum walks over graphene structures
Graphene has been a focus of interest during the last decades due to its remark-
able electronic properties [115, 131, 104, 103, 30, 108]. Since this material
has a considerable number of interesting properties, it has been proposed as a
physical platform for quantum information processing [53]. Since graphene is
arranged on a honeycomb lattice, it is possible to use quantum walks on the
hexagonal lattice to study the transport properties of this material [28] or even
as a material for implementing experimentally quantum walks [69].

In [69] it is investigated different graphene nanostructures, such a nanoflakes
and nanoribbons, to implement universal discrete time quantum walks. They
define the quantum walk over a two-dimensional hexagonal lattice, which is
quite similar to the case studied in Sect.(4.1.1). However, the main difference
between both models is that, in this QW, the coin space is four-dimensional,
thus the extra amplitude defined remains stuck on the same site after one time
step. Instead of using a specific coin operator, they implement universal quantum
gates as coins to drive the quantum walk. These coins can represent a physical
action such an external field or a laser pulse on the graphene nanostructure.

On the other hand, in [28] it is defined a QW over the honeycomb lattice, how-
ever this work is focused on the transport properties of different graphene struc-
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tures. By means of numerical simulations, they demonstrate that the transport
for discrete-time quantum walks on graphs corresponding to a different classes
of graphene nanostructures is significantly faster than transport on simple graphs
like cycles or lines.

Since the behavior on these graphene materials can be related to the mass-
less behavior of electrons at the Dirac points, we believe that our QW scheme
over the triangular lattice, Sect.(4.2), can help to understand in a deeper way
the transport properties over graphene nanostructures, since our model has the
advantage of obtaining the exact Dirac equation in the continuous limit.

4.2 Publication: "Dirac equation as a quantum walk
over the honeycomb and triangular lattices"

In this section we introduce a discrete-time quantum walk over the honeycomb
and triangular lattices, which admits as the continuum limit the Dirac equation.
The aim is showing that these simulations results can be achieved in lattices
which are not the rectangular one. This result opens the door for a generalization
of the Dirac equation to arbitrary discrete surfaces.

On the other hand, we have seen in the previous sections that these quantum
walks models on nonrectangular lattices, such a the honeycomb and the trian-
gular, are subject of interest in different topics. We are going to summarize our
quantum walk proposals to easily compare with the previous models.

The first difference is that we call honeycomb lattice what the rest of the authors
call triangular lattice, and the same occurs with the equivalence between our
triangular lattice and the honeycomb lattice of the other previous models. The
reason of discrepancy is the site definition of the walker in the lattice. In the
honeycomb lattice, our waker is defined on the center of the hexagons, whereas
in our triangular QW the amplitudes are defined on the edges of the triangles.
This means that our honeycomb QW has a connectivity of degree six, while our
triangular QW has a degree three. This is only a difference in the notation with
respect to the previous works, however it is important to specify this divergence
in naming notation to do not confuse the reader.
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(a) Honeycomb QW
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1

0

0

0

22

1

(b) Triangular QW

Figure 4.3: (a) The walker moves at every step in one of the three ui direction.
First it moves along u0 (blue solid line), then u1 (red dot-dashed) and
finally u2 (green dot line). (b) The walker lives on the shared edge
between triangles. The dynamics, after three steps, is similar to the
honeycomb QW.

Honeycomb QW We introduce a QW over the honeycomb lattice, Fig.(4.3),
defining the walker in the center of every hexagon, as we pointed out before. In
contrast with the QW on the triangular lattice defined in Sect.(4.1.1), our coin
Hilbert space HC is defined to be two dimensional since we require to recover
two-dimensional spinors in the continuum limit. Thus our honeycomb QW is
given by:

|ψ(t+ ε)〉 = (WT2,εWT1,εWT0,ε) |ψ(t)〉 (4.13)

where Ti shifts the ± components along ±ui, which are written as:

ui = cos
(
i
2π
3

)
ux + sin

(
i
2π
3

)
uy, (4.14)

where ux and uy are the unit vectors along the x and y directions. W is the coin
operator required to recover the Dirac equation in the limit ε→ 0, which details
are explained in the following article.

As compared to previous QW models, our definition Eq.(4.13) is quite similar
to Eq.(4.8), in which they study the topological properties of the quantum walk
in a two dimensional lattice, whereas the coin space changes with respect to [1].

Triangular QW In this case we define the quantum walk over a equilateral tri-
angular lattice, Fig.(4.3). Our two-dimensional spinors lie on the edges shared

by two neighboring triangles. We denote them by ψ(t, v, k) =
(
ψ↑(t, v, k)
ψ↓(t, v, k)

)
, with

v a triangle and k a side. We take the convention that the upper (lower) compo-
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nent of the spinor lies on the white (gray) triangle’s side.
The dynamics of the triangular QW is the composition of two operators. The

first operator is a anticlockwise rotation R at every triangle. For instance, the
amplitude components at side k hops to side (k+ 1 mod 3). The second operator
is the 2×2 matrix W defined in the honeycomb lattice. This operator acts on the
spinor ψ(t, v, k) of every edge shared by two neighboring triangles.

This elegant way to define the quantum walk over the triangular lattice has
the advantage of not taking care of two sub-lattices, making the evolution more
simple than in previous models.

On the one hand, since we recover the transport of free electrons in the con-
tinuous limit, our QW model could add more insight in the study of graphene
structures.

On the other hand, a question that arises is whether this QW can be used as a
Grover search algorithm. Recently, in [62], it is studied that QW models which
recover the Dirac equation in the continuum can behave like a Grover search
when there are defects in the lattice. They use the square and the triangular
lattice. In the case of using the triangular QW, the contribution of behaving like
a Grover walk can be enhanced due to the non-trivial topology of the system,
which produces the appearance of an edge state around the defect.

Apart from our discrete-time Dirac quantum walk, another group tackled the
same problem [67]. On the one side, our QW is more elegant and simpler to
implement than their model, as we only use one coin every step, whereas they
use three different coins. On the other side, their work goes further in terms
of applications since it includes gauge fields, gauge invariance and numerical
simulations.
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A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on
the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial
differential equations, such as the Dirac equation. We show that these simulation results need not rely on the
grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb
or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as
in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac
equation to arbitrary discrete surfaces.

DOI: 10.1103/PhysRevA.97.062111

I. INTRODUCTION

We will describe two discrete-time quantum walks (QWs),
one the honeycomb lattice, and the other the triangular lat-
tice, whose continuum limit is the Dirac equation in (2 + 1)
dimensions. Let us put this result in context.

Quantum walks. QWs are dynamics having the following
characteristics: (i) the state space is restricted to the one particle
sector (also called one “walker”); (ii) space-time is discrete;
(iii) the evolution is unitary; (iv) the evolution is homoge-
neous, that is, translation invariant and time independent; and
(v) causal (or “nonsignaling”), meaning that information prop-
agates at a strictly bounded speed. Their study is blossoming,
for two parallel reasons.

One reason is that a whole series of novel quantum com-
puting algorithms, for the future quantum computers, have
been discovered via QWs, e.g., [1,2], and are better expressed
using QWs. The Grover search has also been reformulated
in this manner. In these QW-based algorithms, the walker
usually explores a graph, which is encoding the instance of
the problem. No continuum limit is taken.

The other reason is that a whole series of novel quantum
simulation schemes, for the near-future quantum simulation
devices, have been discovered via QWs, and are better ex-
pressed as QWs [3,4]. Recall that quantum simulation is
what motivated Feynman to introduce the concept of quantum
computing in the first place [5]. While a universal quantum
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†giuseppe.dimolfetta@lis-lab.fr
‡ivan.marquez@uv.es
§armando.perez@uv.es

computer remains out of reach experimentally, more special-
purpose quantum simulation devices are seeing the light,
whose architecture in fact often resembles that of a QW
[6,7]. In these QW-based schemes, the walker propagates
on the regular lattice, and a continuum limit is taken to
show that this converges toward some well-known physics
equation that one wishes to simulate. As an added bonus, QW-
based schemes provide: (1) stable numerical schemes, even for
classical computers, thereby guaranteeing convergence as soon
as they are consistent [8]; and (2) simple discrete toy models
of the physical phenomena, which conserve most symmetries
(unitarity, homogeneity, causality, sometimes even Lorentz-
covariance [9,10], perhaps even general covariance [11,12]),
thereby providing playgrounds to discuss foundational ques-
tions in physics [13]. It seems that QWs are becoming a new
language to express quantum physical phenomena.

While the present work is clearly within the latter trend,
technically it borrows from the former. Indeed, the QW-based
schemes that we will describe depart from the regular lattice,
to go to the honeycomb and triangular grid—which opens the
way for QW-based simulation schemes on trivalent graphs.

Motivations. That quantum simulation schemes need not
rely on the regular lattice grid is mathematically interesting—
but there are numerous other motivations for this departure
from the rectangular grid. One is the hot topic of simulating or
modeling many quantum condensed-matter system dynamics,
driven by the usual high-binding Hamiltonian or by the Dirac-
like Hamiltonian, for example, in graphene, and within crystals
in general [14]. This work would establish a connection
between such physical phenomena and QWs. Another hot topic
is related to topological phases. QWs on triangulations should
allow us to model all sorts of topologies as simplicial com-
plexes, and hopefully help predict their transport properties

2469-9926/2018/97(6)/062111(5) 062111-1 ©2018 American Physical Society

69



PABLO ARRIGHI et al. PHYSICAL REVIEW A 97, 062111 (2018)

[15]. The fact that our triangular QW converges to the Dirac
equation shows that we have the right prediction at least in the
flat case.

Yet another motivation for exploring nonflat geometries
is general relativity. In fact, two of the authors have already
developed QW models of the curved space-time Dirac equation
[11,12,16]. These were on the regular lattice, using a nonho-
mogeneous coin to code for the space-time-dependent metric.
We wonder whether a QW on triangulations can also model the
curved space-time Dirac equation, using a homogeneous coin
but a space-time-dependent triangulation. This problem is rem-
iniscent of the question of matter propagation in triangulated
space-time, as arising, e.g., in loop quantum gravity [17]. Here
again, the fact that our triangular QW converges toward the
Dirac equation demonstrates that we have the right prediction
at least in the triangulation-of-flat-space case. Finally, let us
mention the work of two of the authors which models the
massive Dirac equation as a Dirac QW on a cylinder [18]. QWs
on triangulations should allow us to vary the geometry of this
cylinder, so as to model richer fields with just the massless
Dirac QW.

Related works. The Grover quantum search algorithm has
been expressed as a QW on the honeycomb lattice in [19] (and
also in [20] with continuous time). It has also been expressed
as a QW on the triangular lattice [21,22]. Again for quantum
algorithmic purposes, Ref. [23] studies the possibility to use
graphene nanoribbons to implement quantum gates. From the
quantum simulation perspective, QWs on triangular lattices
have been used to explore transport in graphene structures
[24,25], and they have also been used to explore topological
phases [15]; but no actual continuum limit is taken in these
works. A work that does take a continuum limit of a discrete-
time QW while departing from the regular lattice is [26], where
a Dirac-like Hamiltonian is recovered. What we show is that
the exact Dirac Hamiltonian can be recovered, both in the
honeycomb and the triangular lattices. That this can be done
is somewhat surprising. Indeed, in [27], the authors conducted
a thorough investigation of isotropic QWs of coin dimension
2 over arbitrary Caley graphs Abelian groups, from which it
follows that only the square lattice supports the Dirac equation.
Our results circumvent this no-go theorem, while keeping
things simple, by making use of two-dimensional spinors that
lie on the edges shared by adjacent triangles, instead of lying
on the triangles themselves. Thus means that, per triangle,
there are three thus including an additional degree of freedom
associated with these edges.

Plan. To start gently, Sec. II, explains how the Dirac
equation in (2 + 1) dimensions can be simulated by a QW
on the regular lattice. In Sec. III, we express the (2 + 1)-
dimensional Dirac Hamiltonian in terms of derivatives along
arbitrary three 2π/3–rotated axes ui . We use this expression
to simulate the Dirac equation with a QW on the honeycomb
lattice. In Sec. IV, we introduce a QW on the triangular lattice,
which will turn out to be equivalent to that on the honeycomb
lattice. In V we provide a summary and some perspectives.

II. REGULAR LATTICE

In this section, we recall a well-known QW on the reg-
ular lattice with axis x, y and spacing ε, which has the

Dirac equation in the continuum limit. It arises by operator-
splitting [28] the original, one-dimensional Dirac QW [3,4,29].

A possible representation of this equation is (in units such
as h̄ = c = 1)

i∂t |ψ〉 = HD|ψ〉, with HD = pxσx + pyσy + mσz (1)

the Dirac Hamiltonian, σi (i = 1,2,3) the Pauli matrices, pi

the momentum operator components, and m the particle mass.
To simulate the above dynamics on the lattice, we de-

fine a Hilbert space H = Hl ⊗ Hs , where Hl represents the
space degrees of freedom and is spanned by the basis states
|x = εl1,y = εl2〉 with l1,l2 ∈ Z, whereas Hs = Span{|s〉/s ∈
{−1,1}} describes the internal (spin) configuration. When
acting on Hl , the pi are called quasimomentum operators
(since they no longer satisfy the canonical commutation rules
with the position operators). Still, the translation operators are
given by T(j,ε) = exp(−iεpj ) and verify that

T(1,ε)|x,y〉 = |x + ε,y〉, T(2,ε)|x,y〉 = |x,y + ε〉.
By analogy with these notations, we introduce the time evolu-
tion operator as T(0,ε) = exp(−iεHD). In this way, the time
evolution of a state |ψ(t)〉 is given by

|ψ(t + ε)〉 = T(0,ε)|ψ(t)〉 = exp(−iεHD)|ψ(t)〉. (2)

After substitution of Eq. (1) into this definition, and making use
of the Lie-Trotter product formula (assuming that ε is small)
we arrive at

T(0,ε) � e−iεmσze−iεpxσx e−iεpyσy

= e−iεmσzHe−iεpxσzHH1e
−iεpyσzH

†
1 ,

since σx = HσzH with H the Hadamard gate, and σy =
H1σzH

†
1 with H1 = 1√

2
( i 1

−i 1 ). Using the definition of σz,
we get

T(0,ε) � CεHT1,εHH1T2,εH
†
1 , (3)

with Cε = exp (−iεmσz)

and Tj,ε =
∑

s∈{−1,1}
|s〉〈s|T(j,sε),

where the Tj,ε matrices are partial shifts. This defines the Dirac
QW, which is known to converge toward the Dirac equation in
(2 + 1) dimensions [8].

III. HONEYCOMB LATTICE

We now introduce a QW over the honeycomb lattice (Fig. 1)
which we show has the Dirac equation as its continuum limit.
The results of this section will also help us in the next section,
when we introduce a QW over the triangular lattice. Our
starting point is Eq. (2), with HD as defined in Eq. (1). The basic
idea is to rewrite this Hamiltonian using partial derivatives
(which will then turn into translations) along the three (ui)
vectors that characterize nearest neighbors in the hexagonal
lattice, instead of the ux and uy vectors that do so in the regular
lattice. The vectors ui, i = 0,1,2 are given by

ui = cos

(
i
2π

3

)
ux + sin

(
i
2π

3

)
uy, (4)
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FIG. 1. Left: Honeycomb QW. The particle moves first along the
u0 direction (blue solid line), then u1 (red dot-dashed line) and finally
u2 (green dot line). Right: Triangular QW. Starting at the edge k = 0,
the dynamics is equivalent to the honeycomb QW, in three time steps.
The circle line represents the counterclockwise rotation operator.

with ux and uy the unit vectors along the x and y directions.
In terms of momentum operators,

πi = cos

(
i
2π

3

)
px + sin

(
i
2π

3

)
py.

We then look for three 2 × 2 matrices τi satisfying the follow-
ing conditions:

(C1) Each of them has {−1,1} as eigenvalues, i.e., there
exists a unitary Ui such that

τi = U
†
i σzUi.

(C2) We impose that
∑2

i=0 τiπi = pxσx + pyσy , i.e., the
Dirac Hamiltonian adopts the form

HD =
2∑

i=0

τiπi + mσz.

It was surprising to us that these conditions lead to unique
(τi) matrices, up to a sign:

τ0 = 2

3
σx + ξσz,

τ1 = −1

3
σx +

√
3

3
σy + ξσz,

τ2 = −1

3
σx −

√
3

3
σy + ξσz,

with ξ = ±
√

5
3 . Let us choose ξ =

√
5

3 , and notice that∑
i

τi =
√

5

3
σz. (5)

Thus

e−iεHD = e
−iε(

∑
i τiπi+ 3√

5
m

∑
i τi ).

As before, we use the Lie-Trotter product formula and obtain

e
−iε(

∑
i

3√
5
mτi+τiπi ) �

2∏
i=0

e
−iε 3√

5
mτi e−iετiπi . (6)

We now make use of condition (C1) to rewrite, for each i,

e−iετiπi = e−iεU
†
i σzUiπi = U

†
i e

−iεσzπi Ui = U
†
i Ti,εUi,

where now the partial shifts Ti,ε are defined through the πi

operators, instead of px and py . Similarly, for all i,

e
−iε 3√

5
mτi = U

†
i e

−iε 3√
5
mσzUi.

Let M = e
−iε 3√

5
mσz . Wrapping it up, we have obtained a QW

over the honeycomb lattice:

|ψ(t + ε)〉 =
(

2∏
i=0

U
†
i MTi,εUi

)
|ψ(t)〉, (7)

which, by construction, has the Dirac equation (1) as its
continuum limit as ε → 0. By mere associativity the QW
rewrites as

U0|ψ(t + ε)〉 =
(

2∏
i=0

Ui+1U
†
i MTi,ε

)
U0|ψ(t)〉.

Thus, if the matrix products Ui+1U
†
i could be made indepen-

dent of i (with i + 1 understood modulo 3), the QW could be
reformulated to have a constant coin operator. Surprisingly,
this can be done thanks to a natural choice of the Ui matrices,
expressed in terms of well-chosen rotations in the Bloch
sphere, understood as the set of possible spin operators. The
natural choice for U0 is Rσy

(α) = e−iασy/2, the rotation of

angle α = arccos
√

5
3 around σy . Indeed Rσy

(α) maps the Bloch
vector of τ0 into the Bloch vector of σz:

σz = Rσy
(α)τ0R†

σy
(α). (8)

Next, we observe that the Bloch vectors τi are related by a
rotation of angle 2π/3 around σz. For reasons that will become
apparent, it matters to us that the cube of this rotation is
the identity, which is obviously not the case for Rσz

( 2π
3 ) =

e−iπ/3σz , since it represents a spin-1/2 rotation and will acquire
a minus sign when applied three times. Hence we take S =
ei π

3 Rσz
( 2π

3 ) instead. Then, the natural choices for the matrices
U1 and U2 are

U1 = U0S, U2 = U1S.

Indeed, these again fulfill (C1): first the S unitary brings τi to
τ0, and then the U0 rotation brings τ0 to σz. Now, the fact that the
Ui matrices are related by a unitary which cubes to the identity
entails that the products Ui+1U

†
i = U0SU

†
0 are independent of

i. We introduce

W = U0SU
†
0M. (9)

Then, if we redefine the field up to an encoding, via

|ψ̃(t)〉 ≡ U0|ψ(t)〉,
Then the honeycomb QW rewrites as just

|ψ̃(t + ε)〉 = (WT2,εWT1,εWT0,ε)|ψ̃(t)〉. (10)

In other words, the honeycomb QW just shifts the ± com-
ponents along ±u0, applies the fixed U (2) matrix W at each
lattice point, shifts the ± components along ±u1, applies W

again, etc. For certain architectures it could well be that the
time homogeneity of the coins makes the scheme easier to
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implement experimentally, compared to earlier alternate QWs
on the regular lattice [8].

IV. TRIANGULAR LATTICE

Having understood how to obtain the Dirac equation over
the honeycomb lattice will make it much easier to tackle the
triangular or related lattice such as the kagome lattice [30]. Let
us first describe the lattice and its state space. Our triangles
are equilateral with sides k = 0,1,2, see Fig. 1. Albeit the
drawing shows white and gray triangles, these differ only by the
way in which they were laid—they have the same orientation,
for instance. Our two-dimensional spinors lie on the edges
shared by neighboring triangles. We label them ψ(t,v,k) =
( ψ↑(t,v,k)

ψ↓(t,v,k) ), with v a triangle and k a side. But, since each
spinor lies on an edge, we can get to it from two triangles. For
instance, if triangle v0 (white) and v1 (grey) are glued along
their k = 1 side, then ψ(t,v0,1) = ψ(t,v1,1). In fact let us take
the convention that the upper (lower) component of the spinor,
namely ψ↑ (ψ↓), lies on the white (gray) triangle’s side. From
this perspective each triangle hosts aC3 vector, e.g., ψ(t,v0) =
[ψ↑(t,v0,k)]Tk=0...2 and ψ(t,v1) = [ψ↓(t,v1,k)]Tk=0...2.

The dynamics of the triangular QW is the composition
of two operators. The first operator, R, simply rotates every
triangle anticlockwise. Phrased in terms of the hosted C3

vectors, the component at side k hops to side (k + 1 mod 3).
For instance Rψ(t,v0) = [ψ↑(t,v0,k − 1)]k=2,0,1. The second
operator is just the application of the 2 × 2 unitary matrix W

given in Eq. (9), to every two-dimensional spinor of every
edge shared by two neighboring triangles. Again we work on
pre-encoded spinors

ψ̃(t,v,k) = Ukψ(t,v,k), (11)

where the Uk are those of Sec. III, but this time the chosen
encoding depends on side k. Altogether, the triangular QW
dynamics is given by(

ψ̃↑(t + ε,v,k)
ψ̃↓(t + ε,v,k)

)
= W

(
ψ̃↑(t,v,k − 1)

ψ̃↓(t,e(v,k),k − 1)

)
, (12)

where e(v,k) is the neighbor of triangle v alongside k.
This triangular QW is actually implementing the honey-

comb QW in a covert way. Indeed, whereas the honeycomb
QW propagates the walker along the three directions succes-
sively, the triangular QW propagates the walker along the three
translation simultaneously—depending on the edge at which
it currently lies. Thus the walker will start moving along one
of the three directions depending on its starting point, then
another, etc. For instance, focusing on what happens to spinors
on edges k = 0, we readily get(

ψ̃↑(ε,v,1)
ψ̃↓(ε,v,1)

)
= V M

(
ψ̃↑(0,v,0)

ψ̃↓(0,e(v,2),0)

)
,

which is equivalent to a translation along u0 (as is clear from
Fig. 1), followed by the action of W . But the result now lies on
edges k = 1, and will undergo a translation along u1 followed
by the action of W , etc.

As a sanity check we computed the continuum limit ob-
tained by letting ε → 0 after three iterations of Eq. (12). The
0th order is trivial. The 1st is what defines the dynamics.

Let us align the middle of side 1 of triangle v with the origin of
the Euclidean space, so that ψ(0,v,1) = ψ(0,0,0) in Cartesian
coordinates. Expand the initial condition ψ(0,x,y) as

ψ(0,x,y) = ψ(0,0,0) + εx∂xψ(0,0,0) + εy∂yψ(0,0,0),

where x and y are the coordinates in the lattice. As usual we
also expand the M inside the W as I − 3iεmσz/

√
5. After

three steps of the triangular QW we obtain (with the help of a
computer algebra system)

T(0,3ε)ψ = ψ(0,0) −
√

3

2
ε(σx∂x + σy∂y)ψ(0,0)

− 3iεmσzψ(0,0) + O(ε2).

Using that T(0,3ε) = ψ(0,0) + 3ε∂tψ(0,0) + O(ε2), and tak-
ing the limit ε → 0, we arrive at the Dirac equation under the
following form:

i∂tψ(0,0) =
√

3

6
(pxσx + σypy)ψ(0,0) + mσzψ(0,0).

The factor
√

3
6 comes from two sources: the fact that a

continuous limit results from three time steps and the fact that
the distance between the middles of the sides of a triangle is√

3
2 . To get rid of this factor, it suffices to rescale the length of

the spatial coordinates of the triangles by the same factor, or
conversely to rescale time as t ′ = 6√

3
t .

V. SUMMARY AND PERSPECTIVES

Summary. We constructed a 2 × 2 unitary W , defined in
Eq. (9), which serves as the “coin” for both the honeycomb
QW and the triangular QW. On the honeycomb lattice, each
hexagon carries a C2 spin. The honeycomb QW, defined in
Eq. (10), simply alternates a partial shift along the ui direction
of Eq. (4), followed by a W on each hexagon, for i = 0,1,2.
On the triangular lattice, each side of each triangle carries a C,
so that each edge shared by two neighboring triangles carries
a C2 spin. The triangular QW, defined in Eq. (12), simply
alternates a rotation of each triangle, and the application of
W at each edge. The simplicity of these QW-based schemes,
compared to those of the regular lattice [Eq. (3)], makes them
not only elegant, but also easy to implement. Our main result
states that up to a simple, local unitary encoding given by
Eq. (11), both the honeycomb QW and the triangular QW
admit, as their continuum limit, the Dirac equation in (2 + 1)
dimensions.

Perspectives. Thus we have shown that such quantum
simulation results need not rely on the grid. We believe that
this constitutes an important step toward modeling propaga-
tion in crystalline materials, identifying substrates for QW
implementations, studying topological phases, understanding
propagation in discretized curved space-time, and coding fields
in closed dimensions. In the near future, we wish to run
numerical simulations, and to understand what happens when
deforming the triangles, and whether similar results can be
achieved in (3 + 1) dimensions.
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Note added. We recently became aware that a French-
Australian team is tackling the same problem. We agreed to
swap papers so that the two works would be independent and
yet cite each other. Manuscript [31] is indeed very recommend-
able, as it goes further in terms of applications: electromagnetic
field, gauge invariance, and numerical simulations. Their
triangular walk is, however, an alternation of three different
steps that use different coins—whereas the present paper just
iterates the very same step. This is both mathematically more
elegant, and easier to implement. Thus the two works have
turned out to be nicely complementary.
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5 Curved space-time Dirac equation
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lattice

Summary
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 The Dirac equation in a curved space time . . . . . . . . . . . . . . 75

5.2.1 General covariance . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Affine connection . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Spin connection . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Continuum Deformation Mechanics . . . . . . . . . . . . . . . . . . 81
5.4 Crystallographic defects . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Publication: "From curved spacetime to spacetime-dependent local

unitaries over the honeycomb and triangular Quantum Walks" . . . 83

5.1 Motivation
In the previous chapter, we introduced a QW-based model over the honeycomb
and triangular lattices. We have proved that it is possible to reproduce the dy-
namics of the Dirac equation, in the continuous limit, even in the case of a QW
defined over a non-rectangular lattice.

On the other hand, we have remarked the possible interest of using honey-
comb lattices. For example, graphene materials, which have honeycomb nano-
structures,are potential candidates to implement quantum walks, Sect.(4.1.4).
In recent years, the interest of simulating the Dirac equation under gauge fields
have been increased, including the Dirac equation under gravitational fields. In
the field of QW-based models, there are several proposals to study the dynamics
of fermions under the effects of a gravitational field [15, 14, 13, 10, 47].

Furthemore, there are also proposals to study the properties of Dirac-like
Hamiltonians, under curved spaces (such a the energy spectrum, dynamics, con-
ductivity, etc), using graphene deformed sheets, e.g. graphene in a cylindrical
structure [58, 44, 106, 56]. This opens the question to whether the QW model
defined over the honeycomb and triangular lattices in Sect.(4.2), could be useful
for simulating fermions under gravitational fields.
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This chapter is organized as follows: first, we make an introduction to the
Dirac equation in a curved space-time. Then, we introduce techniques to intro-
duce a spatial deformation, which can be used to introduce effective metric or
curvature in certain systems. Finally, in Sect.(5.5), we introduce an extension of
our previous model, Sect.(4.2), which recovers the behavior of fermions under a
curved spacetime, in the continuum.

As it will be explained, what it is remarkable in the model introduced in
Sect.(5.5), is that we are able to simulate curvature without deforming the lat-
tice. By a concept that we call duality, we absorb the possible lattice deformation
in a set of space-time dependent unitaries. This could open the possibility of us-
ing standard, undeformed, graphene to simulate the dynamics of fermions under
gravitational fields, by applying local unitaries.

5.2 The Dirac equation in a curved space time

5.2.1 General covariance
Mathematics was not sufficiently refined in 1917 to cleave apart the
demands for "no prior geometry" and for a geometric,
coordinate-independent formulation of physics. Einstein described both
demands by a single phrase, "general covariance." The "no prior
geometry" demand actually fathered general relativity, but by doing so
anonymously, disguised as "general covariance", it also fathered half a
century of confusion

Gravitation
John Weeler

The two guiding principles in general relativity are the principle of equivalence
and the principle of general covariance. In the case of the Minkowski spacetime,
the equations of motion need to be covariant under Poincaré transformations,
however in curved space time, it is not possible to leave the metric unchanged
by a general coordinate transformation.

On the other hand, any coordinate systems is only an artifice in theoretical
physics that enables us to describe points of spacetime, however they do not
play any fundamental role in nature. As there cannot be any preference for a
coordinate system, the equations of motion need to be generally covariant, if
they are to be derived from an action that remains unchanged under any kind of
transformation. This is what we call general covariancie.

5.2.2 Affine connection
The equations of motion are expressed entirely in terms of tensors. It is known
that the derivatives of a scalar field ∂µf are the component of a one-form field.
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However, the derivatives of the components of a vector field ∂µV
ν are not com-

ponent of a tensor field. As an example, let us transform the derivative into a
new coordinate system, by the transformation xµ′ = Λµ′

µ x
µ.

Hence:

∂µ′V µ′ = Λµ
µ′∂µ

(
Λν′

ν V
ν
)

= Λµ
µ′Λν′

ν ∂µV
ν + Λµ

µ′

(
∂µΛν′

ν

)
V ν (5.1)

The last term spoils the transformation law for a second-rank tensor.
Due to the fact that the partial derivative ∂µ depends on the coordinate system,

it becomes necessary to define a covariant derivative, which plays the role of the
partial derivative, but being independent of coordinates.

Q
P

V(P)
V(Q)V(P → Q)

λ

λ + δλ

Figure 5.1: V (Q) and V (O) are the vectors at P and Q of the vector field V , on
the curve described by the parameter λ. V (P → Q) is the result of
parallel transport of V (P ) along the curve.

Let us consider the mathematical definition of the derivative of a vector field
component along a curve, Fig.(5.1):

dV µ

dλ
= dxµ

dλ

∂V µ

∂xµ
= lim

δλ→0

V µ(Q)− V µ(P )
δλ

(5.2)

where P and Q are points on the spacetime curve at λ and λ+ δλ respectively.
In the case of a scalar field, which has unique values at P and Q, the former
definition makes sense, however in the case of a vector field, the comparison
between V (Q) and V (P ) is not, in general, the tangent vector to a curve at a
specific point.

In order to define a correct derivative for a vector field, it is necessary to
compare two vectors at the same point, for example Q, Fig.(5.1). To do it, we
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need the concept of parallel transport, which moves the vector V (P ) toQ keeping
it parallel to the original vector at the spacetime point P . The key ingredient to
parallel transport a vector is the so called affine connection, Γ:

V µ(P → Q) = V µ − δλΓµνσ(P )V ν(P )dx
σ

dλ
(5.3)

where Γµνσ are the affine connection coefficients. Then, the covariant derivative
is defined as:

∇σV
µ = V µ(Q)− V µ(P → Q)

δxσ
= ∂σV

µ + ΓµνσV ν , (5.4)

Demanding that∇σV
µ transforms as a tensor, we can deduce the transformation

law for the connection coefficients,

∇σ′V µ′ = Λσ
σ′Λµ′

µ ∇σV
µ, (5.5)

yielding:
Γµ

′

ν′σ′ =
(
Λµ′

µ Λν
ν′Λσ

σ

)
Γννσ + Λν′

ν (∂σ′Λν
ν′) . (5.6)

In spite of Γ being not a tensor, the covariant derivative, acting on any tensor,
produces another tensor of one higher covariant rank.

The metric connection If two vectors are parallel transported along a curve,
the angle between them should remain constant. This requisite allows us to
derive a relation between the metric and the affine connection. Demanding that
the angle remains constant is equivalent to say that the scalar product of two
arbitrary parallel-transported vectors is constant, and this condition is expressed
as:

dxσ

dλ
∇σ (gµνUµV ν) = 0 (5.7)

Using the Leibniz rule, as in the case of an ordinary derivative, we arrive to:

∇σ (gµνUµV ν) = (∇σgµν)UµV ν + gµν (∇σU
µ)V ν + gµνU

µ (∇σV
ν) . (5.8)

Applying dxσ

dλ
as in Eq.(5.7), the last two terms are zero due to the parallel trans-

port condition, dxσ

dλ
∇σU

µ = 0. Then we get,

dxσ

dλ
(∇σgµν)UµV ν = 0, (5.9)

hence the covariant derivative of gµν must be zero:

∇σgµν = gµν,σ − Γτµσgτν − Γτνσgµτ = 0. (5.10)
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Combining the last equation with two additional ones, which are obtained by
renaming the indices, the following relation is achieved:

gσµ,ν + gσν,µ− gµν,σ = (Γτσν − Γτνσ) gτµ +
(
Γτσµ − Γτµσ

)
gτν +

(
Γτµν + Γτνµ

)
gτσ. (5.11)

Assuming that the connection is torsion free, then it is symmetric in its lower
indices. Finally, multiplying by gλσ, the connection is determined by the metric
tensor as:

Γλµν = 1
2g

λσ (gσµ,ν + gσν,µ − gµν,σ) . (5.12)

Therefore the former expression connects the affine connection with the metric
coefficients. This metric connection is called Christoffel symbols.

5.2.3 Spin connection
In order to introduce the covariant derivative for spinor wavefunctions, we start
with a system of local inertial Cartesian coordinates. Let us refer to these lo-
cal coordinates by ya, using Latin indices to label the local inertial coordinates,
where greek indices are used to label the general coordinates.

Therefore, at each point x it is possible to define a collection of four vectors
{eaµ(x)/a, µ = 0, ...4}, named as the tetrad or vierbein, that locally diagonalizes
the metric tensor:

gµν(x) = eµ
a(x)eνb(x)ηab, (5.13)

where ηab = Diag(1,−1,−1,−1). The tetrad transform as 4−vectors under
Lorentz transformations, therefore there is not only a unique tetrad field that
satisfies Eq.(5.13).

The inverse of the vierbein is denoted eµa (interchanged indices), satisfying:

eµa(x)eνa = δµν eµ
a(x)eµb = δab (5.14)

Making use of Eq.(5.13) and Eq.(5.14), one gets:

gµν(x)eµa(x)eνb(x) = ηab (5.15)

Hence, the vierbein relates the original coordinates to a local inertial frame. In
the local inertial frame, the γ-matrices are referred as {γa, γb} = 2ηab. Now, it is
possible to define any vector V µ(x), in terms of the local coordinate directions
as:

V µ(x) = eµa(x)V a(x) and V a(x) = eaµ(x)V µ(x). (5.16)

We can translate Eq.(5.3) in terms of these local inertial directions,

V a(x→ x+ dx) = V a(x)− ωabµV b(x)dxν , (5.17)

78



where ωabν(x) are the components of the spin connection, which can be written in
terms of the affine connections as:

ωabν = eaµ∂µ(eµb ) + eaµe
σ
bΓµσν (5.18)

The spin connection allows us to derive the covariant derivative for spinors,
which satisfy the parallel transport of the form:

ψ(x→ x+ dx) = ψ(x)− Ωνψ(x)dxν (5.19)

where Ων(x) is a connection coefficient, described by an n× n matrix for each ν.
For a 4-dimensional spacetime n = 4 .

In order to determine the coefficients Ων , we demand that the scalar quantity
S(x) = ψ̄(x)ψ(x) should be invariant under parallel transport, whereas the vector
V a(x) = ψ̄(x)γaψ(x) should be transported according to Eq.(5.17).

Using Eq.(5.19), S(x) transforms as:

S(x→ x+ dx) = S(x)− Ψ̄(x)
[
γ0Ω†ν(x)γ0 + Ων(x)

]
ψ(x)dxν , (5.20)

in order to be invariant, we find the following relation:

γ0Ω†ν(x)γ0 = −Ων(x) (5.21)

On the other hand, V a(x) transforms as:

V a(x→ x+ dx)− V a(x) = −ψ̄(x)
[
γaΩν + γ0Ω†µγ0γa

]
ψ(x)dxν ,

= −ψ̄(x) [γaΩν − Ωνγ
a]ψ(x)dxν ,

= −ωabνγbdxν , (5.22)

where we defined the spin connection as:

[γa,Ων ] = ωabνγ
b. (5.23)

Taking into account that the spin connection is also antisymmetric, ωabν(x) =
−ωbaν , one can arrive to:

Ων(x) = 1
8ωabν

[
γa, γb

]
= − i4

(
eaµ∂µ(eµb ) + eaµe

σ
bΓµσν

)
σab (5.24)

where σbc = i
2

[
γb, γc

]
.

Finally, the covariant version the Dirac equation is written as:

[ieµa(x)γa∇µ −m]ψ(x) = 0, (5.25)

where ∇µ = ∂µ+ Ων(x). We can write this equation in a simpler form by defining
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γµ = eµa(x)γa. These covariant γ matrices satisfy {γµ, γν} = 2gµν(x).

(2 + 1)- dimensions We are interested in the (2 + 1)-dimensional case, since
we are working on a 2D lattice. As the space dimension is lower than 3, the γ-
matrices become 2 × 2. Eq.(5.25) can then be significantly simplified . We will
include some steps to arrive to the final equation in (2 + 1), for further details
we refer to [107]. Let us consider the following relation:

γaσbc = 1
22i (ηabγc − ηacγbγ) + 1

2(−2i)εabcdγdγ5, (5.26)

where γ5 = γ0γ1γ2γ3 and εabcd is the antisymmetric unit tensor. In this case a, b ,
c, d ∈ {0, 1, 2}, therefore εabcd = 0, leaving the former relation in the form:

γaσbc = 1
22i

(
ηabγc − ηacγbγ

)
. (5.27)

On the other hand, using the previous relation, we can rewrite γaeµaΩµ, as:

γaeµaΩµ = γaeµa(−
i

4ωbcνσ
bc) = − i4e

µ
aωbcνγ

aσbc = i

4e
µ
aωbcν

(
ηabγc − ηacγb

)
= 1

42eµaωbcνηabγc = 1
2e

µ
aω

a
cνγ

c (5.28)

Moreover,
eµaω

a
cµ = eµa

(
eν
a∂µe

ν
c + eν

aeσcΓνσµ
)
, (5.29)

where eµaeνa = δµν , and we arrive to:

γaeµaΩµ = ∂µe
µ
c + eσcΓµσµ, (5.30)

where
Γµσµ = 1√

−g
∂σ
√
−g, (5.31)

with g the absolute value of the determinant of the metric.
Finally, making use of the previous relations and some intermediate steps, we

arrive to a simplified version of the Dirac equation in (2 + 1) space-time:

iγa
[
eµa∂µ + 1

2√g∂µ(eµa
√
g)−m

]
ψ = 0 (5.32)

where, µ = t, x, y and a = 0, 1, 2.
We can express Eq.(5.32) in Hamiltonian form. First, we introduce a local

Lorentz transformation in order to arrive to a form of the tetrad such that eta = 0
for a = 1, 2. Then, we need to introduce the change of wavefunction [107],
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given by:
χ = g1/4(et0)1/2ψ, (5.33)

After multiplying Eq.(5.32) by β ≡ γ0, one arrives to:

i∂tχ+ i

2{B
s, ∂s}χ−

m

et0
βχ = 0 (5.34)

where s = 1, 2 and Bs = αa e
s
a

et0
, with the Dirac α-matrices αa ≡ βγa. In this

particular example, one can make the choice γ0 = σz, γ1 = iσy and γ2 = −iσx.

5.3 Continuum Deformation Mechanics
In Sect.(5.5) we introduce the concept of duality in a QW, a distortion of the
metric via a coordinate transformation on the lattice, that can be transfered into
a encoding local unitarities. The local coordinate transformation is motivated
by two reasons: i) The equivalence principle states that one can introduce a local
transformation of coordinates at a given point, which allows to recover the flat
spacetime locally at that point. ii) From the theory of finite strain theory in
continuous media, it is possible to study some deformed systems that exhibits a
modification of the metric tensor. For further study, we recommend Chapter 8 of
[87].

Let us consider a local deformation in a material. A point without deformation
are denoted by ~X, whereas a point in the displaced configuration is labeled as ~x.
The motion of the body is described by the relation:

~x = χ( ~X, t). (5.35)

Then, we define the deformation gradient at ~X as:

FiI = ∂χi
∂XI

, (5.36)

where i and I go from 1 to 3. Consider two neighboring points ~X and ~X ′ = ~X+~u,
where ~u is a "small" vector. The displaced positions of ~X and ~X ′ are given by ~x
and ~x′, and they can be expressed as:

~x′ = ~x+ F ( ~X, t)~u+O(|u|) as |u| → 0. (5.37)

We can compare the distance between ~x and ~x′ with respect to the distance
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between the rigid points ~X and ~X ′:

|~x′ − ~x| =
√

(~x′ − ~x)T (~x′ − ~x) =
√
~uTF T ( ~X, t)F ( ~X, t)~u+O(|~u|2)

=
√
~uTC( ~X, t)~u+O(|~u|) (5.38)

where the Cauchy-Green tensor is defined as C = F T ( ~X, t)F ( ~X, t).
This Cauchy-Green tensor C is also known as the metric tensor. If the coordi-

nates xi describe points in the displaced body, they are not necessary Euclidean
coordinates. The square of an infinitesimal vector d~x in the altered body is given
by:

|d~x|2 = CIJdxIdxJ (5.39)

Hence, C is the metric tensor in the modified body.
However, the compatibility condition, i.e. the condition under which a dis-

placement field can be guaranteed, for the Cauchy-Green tensor, states that the
Riemann-Christoffel tensor or the curvature tensor vanishes.

5.4 Crystallographic defects
Defects in crystalline structures have a profound impact on the macroscopic prop-
erties of materials. We can distinguish to different types of defects: translational
defects, called dislocations, and rotation-type or disclinations.

In dislocations processes a single-atom is removed from the crystal, Fig.(5.2).
In disclinations, an entire wegde from the crystal is removed, and then the rest
of the surface is re-glued, which means that rotational symmetry is violated,
Fig.(5.2).
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Figure 5.2: Both types of defects on crystals, dislocations and disclinations. The
first introduces torsion and the latter introduces curvature. Image taken
from [75]

What it is interesting to us is that studying these defects using the affine dif-
ferential geometry, we can relate the dislocation with the torsion tensor of the
Riemann-Cartan geometry, whereas the disclinations play the role of the Ein-
stein tensor associated with the curvature tensor. For further study, we recom-
mend [80, 75].

Therefore, we believe that it is possible to include these types of defects on
DTQWs to study the effects of disclinations and dislocations on the QW dynam-
ics.

On the other hand, studying the impacts of defects in non-rectangular lattices
has the advange of having a non-trivial topology, which makes the system itself
more interesting to study. A recent work, already mentioned, is [62] in which
they include defects on square and triangular DTQWs, in order to perform a
Grover walk. In the case of the triangular lattice, the topology of the network
can help to find the defect faster, as an edge state is produced around it.

5.5 Publication: "From curved spacetime to
spacetime-dependent local unitaries over the
honeycomb and triangular Quantum Walks"

In the present article, we make an extension of the DTQW model introduced
in Sect.(4.2), in which we proved that the Dirac equation can be obtained in
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the continuous spacetime limit, using a non-rectangular lattice. Then, what we
introduce is a set of local spacetime dependent unitaries, which allow the DTQW
to recover the behavior of electrons under a curved spacetime, in the continuous
limit. Based on the equivalence principle and the finite strain theory, we introduce
a local deformation on the lattice that later is encoded into local unitaries. We
refer to this equivalence between distorting the lattice and changing the unitaries
as duality.

We have introduced two methods to distort the lattice, by continuum defor-
mation or introducing defects, it is not clear how to use this transformations, in
order to obtain a given metric in the QW dynamics, since analytical calculations
are quite difficult

Fortunately, the concept of duality is quite helpful in this situation. What we
can do is imposing a theoretical deformation in the Dirac equation, in order to
have a certain space-time described by the metric tensor gµν . Then, we can
transfer the information of this distortion into the local unitaries, that rule the
dynamics of the quantum walk. In that manner, we are not changing at all
the lattice, whereas the coins will be space-dependent, and they will act on the
particle as behaving under a particular given metric gµν .
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From curved spacetime to 
spacetime-dependent local 
unitaries over the honeycomb and 
triangular Quantum Walks
Pablo Arrighi1, Giuseppe Di Molfetta2, Ivan Marquez-Martin2 & Armando Perez3

A discrete-time Quantum Walk (QW) is an operator driving the evolution of a single particle on the 
lattice, through local unitaries. In a previous paper, we showed that QWs over the honeycomb and 
triangular lattices can be used to simulate the Dirac equation. We apply a spacetime coordinate 
transformation upon the lattice of this QW, and show that it is equivalent to introducing spacetime-
dependent local unitaries —whilst keeping the lattice fixed. By exploiting this duality between changes 
in geometry, and changes in local unitaries, we show that the spacetime-dependent QW simulates the 
Dirac equation in (2 + 1)–dimensional curved spacetime. Interestingly, the duality crucially relies on the 
non linear-independence of the three preferred directions of the honeycomb and triangular lattices: The 
same construction would fail for the square lattice. At the practical level, this result opens the possibility 
to simulate field theories on curved manifolds, via the quantum walk on different kinds of lattices.

Quantum walks.  QWs are quantum dynamical systems characterized by: (i) a state space which is restricted 
to the one-particle sector (i.e. to a single ‘walker’); (ii) a discrete spacetime; (iii) the unitarity of its evolution; (iv) 
the homogeneity of its evolution, meaning its translation-invariance and time-independence, and (v) its causality 
(i.e. it is ‘non-signalling’), meaning that information has a bounded speed of propagation. QWs are blossoming, 
for two good reasons.

The first is that a number of novel Quantum Computation algorithms, to be run on Quantum Computers, 
were discovered via QWs1,2, or were elegantly expressed using QWs (the Grover search for instance). Typically 
in these quantum algorithms, the QW explores a graph, whose shape encodes the instance of the problem. No 
continuous spacetime limit is taken in these works.

The second is that a number of novel Quantum Simulation schemes, to be run on quantum simulation devices, 
were first expressed as QWs3,4, which seems to be the natural language for doing so. Quantum simulation was 
Feynman’s initial motivation to invent Quantum Computing5. Whilst full-blown Quantum Computers remain 
out-of-reach at the experimental level, a number of special-purpose Quantum Simulation devices are appearing, 
whose architecture is often directly inspired by QWs6,7. In QW-based quantum simulation schemes, the quantum 
walker propagates on a grid, and a spacetime continuum limit towards some well-known target physics equation 
is taken. These schemes provide: a/ numerical schemes that are stable even for classical computers— from which 
one can derive convergence8; b/simple toy models of the target physical phenomena, with most symmetries con-
served (homogeneity, causality, unitarity… sometimes even Lorentz-covariance9,10.

The present work falls within the second class. However it borrows from the first. Indeed, we describe depart 
from the square lattice, to go to the honeycomb and triangular lattice— which can be seen as trivalent graphs.

Rationale.  A motivation for this work is the possibility to describe and implement the quantum simulation 
of certain physical systems, without the need to rely on the square lattice architecture. Rather, one would like 
to phrase a quantum simulation scheme in terms of naturally occurring lattices in well-controlled substrates. 
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Examples of this class are the simulation of condensed matter systems modeled by a tight-binding Hamiltonian, 
such as graphene11 or the Kagome lattices12— where the dynamics of electrons can be effectively recast as a 
Dirac-like equation. In fact the QW introduced in this paper may be useful as a simple point of departure to pre-
dict electronic transport properties in the graphene like-materials13 and exploring how varying their geometry 
may influence the dispersion relations, and lead to topological phases14, with interesting consequences on the 
conducting properties.

Another motivation for this work is to understand how fermions would propagate if spacetime were a tri-
angulated manifold, at the fundamental level. Indeed, triangulated manifolds are being used to describe curved 
spacetime since15– when Regge introduced his simplicial, discrete formulation of General Relativity. This discrete 
formulation then motivated a number of quantum gravity theories, such as Loop Quantum Gravity16 and Causal 
Dynamical Triangulation17— which seek to recover Regge calculus in the classical limit. Most often quantum 
gravity research focuses on the core issue of the quantum dynamics of discrete spacetime itself— overlooking the 
question of how matter would propagate within the discrete spacetime structure it prescribes. The present ideas 
may help address the question.

Duality.  In a previous work, we showed how a QW can be defined on the honeycomb and the triangular 
lattice18 (see also19), whose continuous spacetime limit is the Dirac equation in (2 + 1)– dimensional spacetime. 
Here, we extend these definitions to allow for spacetime dependent local unitaries, and introduce a dynamics that, 
in the continuum limit, corresponds to the Dirac equation in a curved (2 + 1)– dimensional spacetime.

The construction, we feel, is interesting. Indeed, given a lattice made of equilateral triangles, we begin by 
distorting the metric just via a coordinate transformation, following the initial step of the derivation of the Dirac 
equation in ordinary curved spacetime. But then we realize that the coordinate transformation can be absorbed 
by a suitable choice of the three gamma matrices that are associated to the three directions provided by the trian-
gles— a possibility offered by the fact that these three directions are, of course, linearly-dependent in the plane. 
Recall that the role of the gamma matrices is to prescribe a basis of the spin, in which spin up goes one way, and 
spin down goes the opposite way. In the QW, the local unitaries implement precisely the corresponding changes of 
base. Thus, the gamma matrices determine the local unitaries in the QW. This, therefore, unravels an equivalence, 
in the continuum limit, between changing the actual geometry of the lattice, or keeping it fixed but changing the 
local unitaries in a suitable manner. The final step is to allow the local unitaries to be spacetime dependent and 
take the continuum limit, thereby recovering the Dirac equation in curved spacetime.

Notice that having three directions in two-dimensional space, as in the honeycomb or triangular lattices, is 
what provides that extra degree of freedom allowing for the transfer of the geometric distortions into the local 
unitaries— the square lattice is too rigid in this respect.

Related works.  It is already well known that QW can simulate the Dirac equation3,4,8,20–23, the Klein-Gordon 
equation24–26 and the Schrödinger equation27,28 and that they are a minimal setting in which to simulate particles 
in some inhomogeneous background field29–33, with the difficult topic of interactions initiated in34,35. Eventually, 
the systematic study of the impact inhomogeneous local unitaries also gave rise to QW models of particles propa-
gating in curved spacetime. This line of research was initiated by a QW simulations of the curved Dirac equation 
in (1 + 1)–dimensions, for synchronous coordinates30,36, and later extended by37 to any spacetime metrics, and 
generalized to further spatial and spin dimensions in38,39. A related work, from a slightly different perspective, 
can be found in40. All of these models were on the square lattice: to the best our knowledge no one had modeled 
fermionic transport over non-square lattices. The present paper shows that over the honeycomb and triangular 
lattices the problem becomes considerably simpler, and the solution elegant.

In a recent work41, quantum transport over curved spacetime has been compared to electronic transport 
in deformed graphene, where a pseudo-magnetic field emulates an effective curvature in the tight-binding 
Hamiltonian (see also42). Back to the quantum computing side, the Grover search has been expressed as a QW 
over the honeycomb lattice43 (see also44 for continuous time approach). Reference45 evaluates the use graphene 
nanoribbons as a substrate to build quantum gates.

Plan.  The paper is organized as follows. First, we remind the reader of the basic concepts and notations sur-
rounding the Dirac equation in a curved spacetime, in (3 + 1) and (2 + 1)– dimensions. In Methods we revisit our 
earlier Dirac QW on a honeycomb and on a triangular lattice, and why it worked. Also we show how a simple, 
homogeneous coordinate transformation impacts the continuum limit of the Dirac QW. In the end of this section, 
it is shown the duality, i.e. how the coordinate transformation can be absorbed into a choice of local unitaries. 
Finally, we present the main results: a QW that reproduces the Dirac equation with curvature in the continuum 
limit, both for the honeycomb and for the triangular lattices. We use = =c 1  units.

Dirac Equation in Curved Spacetime: a Recap
In this Section we recall the basic properties of the Dirac equation in curved spacetime. We refer the reader to46–48 
for a review. We start by describing the case of a (3 + 1)– dimensional spacetime with coordinates xμ, μ = 0, …4, 
where x0 is the time coordinate, and metric tensor gμν(x) in these coordinates. At each point x, it is possible to 
introduce a set of four vectors μ = …μe x a{ ( )/ , 0, 4}a , referred to as the tetrad or vierbein, that locally diagonal-
izes the metric tensor i.e.,

η= .μν μ νg x e x e x( ) ( ) ( ) (1)
a b

ab
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(here and thereafter, summation over repeated indices is assumed), where ηab = Diag(1, −1, −1, −1). Notice that, 
given a vierbein, one can obtain a new one, which would also satisfy Eq. (1), by performing an arbitrary Lorentz 
transformation. The inverse of the vierbein is denoted μe a (interchanged indices), satisfying

δ δ= = .μ
ν ν

μ
μ

μe x e x e x e x( ) ( ) , ( ) ( ) (2)a
a a

b b
a

Using (1) and (2), one has

η= .μν
μ νg x e x e x( ) ( ) ( ) (3)a b ab

Thus, tetrads can be understood as normalized tangent vectors that relate the original coordinates to a local 
inertial frame. We use the common convention that inertial coordinates are designated by latin indices, and orig-
inal coordinates by greek indices. Latin indices are lowered and raised by ηab, greek indices by gμν. In the local 
inertial frame, one is legitimated to use the Dirac γ– matrices, i.e. matrices satisfying the Clifford algebra 

γ γ η={ , } 2a b ab . From these, one defines σ γ γ= [ , ]ab i a b
2

.
Given a Dirac field ψ(x), the action of a local Lorentz transformation Λ x( )a

b  can be written as

ψ ψ→ ΛU , (4)

where

= θ σ
Λ

−U x e( ) , (5)
i x4 ( )ab

ab

and θab(x) are the parameters of the transformation, defined by δ θΛ = +x x( ) ( )a
b b

a a
b . One can prove that this 

operator acts on Dirac gamma matrices as follows:

γ γ= Λ .Λ
−

ΛU U (6)a a
b

b1

With the above notations, the Dirac equation in curved space

γ ψ ψ− =μ
μi e x m( ) 0, (7)

a
a 

where m is the particle mass, is invariant under a local Lorentz transformation provided the generalized derivative 
that we use is

= ∂ + Γμ μ μ, (8)

where Γμ transforms according to

Γ → Γ = Γ − ∂ .ν ν ν ν
′

Λ Λ
−

Λ Λ
−U U U U( ) (9)1 1

The correction Γμ to the derivative can then be obtained as47

ω σΓ = −μ μx i x( )
4

( ) , (10)ab
ab

where ωabμ(x) is the so-called spin connection, and can be expressed in terms of the tetrads and the affine con-
nection as

ω = ∂ + Γ .ν μ ν
μ

μ
σ

σν
μe e e e (11)

a
b

a
b

a
b

From Eq. (7) one can define a four-vector current

ψγ ψ=μ μj g e , (12)a
a

where g is the (absolute value of) the determinant of the metric, so that it is conserved:

∂ = .μ
μj 0 (13)

This justifies the normalization condition

∫ ∫ ψ ψ= =†j dv g e dv 1, (14)
0 0

0

with dv the volume element in space.
(2 + 1)– dimensions. When the space dimension is lower than 3, the γ–matrices become 2 × 2. Then, the Dirac 

Eq. (7) can be simplified to give

γ ψ ψ ψ






∂ + ∂






− = .μ
μ μ

μi e
g

e g m1
2

( ) 0
(15)

a
a a

87



4Scientific Reports |         (2019) 9:10904  | https://doi.org/10.1038/s41598-019-47535-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

We will now express this equation in Hamiltonian form. We name the greek indices μ = t, x, y, and the latin 
indices a = 0, 1, 2. By performing a local Lorentz transformation, it is possible to arrive to a form of the tetrad 
such that =e 0t

a  for a = 1, 2. Then, by introducing the change of wavefunction given by49:

χ ψ= g e( ) (16)t1/4
0

1/2

and multiplying Eq. (15) by β ≡ γ0, one gets

χ χ βχ∂ + ∂ − =i i B m
e2

{ , } 0,
(17)t

s
s t

0

where s = 1, 2, and we have introduced the notation α=Bs a e

e

s
a

t
0
, with the usual Dirac α–matrices αa ≡ βγa. In 

particular, one can make the choice γ0 = σz, γ1 = iσy and γ2 = −iσx. Then α0 becomes the identity matrix, α1 = σx 
and α2 = σy, with σi (i = 1, 2, 3) the Pauli matrices.

According to Eqs (14) and (16), the normalization condition becomes simply

∫ χ χ = .† dv 1 (18)

Methods
Dirac QW.  A possible representation of the Dirac equation in flat spacetime is obtained from Eq. (17) by using 
the canonical tetrads δ=μ μe a a  and the choice of Dirac α–matrices made at the end of the last section:

ψ ψ σ σ σ∂ = = + + .i t H t H p p m( ) ( ) with (19)t D D x
x

y
y z

where pi is the ith component of the momentum operator.
It is now very well-known that one can define a QW on the lattice that converges, in the limit of both the lattice 

spacing and the time step going to zero, towards the solutions of (19). This is done by defining a Hilbert space 
   = ⊗ ⊗x y c, where ⊗x y   stands for the space degrees of freedom, as spanned by the basis states 
x = εj, y = εk with ∈j k, , whereas = | 〉 ∈ −c cSpan{ / { 1, 1}}c  describes the internal ‘coin’ (spin) degree of 
freedom. Over  ⊗x y, the pi will now denote the quasimomentum operators defined by

ε ε

ε ε

− = +

− = + .

i p x y x y
i p x y x y

exp( ) , ,
exp( ) , , (20)

x

y

The Dirac QW will evolve a state ψ(t) into

ψ ε εσ ε σ ε σ

ε ψ

+ = − − −

≈ −

t im i p i p

i H t

( ) exp( )exp( )exp( )

exp( ) ( ) (21)

z
x

x
y

y

D

using the Trotter-Kato formula. It follows that one recovers the Dirac Eq. (19) in the continuum limit when ε goes 
to zero, where the pi become the true momentum operators pi = −i∂i.

Recently18 we showed that Dirac dynamics can be implemented by a QW, not only over square lattices, but also 
over the honeycomb and triangular lattices (see also19). The honeycomb lattice QW is easier to introduce. It 
defines three directions ui, i = 0, 1, 2 having relative angles of 120°, let ui

j denote their coordinates. The idea is to 
introduce three unitary 2 × 2–matrices τi with eigenvalues ±1 such that HD can be written as

πτ σ= +H m , (22)D i
i z

where π ≡ u pi i
j

j represents the quasimomentum operator along the ui direction. Then, the corresponding QW 
can again be defined by a Lie-Trotter expansion of Eq. (21), with HD defined in (22). The triangular lattice QW 
makes use of a similar setup, although the translations are generated by rotations of the triangles themselves, 
bringing apart the internal components of the field ψ, which is assumed to ‘live’ in the edges of the triangles, one 
component (ψ↑ or ψ↓) on each side.

Coordinate transformation on the dirac equation.  The construction of the Dirac equation in curved 
spacetime relies on the equivalence principle, which means that one can introduce a local transformation of coor-
dinates at a given point, so that one recovers the flat equation in the neighborhood of that point. The curved Dirac 
equation is then that which stems from applying reverse the local transformation, upon the flat Dirac equation. 
Our line of thought follows that step, i.e., starting from the flat case Dirac QW, perform an arbitrary change of 
coordinates so as to obtain the curved Dirac QW. Let us begin with just an homogeneous change of coordinates 
on the Dirac equation.

First notice that Eq. (3) can be writen as eTge = η, where e and g are just the representation of the tetrads and 
metric in matricial form, and T denotes the matrix transpose. Now, under a global change of coordinates Γ such 
that x′ = Γx, the metric g and the vierbein transform as

′ = Γ Γ
′ = Γ

− −




g g g
e e e

( )
(23)

T 1 1
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This transformation fulfills the tetrads-metric relation,

η′ ′ = Γ Γ Γ Γ = = .′ − −e g e e g e e ge( ) (24)T T T T T1 1

Next we start from a QW that reproduces the flat equation, and introduce a deformation (described by the 
transformation Γ) that will end up with a more generic metric g′. We can make a simple choice, given by the 
canonical tetrads δ=μ μe a a  for the initial coordinates, and then transform them according to Eq. (23). Since we 
are considering a deformation of the spatial sites of the lattice, the time components will be left unchanged, and 
the matrix Γ will take the form

λ λ
λ λ

Γ =











.

1 0 0
0
0 (25)

11 12

21 22

where each λij are position independent, although they are allowed to depend on time.
Under this restriction, we can reduce the problem to a transformation on a bidimensional space, where 
=e 1t

0 , which implies that Eq. (17) adopts the simpler form

χ χ βχ∂ + ∂ − = .i i B m
2

{ , } 0 (26)t
s

s

Let us consider how this transformation will affect the QW defined on a triangular lattice, as introduced in Sect. 
III (see18). Such transformation will imply modifying the vectors ui, yielding the new vectors

λ λ
λ λ

=










≡ Λ .′u u u
(27)

i i i
11 12

21 22

Introducing these vectors in our algorithms and calculating the continuum limit, we arrive at the following 
equation

ψ λ σ λ σ λ σ λ σ ψ σ ψ∂ = 


+ + + 


+i p p m( ) ( ) , (28)t
x y

x
x y

y
z

11 12 21 22

which describes the Dirac equation on a flat geometry. A comparison with Eq. (17) gives

λ σ λ σ= +B (29)x x y
11 12

λ σ λ σ= + .B (30)y x y
21 22

This procedure can be used for a homogeneous transformation, such as the one defined above. In the next 
section, we introduce an alternative, which consists in redefining the τi matrices. As we shall see, this redefinition 
also allows for an inhomogeneous (i.e., space-time dependent) Λ(t, x, y) transformation, thereby resulting in a 
Dirac equation in curved space.

Curved dirac equation from a non-homogeneous QW.  We now generalize the ideas developed in the 
previous Sect. with the purpose to obtain, in the continuum limit, the Dirac equation on a curved spacetime, for 
a given metrics with a triangular tetrad, as discussed in Sect. II. We start by looking at the set of matrices 

α=Bs a e

e

s
a

t
0
, as a linear transformation over the set of usual Pauli matrices, in the same spirit as Eqs (29) and (30). 

This leads us to define the transformation Λ(t, x, y), with matrix elements

Λ ≡
e
e (31)a

s
s
a

t
0

(we have omitted the time and space dependence for convenience). Then, the above mentioned transformation 
reads

α= Λ .B (32)s
a
s a

We now make use of the property that relates the τi matrices, defined in Eq. (22), with the Pauli matrices: 
τ σ=ui

k i k (see18). In this way, we arrive to

τ= Λ .B u (33)s
k
s

i
k i

The above equation can be understood as a transformation performed on the ui vectors, c.f. Eq. (27), as the 
origin of the curved spacetime equation.

Instead of introducing a distortion Λ(t, x, y) on the lattice via the modification of the ui vectors, the unitary 
matrices τi can be transformed to produce the same effect. In other words, we seek for a set of matrices βi(t, x, y) 
that fulfill the following conditions:
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•	 (C1) We impose that

τ βΛ = .t x y u u t x y( , , ) ( , , ) (34)k
j

i
k i

i
j i

•	 (C2) Each of them has {−1, 1} as eigenvalues, i.e. at any time step and at any point (x, y) of the lattice there 
exist three unitaries Ui(t, x, y) such that

β σ= .†t x y U t x y U t x y( , , ) ( , , ) ( , , ) (35)i
i

z
i

Notice that condition (C1) implies that the coordinate transformation dictated by Λ t x y( , , )k
j  is transferred to 

the unitary operations, which become new spacetime dependent βi(t, x, y), instead of the original τi. Additionally, 
condition (C2) will allow us to rewrite the QW evolution in terms of the usual state-dependent translation oper-
ators. Let us apply these ideas to the honeycomb and the triangular lattice.

To alleviate the notations, in what follows we will omit the spacetime dependence both in these matrices and 
in the Ui(t, x, y), and write simply βi and Ui. The above conditions allow to calculate the βi matrices, which can be 
written as a combination of Pauli matrices, i.e. β σ= → ⋅ →ni i , where each →n

i
 must be a real, unit vector 

θ φ θ φ θ→ =n (sin cos , sin sin , cos )i
i i i i i  for some angles θi and φi (that are time and position dependent).

In this way

β σ
θ θ

θ θ
= =





 −







φ

φ

−
†U U

e

e

cos sin

sin cos
,

(36)
i i z i

i
i

i
i

i i

i

i

and each Ui can be obtained by diagonalization of the corresponding βi. With an appropriate choice of phases, we 
finally write them as

θ θ

θ θ
=





−







.

φ φ

φ φ

−

−

U
e e

e e

cos
2

sin
2

sin
2

cos
2

,
(37)

i

i
i

i
i

i
i

i
i

2 2

2 2

i i

i i

Before we proceed to examine the induced QW on the honeycomb and triangular lattices together with their 
limits, let us discuss what the situation would have been in the square lattice, had we implement the above proce-
dure. In this case, the original Dirac matrices can be chosen to be the Pauli matrices, and the two unit vectors ui 
can be taken to be the canonical ones, so that the requirement of Eq. (34) simply becomes

σ βΛ = . (38)k
j k j

But then, since condition (C2) implies that det(βj) = −1 for each j, we need that

∑ Λ = .( ) 1
(39)k

k
j 2

Thus the square lattice only allows for a limited form of “duality”, i.e. only those transformations satisfying 
condition (39) can be absorbed into the unitaries, whereas the honeycomb and triangular lattices allow for arbi-
trary transformations.

Results
Honeycomb QW.  In this section we define the QW over the honeycomb, following a similar procedure as 
in18. After the ideas developed in Methods, we define the following Hamiltonian to be used in the QW:

β β σ= + + ∼u p p m1
2

( ) (40)i
j i

j j
i z

with =∼m m e/ t
0. Expanding the Hamiltonian, we arrive to:

 σ σ σ σ= − ∂ − 
 ∂ − ∂ 

 + ∼† † †iu U U i u U U U U m
2

( ) ( ) (41)i
j

i z j i i
j

j i z i i z j i
z

After substitution of Eq. (37), one obtains

σ σ θ φ∂ − ∂ = − ∂† †U U U U i( ) ( ) cos , (42)j i z i i z j i i j j

with  the identity matrix. Notice that, unlike in the flat space situation, there is no possible choice of the phases 
in the Uis that makes Eq. (42) vanish for all values of i. One may wonder whether there is a reason behind this, for 
example the existence of some topological or gauge invariant that forbids all these quantities to be simultaneously 
zero. This issue might deserve further investigation in the future. In any case, the additional term in Eq. (42) that 
arises from the choice given by Eq. (37) contributes only as a space-time dependent phase, which is easy to handle 
both from the theoretical and from the experimental point of view. We finally arrive to:
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 ∑ σ π γ σ= + + ∼†U U m( )
(43)i

i z i i i
z

where γ θ πφ= − cosi
i

i i i2
. In order to define the QW, we make use of the Lie-Trotter product formula to decom-

pose the evolution of the wavefunction ψ ε ψ+ = ε−t e t( ) ( )i  as a product of unitary matrices

∏≈ .
∑ε σ π γ σ εσ ε σ π εγ−







+ +





 − − −

∼ ∼
† †

e e e e
(44)

i U U m im

i

i U U i( )
i

i z i i i
z

z
i z i i i

Applying condition (C1), and introducing the translation operators along the ui direction as = εσ π−T ei
i z

i, the 
QW on a honeycomb can be defined as:

∏ψ ε ψ+ = εσ εγ− −∼ †t e U TUe t( ) ( )
(45)

im

i
i i i

iz
i

By construction, in the continuous limit, we arrive to the Dirac equation in 2 + 1 curved space-time, under 
the form

ψ β β ψ σ ψ∂ = 


+ 


+ .∼i u t x y p u p t x y m1
2

( , , ) ( , , ) (46)t i
j i

j i
j

j
i z

As expected, this equation can be nicely rewritten under the form Eq. (17), if we define β≡B t x y u t x y( , , ) ( , , )j
i
j i .

Triangular QW.  Let us describe first the dynamics corresponding to the massless case. Again, we follow the 
same procedure as in18. The triangles have equilateral sides labeled by k = 0, 1, 2. The two-dimensional spinors live 

on the edges shared by adjacent triangles. We denote them by ψ ψ

ψ
=












↑

↓
t v k t v k

t v k
( , , ) ( , , )

( , , )
, with v a triangle and k a 

side. Therefore, the position at the lattice will be labeled by (v, k). The evolution of the Triangular QW is defined 
as the composition of three operators. The first operator is the application of the 2 × 2 unitary matrix Ui(t, v, k), 
defined in Methods, to each two-dimensional spinor on every edge shared by two neighboring triangles. The 
second operator, R, simply rotates every triangle anti-clockwise. The third operator is just the application of the 
unitary matrix +†U t v k( , , 1)i  again at each edge shared by two neighboring triangles, where the addition k + 1 is 
understood modulo 2. Altogether, the Triangular QW evolution is given by:

ψ ε ψ

ψ ψ

+ = − −

⊕ − − ≡

εγ

εγ

↑ −

↓ −

†t v k U t v k P U t v k e t v k

P U t e v k k e t e v k k W t t

( /3, , ) ( , , )[ ( , , 1) ( , , 1)

( , ( , ), 1) ( , ( , ), 1)] ( ) ( ) (47)
i i

i

i
i

i

i

i

where P↑ and P↓ are the projectors over the upper and lower component of the spinor, respectively, and e(t, v, k) is 
the neighbor of triangle v alongside k at fixed time t. We define one timestep of the evolution by the composition 
of the three operators Wi, and include the mass term, as follows

ψ ε ψ+ = εσ− ∼
t e W WW t( ) ( ) ( ) (48)im

2 1 0
z

By expanding this equation up to first order in ε, after a tedious but straightforward computation, one arrives 
to the following equation in the continuum limit:

ψ σ σ σ ψ σ σ ψ

σ σ σ ψ σ σ ψ

σ ψ

∂ =


 − −



∂ + − ∂

+ ∂


 − −



 + ∂ −

− ∼

† † † † †

† † † † †

U U U U U U U U U U

U U U U U U U U U U

im

1
2

1
2

3
2

( )

1
2

1
2

3
2

( )

(49)

t
z z z

x
z z

y

x
z z z

y
z z

z

0 0 1 1 2 2 1 1 2 2

0 0 1 1 2 2 1 1 2 2

where the above terms appear from an expansion at order O(ε). Notice that, if we define β β β≡ − −( )Bx 0 1
2

1 1
2

2 , 
and β β≡ −B ( )y 3

2
1 2 , Eq. (49) adopts the desired form of (17).

Numerical simulations.  In order to illustrate how the above scheme can be used to describe the dynamics of a 
particular system, we have computed the behaviour of a massless fermion in a (2 + 1)- dimensional spacetime 
black hole, whose metric in Lemaître coordinates is given by:

ρ θ=


 −



 −

−
−ds r

r
dt d r d1

1
,

(50)
s

r
r

2 2
2

2 2
s

where = ρ −( )r rt
s

3( )
2

2
3

1
3 , and rs is the Schwarzschild radius. To simplify the simulations and the plots, we have not 

considered the angular motion, so that the variation in θ is zero. This allows us to describe the QW probability 
density in the plane (t, x), where x plays the role of ρ. The deformation Λ(t, x) to induce the former metric reads:
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Λ =













.t x

r t x
r

r t x

( , )

( , ) 0

0 1
( , ) (51)

s

In Fig. 1 we can observe the dynamics of the walker in the projected plane (t, x). Depending on the initial 
position of the walker, the trajectories in the spacetime vary. The event horizon is given by ε= +r t rh s

3
6

2
3

. 
Therefore, when the particle is initialized inside the horizon with = .x 9 94v0

 (left panel), the QW ends up in the 
singularity. On the other hand, if the QW starts exacly at the horizon (central panel), the probability distribution 
will follow the horizon trajectory. Finally, if the initial state lies outside the horizon with = .x 31 31v0

 (right panel), 
it propagates away from the singularity. These results are in agreement with30, in which they study a QW with the 
same metric in (1 + 1)- dimensional spacetime.

Discussion
We introduced a Quantum Walk (QW) over the honeycomb and the triangular lattice. In both cases, our starting 
point was the possibility to rewrite the targeted Hamiltonian as a sum of momentum operators along the three 
relevant directions of the lattice, each weighted by a suitably chosen gamma matrix. This procedure has been 
introduced in18 — our targeted Hamiltonian was then that of the Dirac equation, which we recovered in the con-
tinuum limit. In the present work, we realized that due to the linear dependence of the three preferred directions 
of the honeycomb and the triangular lattices, one could also obtain the Hamiltonian of the Dirac equation under 
an arbitrary change of coordinates. We emphasized that applying the same procedure, but for the square lattice, 
only allows for a very limited set of changes of coordinates.

Then, by making the gamma matrices to be spacetime dependent, we obtained the Curved Dirac equation 
in an arbitrary background metric. Overall, the QW hereby constructed over the honeycomb and the trian-
gular lattices thus recovers, in the continuum limit, the Dirac equation in curved (2 + 1)– dimensional space-
time. We believe that the duality between changes of metric, and changes of gamma matrices weighting non 
linearly-independent momentum operators, is profound and may lead to further developments.
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6 Perspectives and Conclusions

Summary
6.1 Tetrahedral QW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Tetrahedral QW
A natural question, after developing the 2D QW over the honeycomb and tri-
angular lattices, and showing that one can recover the Dirac equation in the
continuum, is the question whether it is possible to extend this result to three
dimensional space. In order to discretize the 3D space, simplicial complexes will
be used. Therefore, the objective is defining a quantum walk based model over
a tetrahedral space. The work is in progress, however we can already provide an
outline of the solution.

There is no way to fill the Euclidean space using regular tetrahedrons, for
which all four faces are equilateral triangles [124]. However, we can construct
a 3D lattice by dividing a cube in six tetrahedrons, as represented in Fig.(6.1).
There are more possible approaches to fill the 3D, for further explanation we
refer to [124]. This one is probably the simplest. The tetrahedron used, albeit
non-reglular, is unique in sizes. Using this construction, we can fill the 3D space
by replicating the cube and gluing them together.

95



Figure 6.1: Half cube constructed by three irregular tetrahedrons

It can be very useful to define the dual graph of the 3D tetrahedral lattice, in
order to make simple the definition of the QW. In Fig.(6.2), we can visualize the
dual graph, in which the points refer to tetrahedrons, whereas the cables refer
to the connections between them. The cables are distinguished by colored and
black ones. The colored cables connect a tetrahedron with another one living
on a different cube. The colors (red, blue and green) indicate different vector
directions. The black lines connect tetrahedrons living in the same cube.
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ψ1 ≡ ψRC
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6ψ2 ≡ ψLC

ψ3 ≡ ψL B
ψ4 ≡ ψR B
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⃗ub1

⃗ub2

(b)

Figure 6.2: (a) Cube constructed by the composition of 6 tetrahedrons. (b) Dual
graph, which represents a cube. Every point represents a tetrahedra, the
cables refer to the connection between tetrahedrons, as it is represented
in (a)

Then, we define a C4 spinor at the center of every tetrahedron,

ψ(~x, t) =


ψ1(~x, t)
ψ2(~x, t)
ψ3(~x, t)
ψ4(~x, t)

 ≡

ψRC(~x, t)
ψLC(~x, t)
ψLB(~x, t)
ψRB(~x, t)

 . (6.1)

where LC, RC, LB and RB refer to: Left-Colored,Right-Colored, Left-Black and
Right-Black, respectively. The use of this notation is due to the position in which
the spinor components are placed in the dual graph, Fig.(6.2). However, this
does not mean that the spinor amplitudes are living on the interface between
tetrahedrons: it is just a manner of labeling the spinor amplitudes, in order to
make easier the the QW using the dual graph. The evolution will be a compo-
sition of six rotation coins1 and also six different swap-translation operators, at
every tetrahedron in the same cube.

The particularity of this QW over the tetrahedral space is that, in one cube, the
system is not translational invariant, and we have to keep track of the position
of the spinor in order to define the translation operator.

First, let us write the six different directions in which the spinor components
can move: ~ured, ~ublue , ~ugreen , ~ub1, ~ub2, ~ub3. They are showed in Fig.(6.2) using the

1Still to be precised
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dual graph. Notice that, due to the fact that the cube is made by two symmetric
prisms, the direction vectors are symmetric on the opposite side of the graph.

u0 = (−1
4 ,

1
4 , 0) u1 = (0, 1

4 ,
1
4) u2 = (1

4 , 0,
1
4)

ublue = (1
2 ,

1
4 ,−

1
4) ured = (−1

4 ,−
1
4 ,−

1
2) ured = (1

4 ,
1
2 ,−

1
4). (6.2)

As mentioned above, we need to define, at every tetrahedron, an unitary coin
Ri, where i = 1...6. As the goal is recovering, in the continuum, the Dirac
equation, the coins play an important role. At the moment, we have not found a
proper set of coins which allows us to find the right continuous limit.

The swap-translation operator means that, apart of doing the usual spin con-
ditional translation, we perform a swap at the same time. For instance, let us
define, at a given time step, the components of the spinor at the tetrahedron-1.

ψ(~xT1 , t+ 1) =


(U3ψ(~xT1 − ~ured, t))RB
(U5ψ(~xT1 − ~ublue, t))LB
(U2ψ(~xT1 + ~ub1 , t))LC
(U6ψ(~xT1 − ~ub0 , t))RC

 . (6.3)

where ~xT1 refers to the position of the tetrahedron-1. Therefore, we take the
spinor components from the adjacent tetrahedrons with respect to the one we are
situated, see Fig.(6.2). However, we do not connect the same spinor components.
The first spinor component (RC) in tetrahedron-1 at time step t+1, is taken from
the forth component (LB) of the spinor at the tetrahedron-3, at time step t (after
applying the coin). On the other hand, the same occurs between the second
component (LC), of the spinor in the tetrahedron-1, at time step t + 1, and the
third component (LB) of the spinor in the tetrahedron-5, at time step t.

This correspondence between spinor components RC ↔ RB and RL ↔ LB,
is established at every translation operator in the six different tetrahedrons. The
reason to define the translation operator with this swap, is because we want the
spinor amplitudes to explore every tetrahedron, in the case of choosing identity
matrices as coins. Otherwise, it would not be possible to explore the six different
tetrahedrons defined in the cube.

The rest of the translation operators are defined as:

ψ(~xT2 , t+ 1) =


(U4ψ(~xT2 − ~ublue, t))RB
(U6ψ(~xT2 + ~ugreen, t))LB
(U3ψ(~xT2 + ~ub2 , t))LC
(U1ψ(~xT2 − ~ub1 , t))RC

 . (6.4)
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ψ(~xT3 , t+ 1) =


(U5ψ(~xT3 + ~ugreen, t))RB
(U1ψ(~xT3 + ~ured, t))LB
(U4ψ(~xT3 − ~ub0 , t))LC
(U2ψ(~xT3 − ~ub2 , t))RC

 . (6.5)

ψ(~xT4 , t+ 1) =


(U6ψ(~xT4 + ~ured, t))RB
(U2ψ(~xT4 + ~ublue, t))LB
(U5ψ(~xT4 − ~ub1 , t))LC
(U3ψ(~xT4 + ~ub0 , t))RC

 . (6.6)

ψ(~xT5 , t+ 1) =


(U1ψ(~xT5 + ~ublue, t))RB
(U3ψ(~xT5 − ~ugreen, t))LB
(U6ψ(~xT5 − ~ub2 , t))LC
(U4ψ(~xT5 + ~ub1 , t))RC

 . (6.7)

ψ(~xT6 , t+ 1) =


(U2ψ(~xT6 − ~ugreen, t))RB
(U4ψ(~xT6 − ~ured, t))LB
(U1ψ(~xT6 + ~ub0 , t))LC
(U5ψ(~xT6 + ~ub2 , t))RC

 . (6.8)

Looking at the former recursion function, we can realize that the translation
operators in the tetrahedrons T1, T2 and T3 are just the conjugates of the trans-
lation operators in T4, T5 and T6. This is because of the already mentioned
symmetry between the two prism that construct the cube.

We have shown how to define a QW-based model over a discretized tetrahe-
dral 3D space, however there are still opened questions. The main question is
whether there is a existing continuous limit that reproduces the Dirac equation
in (3 + 1)-dimensional space.

As this is the first model defined over the tetrahedral lattice, we believe that
this QW, with a nontrivial topology, could have different and exotic features
with respect to the QWs defined over cubic spaces. How does the probability
distribution evolve? Is there any advantage in Grover search algorithms? Is it
possible to apply the duality principle in 3D, Sect.(5.5)?

On the other hand, inspired by the attempts of quantum gravity theories,
where the space is triangulated by tetrahedrons, this QW model can, perhaps,
give some insight in the fermionic transport over those spaces.

6.2 Conclusions
In this thesis we have studied several models using DTQW schemes. We have
pointed out in the introduction that DTQW are a useful tool for developing quan-
tum algorithms, however we focus on another important area that is growing in
the recent years: quantum simulation.

In Chapter (2), we recall the concept of quantum simulation. It is introduced

99



the, well-known, continuous limit of QWs, and it is shown how in the contin-
uum limit, the QW describes a family of differential equations, by choosing the
appropriate coin parameters.

Based on a brane-world model proposed by Ruvakov [114], we define both
a 2D and a 3D quantum walk. In this brane-world model, particles live in a
N + 1 + 1s space-time, where N refers to the ordinary spatial dimensions, and
1s refers to the extra dimension. The only manner to access the extra dimension
is by having a large amount of energy, which may not be accessible in current
experiments.

In this way, we can define a QW with an inhomogeneous coin, which is position-
dependent, in 2D and 3D spatial dimensions, in which one of these spatial di-
mension plays the role of the "extra" one. Hence, by tuning a coin parameter, the
energy regime can be selected. For certain parameters, we cannot access to the
extra dimension: as a consequence, the walker becomes confined in 1D (2D), in
the case of the 2D (3D) QW. On the other hand, if the walker can access to the
extra dimension (high energy regime), it behaves like a free quantum walk.

Normally, localization in QWs is achieved via random or periodic coins, how-
ever in this model, the walker becomes localized by the action of a coin which
changes in space in a regular, nonperiodic manner. On other hand, another re-
markable feature is that, in the case in which the walker is confined, the state is
topologically protected, which could be useful for experimental implementations
or quantum algorithms.

In Chapter (3), we introduced gauge invariance for 1D and 2D QWs coupled
to external electromagnetic fields. Introducing gauge invariance in lattice the-
ories is not trivial, since there are plenty of ways to do it, for which the same
continuous limit is achieved.

We compare this gauge invariance with previous models, pointing out that, our
proposal to implement the invariance in the DTQW, has the advantage that the
discrete derivatives which are introduced are similar to the discrete derivatives
used in lattice gauge theories.

In Chapter (4), we answer the open-question about whether it is possible to
recover the behavior of relativistic fermions, in the continuum, by changing the
geometry in which the quantum walk is defined, to triangular and honeycomb
lattices. There are previous works which consider QWs over such structures,
for spatial search algorithms, graphene properties, localization processes, etc.
However, none of them was known to have a well-known physics equation in
the continuum limit.

We in turn define a QW over the honeycomb and triangular lattices, proving
that it is possible to recover the Dirac equation in the continuous limit. This
result shows that these simulation results need not to rely on a grid.

On the other hand, graphene materials are potential candidates for experi-
mental realization of quantum simulators. The fact that we define QWs over the
honeycomb lattices, could be beneficial for future implementation of quantum
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simulation schemes, based on QW models using these materials.
Finally, in Chapter (5), we extend the model introduced in the previous chap-

ter. Inspired by the theory of deformation in solid materials, we wonder whether
it is possible to deform the lattice in such a way that, in the continuum, we
recover the Dirac equation in a 2 + 1 curved space time.

By a method we introduce, called duality, we impose a deformation on the
lattice, and then we encode this transformation into local space-time dependent
coins. In such a way, we can simulate, in the continuum, the curved Dirac equa-
tion, whereas the lattice remains unaltered.

There is a special interest in simulating the effects of gravity on the dynamics
of fermions. In addition, there are also some studies on using curved graphene,
to simulate fermions on a curved space-time. Obviously, the deformations that
can be made to the material are limited. Our work can open the possibility to
simulate an arbitrary background metric, e.g using undeformed graphene, by
implementing local coins operators at every discrete point.

6.3 Perspectives
QWs have the ability to simulate specific quantum systems. Most of the results
involve one particle, although there are studies in which two particles are in-
volved. Apart from being capable of simulating quantum theories, QWs are
attractive because they can illustrate physical theories in a simple and elegant
manner, through unitary operators on a discrete lattice. In our opinion, the next
step in the field of quantum simulators based on QWs protocols, is the study of
interacting multi particle models, that would allow to make a connection with
theories like Quantum Field Theory [12, 113].

On the other hand, it is necessary to implement these QWs models in labs.
Physical implementations of QWs are getting better, year after year [142, 138].
We believe that in the next few years, there will be experiments involving mul-
tiparticle models, which are hard to simulate using classic computers since the
increment of complexity grows exponentially with the number of particles.

Analog quantum simulation (AQS) has been developed further than digital
quantum simulation (DQS), in the last years, because DQS needs error correction
algorithms which significantly increase the cost of the computation. Recently,
there is a large number of big companies working on building new prototypes of
quantum computers, such Google, IBM, Microsoft etc, based on quantum circuits
schemes. This industry is increasing considerably2, and there is even a recent
study in which they claim to achieve quantum supremacy by using a 53 qubits
quantum computer [16]

Probably in the next years we will have reliable quantum computers based on
hundreds of qubits, which may overcome some classical computations. That is

2IBM just announces a quantum computer of 53 qubits
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why we think that another approach that needs consideration for implementing
QWs is the use of quantum circuits. There are already some studies which imple-
ment QWs in quantum circuits [57, 24, 35, 55], although still further research
in this topic is necessary, such as implementing inhomogeneous coin operators,
non-rectangular lattices, or implementing experimental test in current quantum
computers.
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