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ABSTRACT

ABSTRACT

In recent years, a large number of social network sites (e.g., Facebook and LinkedIn) have

appeared to connect people and groups together. Networks have been proven to be a good

tool to share information and communicate ideas. Influence propagation in social networks

has attracted substantial interests from the fields of complex networks, data mining and

algorithmic theories.

Influence propagation occurs when an individual’s opinions or behaviors change as a result

of interactions with others. For example, one may adopt an information or share a video

on Facebook under the influence of his acquaintances and a viral effect is finally triggered

through the whole network. It is called the “word-of-mouth effect”. A marketing strategy

that takes advantage of the effect, which is applied extensively in companies and online

softwares, is called viral marketing. The influence maximization problem, aiming to identify

a subset of initial adopters in a social network to maximize the influence propagation, is an

algorithmic problem for viral marketing.

There are two progressive models most used in the analysis of social networks, namely

the Independent Cascade model and the Linear Threshold model. As a type of epidemic

models, the Independent Cascade model assumes that an individual adopts an innovation

with a certain probability if at least one of its in-neighbors has adopted it. Differently, the

Linear Threshold model assumes that an individual adopts an innovation if a certain ratio of

its in-neighbors have already adopted it. We apply the Independent Cascade model in the

thesis.

The thesis addresses three different problems related to influence maximization in social

networks: influence propagation computation, influence maximization by seed selection and

influence maximization by link activation. Firstly, the influence propagation computation

consist in computing the probability that each node can be activated given a certain set

of initial adopters. It is a preliminary step for the subsequent achievement of influence

maximization. We propose the Path Method to give an exact result, the SSS-Noself algorithm

and the SSS-Bounded-Path algorithm to give an approximate result. Secondly, the influence

maximization by seed selection consist in maximizing the final influence propagation by

targeting a seed set of certain cardinality. We use our approaches for influence propagation
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computation together with different heuristics for seed selection to reach the goal of

influence maximization. Thirdly, we initially propose the problem of influence maximization

by link activation, which is to activate the most effective links within a limited budget to

achieve influence maximization. Various properties of this problem and some sub-optimal

solutions such as SimCD, MulCD, SimID and MulID are given.

Keywords: social networks, Independent Cascade models, influence propagation estima-

tion, influence maximization, seed selection, link activation
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RÉSUMÉ

Récemment, un grand nombre de sites de réseaux sociaux (Facebook et LinkedIn, par

exemple) sont apparu pour relier des personnes et des groupes. Les réseaux sociaux sont

des bons outils pour obtenir des informations et communiquer des idées. La propagation

de l’influence dans les réseaux sociaux a attiré l’intérêt dans les domaines des réseaux

complexes, de l’exploration de données et des théories algorithmiques.

La propagation de l’influence se produit lorsque les opinions ou les comportements

d’un individu changent en conséquence des interactions avec les autres. Par exemple, on

peut adopter une information ou partager une vidéo sur Facebook sous l’influence de ses

connaissances. Un effet viral est enfin déclenché à sur tout le réseau. Cet effet est appellé

“l’effet de bouche à oreille”. Une stratégie marketing qui profite de l’effet est appelée

marketing viral. Elle est largement appliqué dans les entreprises et en ligne logiciels. Le

problème de la maximisation de l’influence vise à identifier un sous-ensemble d’adopteurs

initiaux dans un réseau social afin de maximiser la propagation de l’influence. Dans le

marketing viral, le calcul pour la maximisation de l’influence d’une façon efficace est un

problème algorithmique encore ouvert.

Deux modèles progressifs sont principalement utilisés dans l’analyse des réseaux

sociaux, à savoir le modèle à cascade indépendante et le modèle à seuil linéaire. Le modèle

cascade indépendante suppose qu’un individu adopte une innovation avec une certaine

probabilité si au moins un de ses voisins l’a adoptée. Autrement, le modèle à seuil linéaire

suppose qu’un individu adopte une innovation si un certain ratio de ses voisins l’avons déjà

adopté. Nous nous intéressons au modèle à cascade indépendante dans notre thèse.

Cette thèse aborde trois problèmes différents liés à la maximisation de l’influence

dans les réseaux sociaux: l’estimation de l’influence, la maximisation de l’influence par

la sélection des diffuseurs initiaux, et la maximisation de l’influence par l’activation des

liens. D’abord, l’estimation de l’influence consiste à calculer la probabilité pour que

chaque noeud puisse être activé par un certain ensemble de diffuseurs initiaux. C’est

une étape préliminaire pour la réalisation de la maximisation de l’influence. Nous

proposons une méthode appelée méthode du chemin pour calculer un résultat exact, en
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suite l’algorithme SSS-Noself et l’algorithme SSS-Bounded-Path pour calculer un résultat

approximatif. Deuxièmement, la maximisation de l’influence par la sélection des diffuseurs

initiaux consiste à maximiser l’influence finale obtenue par un certain nombre des ces

diffuseurs initiaux. Nous utilisons nos approches pour l’estimation d’influence avec

différentes heuristiques pour la sélection des diffuseurs initiaux afin d’atteindre l’objectif

de maximisation de l’influence. Troisièmement, nous proposons un problème de la

maximisation de l’influence par l’activation des liens. Il consiste à activer les liens les

plus efficaces avec un budget limité pour maximiser l’influence. Diverses propriétés de ce

problème et certaines solutions sous-optimales telles que SimCD, MulCD, SimID et MulID

sont données.

Mots-clés: réseaux sociaux, modèles à cascades indépendantes, estimation de l’influence,

la maximisation de l’influence, sélection des diffuseurs initiaux, activation des liens
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Chapter 1 Introduction

Chapter 1 Introduction

In recent years, a large number of social network sites (e.g., Facebook and LinkedIn)

have appeared to connect individuals and groups of people together. Networks have been

proved to be a good tool to obtain information and communicate ideas. They are becoming

an effective marketing platform, through which it is possible to spread information or

products at a large scale with a high speed. The influence propagation through social

networks has attracted substantial interest from the fields of complex networks, data mining

and algorithmic theories [1–3]. In the thesis, we also focus on the analysis of influence

propagation, in the aspects of influence propagation computation, influence maximization

by seed selection and link activation.

1.1 Social Networks and Influence Propagation

A social network can be considered as a directed graph made up of a set of social actors

(such as individuals or organizations), sets of directed ties, and other social interactions

between actors. This theoretical construct is useful in social sciences to study relationships

between individuals, groups, organizations, or even entire societies. For instance, a large

number of social network sites that have recently appeared, such as Facebook and Twitter,

connect thousands of millions of people and groups together and provide them with an

interactive platform to communicate and influence each other.

For the purpose of analysing the influence propagation over social networks, many

mathematical models have been proposed. Among them two classic progressive models,

namely the Independent Cascade model [4, 5] and the Linear Threshold model [6, 7], are

widely used in mathematical sociology, economics and information science. As a type

of epidemic models, the Independent Cascade model [8–11] assumes that an individual

adopts an innovation with a certain probability each time one of its in-neighbors adopts

it. Differently, the Linear Threshold model [11, 12] assumes that an individual adopts an

1
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innovation only if a certain ratio of its in-neighbors have already adopted it.

The adoption of a specific behavior by an individual is highly influenced by his

acquaintances, and influence occurs when an individual’s opinions or behaviors change

as a result of interactions with others [13–19]. We call this the “word-of-mouth” effect

[20]. Marketing based on the word-of-mouth networks can be more cost-effective than

the conventional direct marketing, because it leverages most of the promotional effort of

customers in the market. Consider the following marketing example: a company designs a

new APP for online users and aims to market it through a social network. Due to limited

budget and resources, it will initially address only a limited number of users which it

will reward to recommend the APP to their friends. And their friends would use it and

recommend to their friends and so on. This strategy is called viral marketing [20] since it is

similar to the spread of an epidemic.

The research on influence propagation will greatly benefit companies and individuals

which aim to distribute their products or spread their ideas through a social network by the

“word-of-mouth” effect. Social networks connect a large number of users and thus they are

an effective model of interactions to analyze the diffusion of innovations.

1.2 Influence Propagation Analysis

Inspired by the theories of viral marketing, one of the cost-effective ways to promote

a new product is to target some users through a social network, and first encourage them to

adopt the product, e.g., by giving them a discount or offering them free samples. The goal

is that the initial users can drive more users to adopt the new product in the network. To

achieve that, we need to research the following problems:

• How to model the process of innovation diffusion with certain parameters;

• How to estimate the influence propagation of the initial users;

• How to choose a set of relatively optimal initial users to maximize the final influence

propagation through a social network;

2
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• How to choose the links to be activated such that the influence propagation is

maximized regardless of the set of initial adopters.

1.2.1 Influence Diffusion Models

Since the 40’s, various models have appeared for the analysis of innovation diffusion.

For instance, the Threshold models are based on the threshold effect, i.e., an individual

adopts an innovation if a certain ratio of its social contacts have adopted it. Differently,

epidemic models, such as Susceptible-Infected-Susceptible (SIS) model and Susceptible-

Infected-Recovered (SIR) model [21, 22], assume that individuals can be susceptible with a

certain probability.

Kempe et al. [11] initially proposed two classic progressive models, i.e., the Indepen-

dent Cascade model and the Linear Threshold model. It has been shown that the both

models can be generalized and their generalized versions are equivalent. Subsequently many

authors have successfully modeled more aspects of network parameters such as positive

and negative opinions [23–27], competitions of multiple diffusions [28–33], cooperations

between diffusions [34–36] and time-delay propagation [37, 38].

Our work is based on the Independent Cascade model.

1.2.2 Influence Propagation Computation

Influence propagation computation is a vital and essential process for the influence

maximization. Only after estimating the final influence propagation, can one select the

appropriate initial individuals or activated links according to the influence propagation value.

It has been proved that computing the exact influence propagation is #P-hard by Chen

et al. [39] in both the Independent Cascade model and the Linear Threshold model. Thus

numerous algorithms aim at approximate efficient computation. Monte Carlo simulation

applied in many studies [11, 40–42] is basic and simple but quite time-consuming. Aggarwal

et al. [43] gave a more efficient approximate algorithm called SteadyStateSpread, of which

3
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the accuracy depends on the network structure. In order to improve the performance

of SteadyStateSpread, Yang et al. [44] pointed out the scenario of structural defect and

proposed a SSSbyStep algorithm. We also analyze the network structure which leads

to the inaccuracy of influence propagation computation and give some improvements to

SteadyStateSpread in Chapter 3.

1.2.3 Influence Maximization

One of the most important research directions in influence propagation is the influence

maximization problem. The classic problem statement is described as targeting a subset of

individuals to initially adopt an innovation such as to maximize the influence propagation

through a social network. This problem was originally proposed by Domingos and

Richardson [20, 45] based on Markov random fields. It was shown to be NP-hard under

many stochastic diffusion models [1, 11]. For solving this problem, Kempe et al. [11, 11]

first gave a greedy approximation algorithm which guarantees, under certain conditions,

that the influence propagation approximates the optimal one within a factor of (1 − 1/e).

However, this approach requires long time to run the simulation, thus later much effort was

devoted to derive more efficient algorithms [41, 42, 46–50].

In this thesis, we introduce the classic influence maximization problem as influence

maximization by seed selection. We discuss how to use different influence propagation

computation algorithms together with influence maximization heuristics to select a possibly

optimal seed set.

Besides the influence maximization by seed selection, there are plenty of work related

to link operation. However, most work about link control aims at solving the influence

minimization problem [51–58]. A part of our work initially studies on the influence

maximization by means of activating links under the Independent Cascade model. We aim to

activate the most profitable links to achieve influence maximization within a limited budget.
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1.3 Overview of Contributions

Based on the Independent Cascade model, the main contributions of this thesis is

summarized as follows.

1. For exact influence propagation computation, we propose Path Method that explores

all possible evolutions of a model, which can compute the exact solution to the

influence propagation in small networks. We point out that, due to its complexity,

this method is only viable for small networks but it is useful to test the correctness of

different approaches.

2. For approximating influence propagation, we discuss the convergence problem and the

multiple solutions problem of SteadyStateSpread. Moreover, we point out two factors

leading to the gap between the result of SteadyStateSpread and the exact solution:

the dependency relationship and existence of circuits. To partially overcome the error

caused by circuits, we further propose a new SSS-Noself algorithm which updates the

activation probability of one node assuming that it has not been activated at all before.

Besides, another efficient algorithm to compute the influence propagation along paths

of bounded length is proposed, namely SSS-Bounded-Path.

3. For influence maximization by seed selection, we compare different influence propa-

gation computation algorithms together with SelectTopK, RankedReplace and greedy

algorithm to select seed set for solving the influence maximization problem.

4. We initially propose the problem of influence maximization by link activation and

prove that this problem is NP-hard. We analyze the monotonicity and submodularity

of the influence propagation function and propose heuristics associated with either

cost-degree coefficient or inf-degree coefficient. Emphatically, we prove that the

algorithm of SimID can gain an influence propagation which is within 1
2
(1 − 1

e
) of

the optimal one under a certain constraint.
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1.4 Thesis Organization

The thesis is structured as follows.

Chapter 2 describes formally the general framework of social network and two basic

mathematic models, namely the Linear Threshold model and the Independent Cascade

model. It is shown that both models can be generalized and their generalized versions are

equivalent.

Chapter 3 analyzes different influence propagation computation approaches in an

Independent Cascade model. Firstly, Path Method can give the exact value of influence

propagation, but it is only viable for small networks. Secondly, an approximated method,

called SSS-Noself, is obtained by modification of the existing SteadyStateSpread algorithm,

based on fixed-point computation, to achieve a better accuracy. Thirdly, an efficient

approach, also based on fixed-point computation, is proposed to compute the probability that

a node is activated though a path of minimal length from the seed set. This algorithm, called

SSS-Bounded-Path algorithm, can provide a lower-bound for the computation of influence

propagation.

Chapter 4 applies the influence propagation computation methods proposed in Chapter

3 to the influence maximization problem together with SelectTopK algorithm, Ranke-

dReplace algorithm and greedy algorithm.

Chapter 5 formulates the influence maximization problem by link activation and proves

that this problem is NP-hard. The properties of monotonicity and submodularity are

discussed afterwards: the influence propagation function is monotone and submodular with

respect to the seed set, but monotone and non-submodular with respect to the set of active

links. Heuristics based on a cost-degree coefficient or an inf-degree coefficient are proposed

to activate the most effective links within a limited budget to achieve influence maximization.

It is proved that the algorithm of SimID can achieve an influence propagation within 1
2
(1− 1

e
)

of the optimal solution under a certain constraint.

Chapter 6 proposes a summary of the whole thesis and describes the future work.
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Chapter 2 Preliminaries

The basic notions of social networks and diffusion models is given in this chapter. Two

different mathematical models for the diffusion of innovation are presented: they are the

Linear Threshold model and the Independent Cascade model. It will be shown that both

models can be generalized and their generalized versions are equivalent.

2.1 Social Networks

The studies on information propagation through social networks began in the middle

of the 20th century [59, 60]. A social network is a graph of interactions and relationships

between individuals and groups. Many mathematical models of social networks have been

proposed, among which the Linear Threshold model and the Independent Cascade Model

[8] are the ones that have received the largest attention.

A social network is represented by a directed graph G = (V,E), in which V is a

set of nodes representing individuals in the network. An edge (i, j) ∈ E denotes that

node i influences node j directly. We use the terms individual or node, and edge or link

interchangeably. To describe all individuals with direct influence on node j, we denote the

in-neighbors of node j as N in
j = {i ∈ V |(i, j) ∈ E}. The out-neighbors of node j denoted

as N out
j = {i ∈ V |(j, i) ∈ E} represent the individuals on which node j has direct influence

[61, 62].

For example, in the network in Figure 2.1, it holds that:

V = {1, 2, 3, 4}; E = {(1, 2) (1, 3) (4, 1)}.

N in
1 = {4}, N out

1 = {2, 3}; N in
2 = {1}, N out

2 = ∅;

N in
3 = {1}, N out

3 = ∅; N in
4 = ∅, N out

4 = {1}.

In considering operational models for the spread of an idea or innovation, each node

can be either active or inactive. As soon as a node adopts the innovation (i.e., it is activated),

7
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Fig. 2.1 Social network example

it becomes active, otherwise is said to be inactive. We also assume that nodes can switch

from being inactive to being active, but can not switch in the other direction. It means

that the adoption of an innovation is permanent and for this reason the model is called

progressive. Thus, the diffusion process will look roughly as follows from the perspective

of an initially inactive node j: as time unfolds, more and more of node j’s in-neighbors

become active; at some point, this may cause node j to become active, and node j’s decision

may in turn trigger further decisions by nodes to which node j is connected [63]. Note that

the activation condition of nodes differs in the Linear Threshold model and the Independent

Cascade model.

Generally, the information propagation is assumed to proceed in discrete time steps.

The set of individuals initially selected to propagate the influence, i.e., initial adopters of the

innovation at step t = 0, is defined as the seed set, represented as φ0. The initial adopters

are called the seed nodes. Then the innovation propagates from the seed set step by step.

We represent the set of nodes activated at step t as φt, and we denote the set of nodes active

at step t, i.e., those have been activated at or before step t as Φt =
t⋃

s=0

φs. The activation

process ends at step tmax when no more nodes adopt the innovation, and the set of final

active nodes is denoted as Φ∗ =
tmax⋃
s=0

φs. The activation process in different diffusion models

is given in Section 2.2.

8



Chapter 2 Preliminaries

2.2 Diffusion Models

Granovetter and Schelling first introduced the threshold models [6, 7] in 1978. Their

approach was based on the use of node-specific thresholds. Different mathematical diffusion

models have been subsequently proposed, among which threshold models and epidemic

models are the most popular.

These two models characterize two different aspects of social interaction. The threshold

model regards social pressure as the main drive of influence propagation, and assumes that

an individual adopts a behavior if a certain ratio of its neighbors has adopted it. The epidemic

model focuses on individuals and independent interaction among a social network, and

assumes that an individual adopts a behavior with a certain probability if at least one of

its neighbors has adopted it. Kempe et al. [11] showed that both models can be generalized

and their generalized versions are equivalent. However, the basic Linear Threshold model

and Independent Cascade model remain as two distinct models [39].

2.2.1 Linear Threshold Model

Image a situation where an individual needs multiple independent positive reinforce-

ments to change his opinion or behavior. For instance, one may decide to adopt a new

product after enough of his friends or acquaintances recommend it to him. Previous works

have defined threshold behaviors to model such kind of diffusion [6, 7], i.e., a target

individual is activated only when all the positive signals received from his in-neighbors

exceed a certain threshold.

The Linear Threshold model, proposed by Kempe et al. [11], describes this type of

diffusion. In the Linear Threshold model, each node j has its threshold value λj ∈ [0, 1]

and is influenced by its in-neighbors N in
j . Each edge is associated with an influence weight

wi,j ∈ [0, 1], denoting the importance of node i on influencing node j. The influence weights

are normalized such that for each node j, the sum of influence weights of all edges from node

j’s in-neighbors to node j is at most 1, i.e.,
∑

i∈N in
j

wi,j ≤ 1. One assumes wi,j = 0 if (i, j) /∈

9
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E. An inactive node j is activated at step t if the total influence weights of the edges from

its active in-neighbors is no less than its threshold value λj , i.e.,
∑

i∈N in
j ∩Φt−1

wi,j ≥ λj . Thus

we represent the Linear Threshold model as a triple GLT = (V,E,w), where G = (V,E)

is the social graph and wi,j is the influence weight associated with edge (i, j), denoting the

importance of node i on activating node j.

Recall that φ0 denotes the seed set, φt denotes the set of nodes activated at step t, and

Φt =
t⋃

s=0

φs denotes the set of nodes active at step t. Given a seed set φ0, at each run, initially

each node j ∈ V chooses its threshold value λj uniformly at random from the interval [0, 1].

At step t = 1, 2, ..., for any inactive node j ∈ V \ Φt−1, if the total influence weights of the

edges associated with its activated in-neighbors is no less than its threshold value λj , i.e.,∑
i∈N in

j ∩Φt−1

wi,j ≥ λj , then node j is activated at step t, i.e., j ∈ φt, Φt = Φt−1 ∪ φt. The

evolution process ends at step tmax when no more nodes adopt the innovation, and as talked

before the set of final activated nodes is denoted as Φ∗ =
tmax⋃
s=0

φs.

Some remarks are emphasized for the Linear Threshold model as follows. First, the

threshold λj is associated to the degree of stubbornness of node j. A large value of λj

means that node j cannot be easily influenced by its active in-neighbors, while a small one

means that node j is easily influenced by its active in-neighbors. Second, a high influence

weight wi,j associated with an edge (i, j) means that node i has a significant influence on

node j, i.e., node j can be easily influenced by node i [1].

Note that assuming the threshold value of each node is known, the model is determin-

istic and there exists a unique possible evolution (run) starting from a given seed set. This is

called the Deterministic Linear Threshold model, represented by GDLT = (V,E,w, λ). As

discussed with detail in above, when the threshold values are selected at runtime, then the

evolution is stochastic, and the same model may have different runs starting from the same

seed set. In general the default Linear Threshold model is the stochastic one without special

mention.

Algorithm 1 describes the influence propagation process through the Linear Threshold

model in detail.

10
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Algorithm 1 Search final adopters Φ∗ in the Linear Threshold model
Input: An Linear Threshold model GIT = (V,E,w), seed set φ0 ⊂ V ;
Output: The set of final adopters Φ∗;

1: t = 0, Φt = φ0;
2: Generate λj uniformly at random from the interval [0, 1];
3: while φt 6= ∅ do
4: t = t+ 1, φt = ∅;
5: for j ∈ V \ Φt−1 do
6: if λj ≥

∑
i∈N in

j ∩Φt−1

wi,j then

7: φt = φt ∪ {j};
8: end if
9: end for

10: Φt = Φt ∪ φt;
11: end while
12: Φ∗ = Φt.

1 2

3 4 6

5

0.3 0.3

0.1

0.2

0.1

0.4

0.2

0.2

0.1

Fig. 2.2 Linear Threshold model example

Example 1. Consider the Linear Threshold model in Figure 2.2 with seed set φ0 = {1, 2}.

Table 2.1 shows the threshold value of each node randomly selected from [0, 1] in one

simulation. At step t = 1, among the out-neighbors of seed set {1, 2}, i.e., nodes {3, 4, 5},

only node 3 can be activated, because w1,3 +w2,3 > λ3. Similarly node 4 is activated at step

t = 2 and node 5 is activated at step t = 3. However at step t = 4, the total influence weight

of edges associated with active in-neighbors of node 6 {4, 5} is less than its threshold value.

Thus node 6 can not be activated. Since there is no node activated at step t = 4, then the

evolution process of this model terminates. The set of final adopters is Φ∗ = {1, 2, 3, 4, 5}.

The detailed evolution of is shown in Table 2.2.
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TABLE 2.1 Threshold values for the network in Figure 2.2

node 1 2 3 4 5 6

λj 0.6 0.6 0.5 0.3 0.6 0.7

TABLE 2.2 Evolution process in Example 1

t φk Φk

0 {1, 2} {1, 2}

1 {3} {1, 2, 3}

2 {4} {1, 2, 3, 4}

3 {5} {1, 2, 3, 4, 5}

4 ∅ {1, 2, 3, 4, 5}

2.2.2 Independent Cascade Model

Unlike the Linear Threshold model, where an individual may be influenced only if

his active in-neighbors have enough “influential power”, the Independent Cascade model is

suitable to describe the diffusion of innovations which propagates as the spread of a virus.

As in all epidemic models [8, 10, 11], it is based on the assumption that a node may adopt

an innovation when one of its in-neighbors has adopted the innovation.

In an Independent Cascade model, every edge (i, j) ∈ E is associated with a

propagation probability p : (V × V ) → (0, 1], where pi,j represents the probability that

node j is influenced by node i through the edge (i, j) at step t when node i is activated at

step t − 1. Informally, if node i is activated at step t − 1, it will attempt to activate each of

its out-neighbors at step t. Note that for each of its out-neighbors, it only has one chance

of activating it. If node i fails to activate one of its out-neighbors, it will not attempt to

activate the same node at later steps. If many in-neighbors of inactive node j are activated

at step t− 1, the order in which they attempt to influence node j at step t does not affect the

probability of node j being active. It is called order-independence. Finally the Independent

Cascade model is denoted by a triple GIC = (V,E, p), where G = (V,E) is the social graph

and p : (V × V )→ (0, 1] is the propagation probability.
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Recall that φ0 denotes the seed set, φt denotes the set of nodes activated at step t,

and Φt =
t⋃

s=0

φs denotes the set of nodes active at step t. Given a seed set φ0, at step t

each node i ∈ φt−1 attempts to influence its inactive out-neighbors, i.e., j ∈ N out
i \ Φt−1,

with probability pi,j . If node j is successfully activated at t, then it is added to φt, i.e.,

φt = φt∪{j}. If at a certain step tmax there is no node activated, then the set of active nodes

will no longer change, and we say the diffusion evolution terminates, i.e., Φ∗ =
tmax⋃
s=0

φs.

To simulate the stochastic evolution process in the Independent Cascade model, a

random number ri,j uniformly distributed in the interval [0, 1] is generated, and we assume

that node i successfully influences node j when ri,j ≤ pi,j , as shown in Figure 2.3. The

detailed evolution process is described in Algorithm 2. At step t, we generate random values

in [0, 1] for the edges from nodes in φt−1 to their inactive out-neighbors. If the random

value ri,j is no more than the associated propagation probability pi,j , then we say node i

successfully influences node j.

0 1 0 1

jip , jip ,

jir , jir ,

Innovation does not propagate Innovation propagates

Fig. 2.3 Simulation to the innovation propagation along the edge (i, j)

Some remarks are emphasized for the Independent Cascade model as follows. First,

the evolution process in this model is stochastic, and the same model may have different

evolutions starting from the same seed set. Second, the propagation probability pi,j

represents the propability that node i can influence node j. A large value of pi,j denotes

high influence of node i to node j, i.e., node i influences node j with a high probability.

Example 2. Consider the Independent Cascade model in Figure 2.4 with seed set φ0 =

{1, 2}. Table 2.3 shows the simulating random numbers for considered edges at each step.

At step t = 1, from the seed nodes {1, 2}, there are four edges {(1, 3), (2, 3), (2, 4), (2, 5)}.

Since we only have r2,5 = 0.0922 < p2,5, then φ1 = {5}. Similarly we have φ2 = {6}.

Node 6 does not have inactive out-neighbor, thus the evolution process terminates and Φ∗ =

13
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Algorithm 2 Search final adopters Φ∗ in the Independent Cascade model
Input: An Independent Cascade model GIC = (V,E, p), seed set φ0 ⊂ V ;
Output: The final adopters Φ∗;

1: t = 0, Φt = φ0;
2: while φt 6= ∅ do
3: t = t+ 1, φt = ∅;
4: for i ∈ φt−1 do
5: for j ∈ N out

i \ Φt−1 do
6: Generate ri,j uniformly at random from the interval [0, 1];
7: if ri,j ≤ pi,j then
8: φt = φt ∪ {j};
9: end if

10: end for
11: end for
12: Φt = Φt ∪ φt;
13: end while
14: Φ∗ = Φt.

Φ2 = {1, 2, 5, 6}.

1 2

3 4 6

5

0.3 0.3

0.1

0.2

0.1

0.4

0.2

0.2

0.1

Fig. 2.4 Independent Cascade model example

TABLE 2.3 Simulation results in Example 2

t edge pi,j ri,j adopt φk Φk

0 {1, 2} {1, 2}

1
(1, 3) 0.3 0.6787 N

{5} {1, 2, 5}
(2, 3) 0.3 0.4577 N

(2, 4) 0.2 0.3431 N

(2, 5) 0.2 0.0922 Y

2 (5, 6) 0.2 0.1555 Y {6} {1, 2, 5, 6}
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2.3 Equivalence of Models

As pointed by Chen et al. [1], the Linear Threshold model and the Independent Cascade

model are not equivalent. However, they can be generalized to the General Threshold model

or the General Cascade model and the generalized models are proved to be equivalent. In

this section, we show by Example 3 the nonequivalence of the Linear Threshold model and

the Independent Cascade model, introduce the definitions of the General Threshold model

and the General Cascade model and emphasize the condition of the equivalence between

the generalized models. As mentioned before, the Linear Threshold model we talked is

associated with stochastic evolutions, not the deterministic model.

As for pointing out the in-equivalence of the Linear Threshold model and the

Independent Cascade model, an example is given as follows.

Example 3. The directed network G = (V,E) in Figure 2.5 where V = {1, 2, 3} and

E = {(1, 3), (2, 3)} can be corresponded to a Linear Threshold model or to an Independent

Cascade model. We assume there are w1,3 and w2,3 in the Linear Threshold model and there

are p1,3 and p2,3 in the Independent Cascade model. When seed set φ0 = {1}, for a Linear

Threshold model, node 3 is activated when its threshold θ3 is smaller than w1,3. Since θ3 is

a random variable uniformly distributed in [0, 1], the activation occurs with probability w1,3.

Thus if these two models are equivalent, we must have w1,3 = p1,3 when seed set φ0 = {1}.

Similar conclusions can be taken when the seed set is {2} or {1, 2}: we must have w2,3 =

p2,3 when seed set φ0 = {2}. When seed set φ0 = {1, 2}, node 3 is activated with probability

w1,3 +w2,3 in the Linear Threshold model, and with probability p1,3 + (1− p1,3) · p2,3 in the

Independent Cascade model. On the condition that w1,3 = p1,3 and w2,3 = p2,3, w1,3 + w2,3

can not equal to p1,3 + (1− p1,3) · p2,3 unless w1,3 = p1,3 = 0 or w2,3 = p2,3 = 0. Thus these

two models can not be equivalent.

Kempe et al. [11] initially defined the generalized threshold model and the generalized

cascade model. We recall the definitions as follows.

Definition 1 (General Threshold model). In the General Threshold model, every node j ∈ V

has a threshold function fj : 2N
in
j → [0, 1]. fj is monotone and fj(∅) = 0. Given a seed set
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1

2

3

Fig. 2.5 A directed network example

φ0 then the evolution proceeds as follows: every node j ∈ V chooses a threshold value λj

uniformly at random from the interval [0, 1]. At steps t ≥ 1, we say node j is activated at

step t if the function value fj based on all active in-neighbors of node j is no less than its

chosen threshold value λj , i.e., fj(N in
j ∩ Φt−1) ≥ λj .

Intuitively, the Linear Threshold model is a special case of the General Threshold model

where fj(Φ) =
∑
i∈Φ

wi,j (wi,j is the influence weight in the Linear Threshold model).

Definition 2 (General Cascade model). In the General Cascade model, every node j ∈ V

has an activation function pj : N in
j × 2N

in
j → [0, 1]. pj(i,Φ) ∈ [0, 1], where Φ ⊂ N in

j

and i ∈ N in
j \ Φ. Given a seed set φ0, then when node i attempts to activate node j, it

succeeds with probability pj(i,Φ), where Φ is the subset of node j’s in-neighbors that have

failed to activate node j. The activation function pj(i,Φ) is set to be order-independent, i.e.,

the probability that node j is activated is not affected by the order in which its in-neighbors

attempt to activate it.

Intuitively, the Independent Cascade model is a special case of the General Cascade

model where pj(i,Φ) equals to a constant pi,j , independent of Φ.

Chen et al. [1] pointed that for any general threshold model with threshold function

fj(Φ) for every node j ∈ V , there is a corresponding general cascade model with a suitable

activation function pj(i,Φ) for every node j ∈ V , such that the two general models are

equivalent and vice versa.

Suppose that there is a general cascade model with activation function pj(i,Φ) for every

node j ∈ V . Let Φ = {i1, i2, ..., is} be a set of in-neighbors of node j. Let Si = {i1, i2, ..., ii}
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and S0 = ∅. Given that nodes in Φ are already active, the probability that one of nodes in

Φ successfully activates j is 1−
s∏
i=1

(1− p(ii, Si−1)). To have this probability, the threshold

function fj(Φ) is set as

fj(Φ) = 1−
s∏
i=1

(1− p(ii, Si−1)).

Conversely, suppose that there is a general threshold model with threshold function

fj(Φ) for every node j ∈ V . Given a set of in-neighbors of node j Φ and one of its in-

neighbors i ∈ N in
j \Φ, then pj(i,Φ) is the conditional probability that node i activates node

j on the condition that none of nodes in the set Φ activates node j. In the general threshold

model, the probability that none of nodes in the set Φ activates node j is 1−fj(Φ). Then we

have node i activates node j if and only if threshold λj is between fj(Φ) and fj(Φ ∪ {i}),

i.e., pj(i,Φ) is set as

pj(i,Φ) =
fj(Φ ∪ {i})− fj(Φ)

1− fj(Φ)
.

2.4 Conclusion

In this chapter, two mathematical models describing the influence propagation through

social networks, namely the Linear Threshold model and the Independent Cascade model,

are discussed. The Linear Threshold model assumes that an individual adopts an innovation

if a certain ratio of its in-neighbors have already adopted it. While the Independent Cascade

model assumes that an individual adopts an innovation with a certain probability if at least

one of its in-neighbors has adopted it. Moreover, these two models can be generalized to be

equivalent under a certain set of parameters.
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Chapter 3 Influence Propagation Computation

3.1 Introduction

In order to maximize the final influence propagation by determining an optimal set

of initial users, a preliminary step is to compute the set of final adopters for any given

set of initial users. When the Independent Cascade model is considered, the measure of

the influence propagation is given by the total activation probabilities of individuals in a

network, i.e., the sum of probabilities that the individuals adopt the innovation. It has been

proved that computing the exact influence propagation for the Independent Cascade model is

#P-hard by Chen et al. [39]. Monte Carlo simulation applied in many studies [11, 40–42] is

a basic and simple tool but quite time-consuming. Aggarwal et al. [43] gave a more efficient

approximate algorithm called SteadyStateSpread. However, the computed solution may be

far from the exact one, depending on the network structure, and there are no guaranteed

bounds. Besides, they did not discuss the convergence of their iterative equation and the

uniqueness of the final solution.

In this chapter, focusing on the Independent Cascade model, we analyse different

approaches for computing the influence propagation. The main contributions [64] of this

chapter can be summarised as follows:

1. To compute the exact value of the influence propagation in small networks, we propose

a method that explores all possible evolutions of a model: we call this approach Path

Method. We point out that, due to its complexity, this method is only viable for small

networks but it is useful to test the correctness of different approaches.

2. We discuss the convergence problem [65] and the multiple solutions problem [66] of

SteadyStateSpread, proving that it converges to a unique solution using fixed-point

theory [67]. Moreover, we point out two factors leading to the gap between the

result of SteadyStateSpread and the exact solution: the dependency relation among
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individuals and the existence of circuits in network structures. To partially overcome

the error caused by circuits, we further propose a new SSS-Noself algorithm which

updates the activation probability of one node assuming that it has not been activated

at all before.

3. We propose an efficient way to compute the influence propagation along paths of

bounded length and provide a lower-bound for the influence propagation by SSS-

Bounded-Path.

3.2 Related Work

Kempe et al. [11, 40] firstly ran Monte Carlo simulation for 10,000 times to evaluate

the influence propagation. However, it is not computational efficient, then some algorithms

are generated to improve the efficiency of influence propagation evaluation. Chen et al. [39]

constructed the Maximum Influence Arborescence (MIA) model to restrict influence in a

local region. They firstly computed Maximum Influence Paths (MIP) via Dijkstra algorithm

and ignored MIPs with probability smaller than an influence threshold θ. Then they unioned

the MIPs into the arborescence structures and only influence propagated through these local

arborescences is considered. Aggarwal et al. [43] gave an efficient approximate algorithm

called SteadyStateSpread. However, it does not always perform well specifically in the

dependent sub-structures of a network. Besides, as pointed out in [44], Aggarwal et al. did

not demonstrate the convergence of the iterative equation and the uniqueness of the final

solution.

3.3 Influence Propagation Computation in the Independent
Cascade Model

3.3.1 Problem Formulation

The evaluation of influence propagation given a seed set is the first task for the goal

of influence maximization. In the thesis, the influence propagation is denoted as the sum
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of activation probabilities of all nodes in a network. We give a mathematical description

of the problem of influence propagation computation in the Independent Cascade model as

follows.

Definition 3 (Activation Probability). Given an Independent Cascade model GIC =

(V,E, p) and a seed set φ0, the probability that a node j ∈ V is activated during the

innovation propagation process is defined as the activation probability of node j, denoted

as πj .

The final influence propagation σ(φ0) is given by the total activation probabilities of

nodes in a network, i.e.,

σ(φ0) =
∑
j∈V

πj.

3.3.2 Hardness of Influence Propagation Computation

Chen et al. [1, 39] proved that computing influence propagation based on the Indepen-

dent Cascade model is #P-hard. The class of #P problems are counting problems associated

with decision problem in NP: a problem in NP needs to answer if a problem instance has

a solution while a #P problem needs to provide the number of solutions to the problem

instance. A problem is #P-complete if it is in class #P and every problem in #P can be

reduced to it by a polynomial time reduction. A computation problem is #P-hard if it can be

reduced in polynomial time from a #P-complete problem.

Theorem 1. [39] Computing the influence propagation σ(Φ0) in the Independent Cascade

model given a seed set φ0 is #P-hard.

A detailed proof can be found in the paper of Chen et al. [39].

3.3.3 Submodularity and Monotonicity of Influence
Propagation Function

The influence propagation function σ(·) holds two important properties in the Indepen-

dent Cascade model: monotonicity and submodularity. These two properties contribute a lot
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for the analysis of the greedy algorithm designed for influence maximization problem, which

will be discussed in Chapter 4. We recall the definitions of monotonicity and submodularity

[68] in Definition 4 and Definition 5.

Definition 4 (Monotonicity). A set function f : 2V → R is monotone if for any subset

S ⊆ T ⊆ V , f(S) ≤ f(T ).

Definition 5 (Submodularity). A set function f : 2V → R is submodular if for any subset

S ⊆ T ⊆ V and any element v ∈ V \ T , the marginal gain of adding element v to a set T

is no more than the marginal gain of adding element v to a subset S ⊆ T , i.e.,

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ).

Kempe et al. [63] pointed that the influence propagation function σ(·) is monotone and

submodular in the Independent Cascade model. The detailed proof can be found in [63].

Theorem 2. The influence propagation function σ(·) in the Independent Cascade model is

monotone and submodular.

3.4 Methodology

As mentioned above, the preliminary step to determine a seed set for achieving influ-

ence maximization is to evaluate the influence propagation, i.e., the activation probabilities

of all nodes in a network. The methodology for both exact and approximate influence

propagation computation is given in this section.

3.4.1 Exact Influence Propagation Computation

In this part, we propose an algorithm to compute the exact solution to the influence

propagation called Path Method. The value of activation probability computed by Path

Method for node j ∈ V is defined as πpj . Since Path Method can give an exact value,

we have πpj = πj .
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Path Method takes into account all evolutions of a model, so that it can offer a precise

result of the final influence propagation. Firstly, it creates an evolution graph for a model,

which is composed of cells shown in Figure 3.1. Each cellCk consists of three elements: past

active nodes is a setApk which contains all the nodes activated before the current step; current

active nodes is a setAck which contains the nodes activated at the current step; cell probability

Pk is the probability that the evolution described by Apk and Ack occurs. A cell whose current

active nodes is null is called a terminal cell. Every non-terminal cell Ci = (Api , A
c
i , Pi) is

connected with each of its successor cells Ck = (Apk, A
c
k, Pk) by a directed arc with which is

associated the arc probability P (i,k)
a . It denotes the probability that an evolution reaches cell

Ci proceed to reach Ck. Adding together all the cell probabilities of terminal cells whose

sets of past active nodes contain node j, the exact activation probability of node j can be

computed.

kC
p
kA

c
kA

kP

Fig. 3.1 Cell of evolution graph

Algorithm 3 creates the evolution graph of an Independent Cascade model and

computes the influence propagation of a network. The symbols used in Algorithm 3 are

described in Table 3.1. The algorithm defines as initial cell C1 = (∅, φ0, 1) because initially

no node has been previously explored (Ap1 = ∅), the set of currently active nodes is the seed

set (Ac1 = φ0) and the probability of reaching this condition during a run is 1 (P1 = 1). C1

is also added to the set new containing cells that need to be explored.

Then, while the set new is not empty a cell i ∈ new is selected and its child cells are

computed as follows. From a cell Ci the innovation can propagate to any subset of

D = N out
Ac

i
− (Api ∪ Aci),

which contains the out-neighbors of Aci that have not yet adopted the innovation.

Two cells are called equivalent if both their sets of past active nodes and sets of current
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Algorithm 3 Path Method
Input: An independent cascade network GIC = (V,E, p), seed set φ0 ⊂ V ;
Output: Activation probability πpj for all nodes j ∈ V ;

1: /∗ construct the evolution graph ∗/
2: Let Ap1 = ∅, Ac1 = φ0, P1 = 1;
3: Add cell C1 = (Ap1, A

c
1, P1) to the graph;

4: new = {C1}, k = 1;
5: while new 6= ∅ do
6: Pick Ci = (Api , A

c
i , Pi) ∈ new;

7: Let new = new \ {Ci};
8: D = N out

Ac
i
− (Api ∪ Aci);

9: for all D′ ⊆ D do
10: k = k + 1;
11: Dk = D′, Ack = Dk;
12: Apk = Api ∪ Aci ;

13:

P
(i,k)
a =

∏
q∈Ac

i
r∈D−Ac

k

(1− p(q, r))·

(1−
∏

q′∈Ac
i
∩Nin

r′
r′∈Ac

k

(1− p(q′, r′))) ;

14: if ∃Ck′ , s.t. Ack′ = Ack and Apk′ = Apk then
15: P

(i,k′)
a = P

(i,k)
a ;

16: Add an arc Ci → Ck′ with probability P (i,k′)
a ;

17: Pk′ = Pk′ + Pi · P (i,k)
a ;

18: k = k − 1;
19: else
20: Pk = Pi · P (i,k)

a ;
21: Add cell Ck = (Apk, A

c
k, Pk) to the graph;

22: Add an arc Ci → Ck with probability P (i,k)
a ;

23: if Ack 6= ∅ then
24: new = new ∪ {Ck};
25: end if
26: end if
27: end for
28: end while
29: n = k;
30: /∗ activation probability computation ∗/
31: for j ∈ V do
32: πpj = 0;
33: for k = 1 to n do
34: if Ack = ∅ and j ∈ Apk then
35: πpj = πpj + Pk;
36: end if
37: end for
38: end for
39: return πpj for j ∈ V .
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TABLE 3.1 Symbols used in Algorithm 3.
Symbol Description
Ck cell k
Apk past active nodes of cell k
Ack current active nodes of cell k
Pk cell probability of cell k
P

(i,k)
a arc probability of the arc Ci → Ck
k label of cell
i label of no-terminal cell
n number of cells in the evolution graph
new set of cells to be explored
D inactive out-neighbors of the current active nodes of a cell
D′ one subset of set D
N out
Ac

k
union of all out-neighbors of nodes in Ack

active nodes are the same. For any subset Dk ⊆ D, a new cell Ck = (Apk, A
c
k, Pk) is created

when it is not equivalent with any other existing cell, with Apk = Api ∪Aci and Ack = Dk. The

probability of reaching cell Ck from Ci is

P (i,k)
a =

∏
q∈Ac

i
r∈D−Ac

k

(1− p(q, r)) · (1−
∏

q′∈Ac
i
∩Nin

r′
r′∈Ac

k

(1− p(q′, r′))).

Hence we have

Pk = Pi · P (i,k)
a .

If the new cell Ck has active nodes (Ack 6= ∅) then Ck is added to the set new, else it is a

terminal cell and will not be explored further. If the cell Ck is equivalent to another cell C ′k

already in the graph, we just add an arc from Ci to Ck′ with P (i,k′)
a = P

(i,k)
a and increase the

value of Pk′ by the amount Pi · P (i,k′)
a . Finally after cell Ci has been explored it is removed

from set new.

After constructing the evolution graph, we can search for the terminal cells whose sets

of past active node contain node j ∈ V . Adding all the cell probabilities of these terminal

cells, then πpj can be computed.

For example, the evolution graph for the model in Figure 3.2 with seed set φ0 = {5} is

shown in Figure 3.3. We briefly explain how to construct the evolution graph of this model.

In C1, only seed node 5 is activated, thus Ap1 = ∅ and Ac1 = {5} with P1 = 1. Since
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the out-neighbor set of node 5 only contains node 3, only C2 and C3 can be obtained from

C1: C2 corresponds to an evolution that does not activate node 3, while C3 corresponds to an

evolution that activates node 3. C2 is a terminal cell sinceAc2 = ∅. Moreover, P (1,3)
a = p5,3 =

0.4 and P1 = 1, thus P3 = P1 ∗ P (1,3)
a = 0.4. Four cells can be reached from C3 according

to which subset of out-neighbors of node 3 will be activated. Based on this procedure, the

evolution graph corresponding to the network can be obtained. The value of each terminal

cell Ck represents the probability of observing a run whose set of finally active nodes is Apk.

For example, C13 corresponds to the evolution where nodes {1, 2, 3, 5} are influenced by the

order 5→ 3→ {1, 2} or 5→ 3→ 1→ 2, and no other node is activated. Thus the terminal

cells which contain node j as a past active node describe all final evolutions in which node

j can be activated. The sum of the cell probabilities of these terminal cells is the activation

probability of node j. For the network in Figure 3.2, the activation probabilities obtained

from the evolution graph in Figure 3.3 are shown in the second row of Table 3.2 on page 37.

1

3

4

5

2

0.4

0.1
0.2

0.3

0.4

0.2

Fig. 3.2 An Independent Cascade model with 5 nodes

As for the time complexity of the Path Method, we have Proposition 1. Due to its

exponential complexity, this method is only viable for small networks.

Proposition 1. The time complexity of the Path Method is O(6N).

Proof. There are three possible states for each node j ∈ V in a cell of the evolution graph:

belonging to the set of past active nodes, belonging to the set of current active nodes or in

neither of these two sets. Thus the maximal number of cells in an evolution graph is 3N .
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Fig. 3.3 Evolution graph of the network in Figure 3.2

The number of subsets of D is 2|D|. Since D ⊂ V it results that the number of subsets of D

is bounded by 2N . Thus the time complexity of the part that constructs the evolution graph

is O(6N). We need one pass of j ∈ V for each cell to obtain πpj . Thus the time complexity

of the part that computes the influence propagation is O(N · 3N). The total complexity of

Path Method is O(6N).

3.4.2 Approximate Influence Propagation Computation by
Fixed-Point Approaches

Aggarwal et al. [43] proposed the SteadyStateSpread algorithm to evaluate the influence

propagation of a network. This iterative method computes an approximated value of the

node activation probability by solving a non-linear system of equations. Though Aggarwal

et al. [43] also gave an iterative algorithm, as mentioned in a subsequent work [44], they

did not prove that their iterative method can converge to only one final result, and ignored
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the inaccuracy caused by some specific sub-structures of networks. In order to improve the

accuracy of the classic SteadyStateSpread algorithm, we propose the SSS-Noself approach

which takes consideration of some specific sub-structures. Moreover, an efficient approach,

also based on fixed-point computation, is proposed to compute the probability that a node

is activated though a path of minimal length from the seed set. This algorithm, called

SSS-Bounded-Path algorithm, can provide a lower-bound for the influence propagation

computation.

3.4.2.1 Basic Fixed-Point Approach

In this part, we discuss the SteadyStateSpread algorithm based on fixed-point theory.

Definition 6 ([67]). Given a real function of a real variable f : R→ R, a real number x is

a fixed point of f if it satisfies

x = f(x)

Given a point x0 in the domain of f , the fixed-point iteration is

x(t+ 1) = f(x(t)), t = 0, 1, 2, . . .

which generates the sequence x(0), x(1), x(2), . . . If the sequence converges to a point x

and f is continuous, then one can prove that x is a fixed point of f .

We define the approximate value of activation probability computed by SteadyState-

Spread algorithm for node j ∈ V as πsj . To apply this theory for iterative influence

propagation computation, it is necessary to construct a function for computing πsj . In

the Independent Cascade model, node j can be activated by any of its in-neighbors.

Equivalently, in order for node j to not be activated, it must not be activated by any of

its in-neighbors. Assuming that the activation of the in-neighbors are independent events

and that they do not depend on the activation of node j, the probability of that can be written
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as
∏

i∈N in
j

(1− πsi · pi,j). Thus the computation function can be constructed as following:

πsj (t+ 1) =


1 if j ∈ φ0

1−
∏
i∈N in

j

(1− πsi (t) · pi,j) if j 6∈ φ0
(3-1)

The procedure of the SteadyStateSpread approach [43] is described in Algorithm 4.

Algorithm 4 SteadyStateSpread
Input: An independent cascade network GIC = (V,E, p), seed set φ0 ⊂ V , stopping

criterion ε∗ > 0;
Output: Activation probability πsj for all nodes j ∈ V ;

1: t = 0;
2: ε = ε∗ + 1;
3: πsj (0) = 1, ∀j ∈ φ0;
4: πsj (0) = 0, ∀j ∈ V \ φ0;
5: while ε ≥ ε∗ do
6: for j ∈ V do
7: if j ∈ φ0 then
8: πsj (t+ 1) = 1;
9: else

10: πsj (t+ 1) = 1−
∏

i∈N in
j

(1− pi,j · πsi (t));
11: end if
12: end for
13: ε =

∑
j /∈φ0 |π

s
j (t+ 1)− πsj (t)|;

14: t = t+ 1;
15: end while
16: return πsj = πsj (t− 1).

To prove that Equation 3-1 converges, we recall a classic monotone convergence

theorem.

Theorem 3 ([69]). If a sequence of real numbers is increasing and bounded above, then its

supremum is the limit.

From Theorem 3 next result follows.

Proposition 2. The sequence {πsj (t)} generated by Equation 3-1 converges to a unique

fixed-point.
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Proof. Equation 3-1 generates a sequence for each node j, πsj (0), πsj (1), πsj (2), ... in which,

πsj (0) =

{
1 if j ∈ φ0

0 if j 6∈ φ0

(3-2)

Such a sequence is non decreasing since there are more and more in-neighbors of node j that

can propagate the innovation as the iteration proceeds. Also this sequence is upper bounded

by 1. As the iteration unfolds, the sequence converges to the supremum.

Hence according to the monotone convergence theorem [69], the sequence {πsj (s)}

converges to the supremum, i.e., a fixed-point of Equation 3-1.

In practice, the convergence to the fixed-point is asymptotic. However, we stop the

iteration when the absolute difference between the computing results of adjacent iterations

drops below a given stopping criterion ε∗ > 0, i.e.,
∑

j /∈φ0 |π
s
j (t+ 1)− πsj (t)| ≤ ε∗.

As an example, applying SteadyStateSpread to the network in Figure 3.2, we can

compute the influence propagation shown in the third row of Table 3.2 on page 37.

3.4.2.2 Inaccuracy of the Basic Fixed-Point Approach

SteadyStateSpread is generally not correct because Equation 3-1 holds only assuming

that the activation events of node j’s in-neighbors are independent events and that these

events do not depend on the activation of node j itself. Thus it can not provide exact

solution for every structure of networks, especially graphs containing bidirectional edges

or dependent sub-structures.

Yang et al. [44] also discussed the inaccuracy problem caused by the bidirectional

edges. They gave the Example 4 to explain the scenario called structural defect, which

corresponds to the situation: nodes i, j /∈ φ0 and every path from φ0 to j has to pass i,

nevertheless according to a certain computation algorithm, πi depends on πj .

Example 4. Consider the bidirectional network in Figure 3.4, and assume the seed set

φ0 = {1}. According to Equation 3-1, the activation probability of node 4 depends on the

activation probabilities of node 2, node 3 and node 5. However, node 5 can be activated only
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2

1 4

3

5

Fig. 3.4 An bidirectional network example

after node 4 having been activated. Node 4 is independent from node 5 and this contradicts

with Equation 3-1.

They defined the network structure as shown in Figure 3.4 as structure defect.

Definition 7 ([44]). Given a networkG = (V,E), a seed set φ0 and an influence propagation

computation algorithm A, if i, j /∈ φ0 and every path from φ0 to j has to pass i, and

according to algorithmA, the value of πi depends on πj , then we say that (i, j)is a structural

defect of algorithm A on G.

Besides the inaccuracy caused by bidirectional edges discussed above, we illuminate

that the dependent sub-structures can lead to the inaccuracy. Comparing the results for the

network in Figure 3.2 computed by Path Method and SteadyStateSpread shown in Table 3.2,

we find πs2 > πp2 and πs4 > πp4 (shown in bold in Table 3.2 on page 37). As mentioned by

Yang et al. [44], one reason is: in Equation 3-1, πs2 depends on πs4, i.e., node 4 increases πs2.

However, node 4 can be activated only after node 2’s activation. Another reason is that the

dependency relation between node 2’s in-neighbors (node 1 and node 3) increases the final

result of node 2. Ignoring the influence of node 4, the equation to compute the activation

probability of node 2 by SteadyStateSpread is

πs2 = 1− (1− πs3p3,2) · (1− πs1p1,2)
= πs3p3,2 + πs1p1,2 − πs1πs3p3,2p1,2

(3-3)

Nevertheless, the exact equation to compute the activation probability of node 2 should

be
π2 = π3 · (p3,2 + (1− p3,2) · p3,1p1,2)

= π3p3,2 + π1p1,2 − π3p3,2p1,2p3,1
(3-4)
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Moreover, circuits among more than two nodes also contribute to the error in the

solution computed by SteadyStateSpread.

Overall, circuits and dependency relations among nodes lead to computing influence

propagation by SteadyStateSpread that are equal to or greater than the exact solution.

3.4.2.3 Improving the Fixed-Point Approach

To limit the bad impact of bidirectional edges, Yang et al. [44] incorporated the

Maximum Influence Path (MIP) heuristic into SteadyStateSpread to gain the SSSbyStep

algorithm. The main idea is to set an iteration threshold βj for node j, i.e., for each node j,

πj is updated only in the first βj iterations. They denoted the hops of the maximum influence

path from seed set φ0 to node j as stepj , then chose stepj + 1 as the iteration threshold of

node j. We represent the activation probability of node j ∈ V computed by SSSbyStep

algorithm as πs−sj and the SSSbyStep algorithm is presented in Algorithm 5.

Algorithm 5 SSSbyStep
Input: An independent cascade network GIC = (V,E, p), seed set φ0 ⊂ V ;
Output: Activation probability πs−sj for all nodes j ∈ V ;

1: t = 0;
2: πs−sj (0) = 1, ∀j ∈ φ0;
3: πs−sj (0) = 0, ∀j ∈ V \ φ0;
4: Compute stepj for j ∈ V \ φ0;
5: stop = 0;
6: while stop = 0 do
7: stop = 1;
8: t = t+ 1;
9: for j ∈ V do

10: if j /∈ φ0 ∩ t ≤ stepj + 1 then
11: πs−sj (t+ 1) = 1−

∏
i∈N in

j
(1− pi,j · πs−si (t));

12: end if
13: end for
14: end while
15: return πs−sj = πj(t− 1).

Yang et al. [44] pointed that their SSSbyStep algorithm limits the impact of bidirectional

edges as well as includes important influence along maximum influence path. However,

intuitively, their algorithm can not guarantee a good result for all network structure. Besides,

it is highly time-consuming to compute the maximum influence path.
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For partly solving the inaccuracy caused by circuits, we propose in the following an

improved algorithm to assure that the iteration process to compute activation probability of

node j is not influenced by itself. The new algorithm, that we call SSS-Noself, updates the

activation probability of a node by Equation 3-1 without the influence of the node itself. We

define the value of activation probability computed by SSS-Noself for node j ∈ V as πnj .

Given an Independent Cascade model GIC = (V,E, p), a new network G[q] = (V,E[q],

p[q]) is obtained fromG by removing the input and output arcs of node q. The total number of

these new nets isN ′, whereN ′ = N−|φ0|, |φ0| is the number of nodes in a seed set. For node

j ∈ V one can proceed to compute at each step s the activation probability of j assuming

that q has not been activated π[q]
j (s). Finally, when updating the activation probability of

node j by Equation 3-1, the used value of every j’s in-neighbor i is π[j]
i obtained by previous

iterations. Let us define the activation probability vector of network G[q] ~p[q] as:

p
[q]
i,j =

{
0 if q = i or q = j

pi,j otherwise
(3-5)

Then the computation function for π[q]
j (s+ 1) is constructed as:

π
[q]
j (s+ 1) =


1 if j ∈ φ0

1−
∏
i∈N in

j

(1− π[q]
i (s) · p[q]

i,j) if j 6∈ φ0
(3-6)

Algorithm 6 is a modified version of SteadyStateSpread where the activation probabil-

ity of node j is computed disregarding the influence of itself. The computation result for the

network in Figure 3.2 by Algorithm 6 is shown in the fourth row of Table 3.2 on page 37.

The results of node 2 and node 4 are in bold in Table 3.2 to highlight that they are different

from their results by Path Method and SteadyStateSpread. It is obvious that the result of

SSS-Noself is closer to the result of Path Method than SteadyStateSpread, i.e., SSS-Noself is

more precise than SteadyStateSpread. In fact, SSS-Noself always gives a result between the

result of Path Method and the result of SteadyStateSpread.
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Algorithm 6 SSS-Noself
Input: An independent cascade network GIC = (V,E, p), seed set φ0 ⊂ V , stopping

criterion ε∗ > 0;
Output: Activation probability πnj for all nodes j ∈ V ;

1: t = 0;
2: ε = ε∗ + 1;
3: for q ∈ V \ φ0 do
4: π

[q]
j (0) = 1, ∀j ∈ φ0;

5: π
[q]
j (0) = 0, ∀j ∈ V \ φ0;

6: end for
7: πj(0) = 1, ∀j ∈ φ0;
8: πj(0) = 0, ∀j ∈ V \ φ0;
9: while ε ≥ ε∗ do

10: for q ∈ V \ φ0 do
11: for j ∈ V do
12: if j ∈ φ0 then
13: π

[q]
j (t+ 1) = 1;

14: πj(t+ 1) = 1;
15: else
16: π

[q]
j (t+ 1) = 1−

∏
i∈N in

j
(1− p[q]

i,j · π
[q]
i (t));

17: πj(t+ 1) = 1−
∏

i∈N in
j

(1− pi,j · π[j]
i (t));

18: end if
19: end for
20: end for
21: ε1 =

∑
j /∈φ0 |πj(t+ 1)− πj(t)|;

22: ε2 =
∑

j /∈φ0 |π
[q]
j (t+ 1)− π[q]

j (t)| (q ∈ V \ φ0);
23: ε = max(ε1, ε2);
24: t = t+ 1;
25: end while
26: return πnj = πj(t− 1).

Different from SteadyStateSpread, for all nodes j ∈ V , SSS-Noself not only computes

the activation probability of node j at step s, but also the activation probability of node j at

step s assuming that any node q ∈ V \ φ0 remains inactive. Thus the time complexity of

SSS-Noself is O(N2), while that of SteadyStateSpread is O(N).

3.4.2.4 Fixed-Point Computation of Influence Propagation Along
Paths of Bounded Length

In this part, we propose an efficient algorithm, called SSS-Bounded-Path, to compute

influence propagation along paths of bounded length by applying Equation 3-1. It represents
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a family of efficient approaches for influence propagation computation that is parameterized

by the value of the bound b0. The value of activation probability computed by SSS-Bounded-

Path with bound b0 ∈ N for node j ∈ V is denoted as πbp(b0)
j .

Let us first define the length of the shortest path from the seed set to a node j ∈ V \

φ0 as spj and assume each node j ∈ V \ φ0 is reachable from the seed set. Kimura et

al. [70] proposed SPM and SP1M, where node j can be activated only at step b = spj

in SPM, or only at step b = spj as well as step b = spj + 1 in SP1M. Nevertheless,

they did not discuss how to compute these probabilities without previously determining the

corresponding paths, a procedure that may be computationally expensive. Chen et al. [39]

and Yang et al. [44] computed the maximum influence paths by the Dijkstra algorithm, which

has high complexity.

We propose an approach based on fixed-point computation that does not require

preliminarily computing the shortest path. In our procedure we compute spj as step t when

πbpj first changes from zero to non-zero. Besides, we set the path bound to compute πbpj

involving not only the shortest paths but also the paths whose length is no greater than

spj + b0, where b0 is a constant integer called bound. Obviously, we have SPM when b0 = 0,

and SP1M when b0 = 1. Besides, when b0 is large enough, this algorithm is equivalent to

SteadyStateSpread.

The procedure of SSS-Bounded-Path is shown in Algorithm 7. We denote the upper

bound of iteration time for node j as bj and it is initialized as infinity. Lines (11-12) find the

step when πbpj firstly changes from zero to non-zero and record this step t+1 as spj . Then bj

is set as t+1+b0. The computation result for the network in Figure 3.2 by SSS-Bounded-Path

with b0 = {0, 1, 2, 3} is shown in the fifth row of Table 3.2 on page 37.

The SSS-Bounded-Path algorithm generalizes SPM [70] and SP1M [70], exploiting the

efficient fixed-point computation of SteadyStateSpread. The result of SSS-Bounded-Path

(b0 = 0) can be regarded as a lower-bound for the exact influence propagation. Same with

SteadyStateSpread, the time complexity of SSS-Bounded-Path is O(N). However, in most

cases SSS-Bounded-Path (b0 = 0) stops the iteration before it converges, thus SSS-Bounded-
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Algorithm 7 SSS-Bounded-Path
Input: An independent cascade network GIC = (V,E, p), seed set φ0 ⊂ V , path bound

b0 ∈ N, stopping criterion ε∗ > 0;
Output: Activation probability πbpj for all nodes j ∈ V ;

1: Initialize πbpj (0) = 1, j ∈ φ0; πbpj (0) = 0, j ∈ V \ φ0; t = 0; bj = inf , j ∈ V \ φ0;
2: stop = 0;
3: ε = ε∗ + 1;
4: while ε ≥ ε∗ do
5: while stop = 0 do
6: stop = 1;
7: for j ∈ V do
8: πbpj (t+ 1) = πbpj (t);
9: if j /∈ φ0 and t ≤ bj then

10: πbpj (t+ 1) = 1−
∏

i∈N in
j

(1− pi,j · πbpi (t));
11: stop = 0;
12: end if
13: if πbpj (t+ 1) 6= 0 and πbpj (t) = 0 then
14: bj = t+ 1 + b0;
15: end if
16: end for
17: t = t+ 1;
18: end while
19: ε =

∑
j /∈φ0 |π

bp
j (t+ 1)− πbpj (t)|;

20: end while
21: return πbpj = πbpj (t− 1).

Path (b0 = 0) is usually less time-consuming than SteadyStateSpread.

3.4.3 Comparison of Different Approaches

We show the influence propagation computation results from different approaches for

the network in Figure 3.2 in Table 3.2. As discussed above, Path Method provides the exact

value, while SteadyStateSpread gives a larger value. SSS-Noself gives a more precise result

than SteadyStateSpread, while SSS-Bounded-Path (b0 = 0) provides a lower-bound. In fact,

the influence propagation value computed by these algorithms must satisfy the inequality,

shown in Proposition 3.

Proposition 3. Given an Independent Cascade model GIC = (V,E, p) and a set of initial

nodes φ0 ⊂ V , the activation probability of node j computed by Path Method (πpj ),

SteadyStateSpread (πsj ), SSS-Bounded-Path (b0 = 0) (πbp(0)
j ) and SSS-Noself (πnj ) satisfy:
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TABLE 3.2 Comparison of activation probability value of each node for the network in Figure 3.2

Node 1 2 3 4 5

Path Method 0.08 0.0616 0.4 0.0123 1
SteadyStateSpread 0.08 0.0678 0.4 0.0132 1

SSS-Noself 0.08 0.0630 0.4 0.0126 1
SSS-Bounded-Path (b0 = 0) 0.08 0.0400 0.4 0.0080 1
SSS-Bounded-Path (b0 = 1) 0.08 0.0630 0.4 0.0126 1
SSS-Bounded-Path (b0 = 2) 0.08 0.0660 0.4 0.0132 1
SSS-Bounded-Path (b0 = 3) 0.08 0.0678 0.4 0.0132 1

π
bp(0)
j ≤ πpj ≤ πnj ≤ πsj (3-7)

Proof. First, we prove that πnj ≤ πsj . During the computing process of πsj by Equation 3-1,

the activation probabilities of N in
j may include the influence of node j. This extra influence

erroneously increases the final value of mode j. SSS-Noself algorithm disregards this extra

influence during the iteration, hence πnj ≤ πsj .

Second, we prove that πpj ≤ πnj . Although SSS-Noself avoids the influence of j when

computing πnj , it has not eliminated the increase caused by dependency relation and other

redundant influence in circuits while applying Equation 3-1. Hence for some special network

structures, πnj is still bigger than πpj .

Finally, we prove that πbp(0)
j ≤ πpj . SSS-Bounded-Path (b0 = 0) only consider the

influence to node j through the shortest path, i.e., it disregards the influence through the

paths from φ0 to node j whose lengths are greater than spj . However, this is just a fraction

of the influence on node j, hence we have πbp(0)
j ≤ πpj .

Considering SteadyStateSpread and SSS-Bounded-Path, we also have the following

remarks:

Remark 1. Given an Independent Cascade model GIC = (V,E, p) and a set of initial nodes
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φ0 ⊂ V , for ∀j ∈ V , we have πbp(b)j ≤ π
bp(b′)
j when 0 ≤ b < b′.

Obviously, πbp(b
′)

j is computed considering more paths than πbp(b)j , i.e., the paths whose

lengths are between b and b′. Hence, we have πbp(b)j ≤ π
bp(b′)
j when 0 ≤ b < b′.

Remark 2. Given an Independent Cascade model GIC = (V,E, p) and a set of initial nodes

φ0 ⊂ V , for ∀j ∈ V , we have lim
b→∞

π
bp(b)
j = πsj when the same stopping criterion ε∗ is used

for both SteadyStateSpread and SSS-Bounded-Path.

SSS-Bounded-Path limits the computation iteration to b steps. When b goes to infinity,

only the satisfaction of stopping criterion halts the computation. In that case, SSS-Bounded-

Path is equivalent to SteadyStateSpread, hence we have lim
b→∞

π
bp(b)
j = πsj .

3.5 Experimental Evaluation

In this part, we compare the influence propagation with fixed seed set computed by

Monte Carlo simulation, Path Method, SteadyStateSpread, SSS-Noself and SSS-Bounded-

Path.

All approaches are implemented in MATLAB. All experiments are run on a PC with

2.40GHz Intel Core i5 Processor and 8GB memory.

3.5.1 Data Set

We consider two datasets for comparing the different algorithms we have discussed for

influence propagation computation.

First, we construct a series of bidirectional grid graphs with a parameter m such that

the m−th grid graph contains m2 nodes. Figure 3.5 shows the grid graphs for m ∈ {2, 3, 4}.

For each edge (i, j), we uniformly at random select pi,j from the set {0.1, 0.2, 0.5}. We

represent this dataset as Series-Grid.

The second dataset is a real-world network — airportsinUS [71] which is a benchmark

38



Chapter 3 Influence Propagation Computation

1 4

2 3

1 4

2 3

9

8

5 6 7

1 4

2 3

9

8

5 6 7

16

15

10 11 12

14

13

2m 3m 4m

...

Fig. 3.5 Series of grid graphs

network widely used in social network analysis. It is a weighted network of the 500 airports

with the largest amount of traffic from publicly available data in the United States. Nodes

represent US airports and edges represent air travel connections among them. There are

5960 edges in total. Based on the weights wi,j of edges, we obtain pi,j by wi,j \
∑

iwi,j .

3.5.2 Experimental Setup

We compare Monte Carlo simulation, Path Method, SteadyStateSpread, SSS-Noself

and SSS-Bounded-Path for influence propagation computation in terms of effectiveness and

efficiency. For each network dataset, the seed set is randomly chosen with a certain size.

The tested algorithms are briefly described as follows:

Monte Carlo simulation: the average of 10,000 simulation runs. Kempe et al. [11]

showed that the quality of approximation after 10,000 iterations is comparable to that after

300,000 or more iterations. The simulation process is described as: assume node i attempts

to activate node j at step t, then generate a random number uniformly distributed in the

interval [0, 1]. The innovation successfully propagates from node i to node j when the

random number does not exceed pi,j .

• Path Method: the exact computation method proposed in Section 3.4.1.
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• SteadyStateSpread: the heuristic [43] described in Section 3.4.2.

• SSS-Noself : the improved algorithm proposed in Section 3.4.2.

• SSS-Bounded-Path: the algorithm proposed in Section 3.4.2.

3.5.3 Experimental Results

First, we present the computation results of the influence propagation on Series-

Grid using Monte Carlo simulation, Path Method, SteadyStateSpread, SSS-Noself and

SSS-Bounded-Path. We randomly select one node as seed node for the grid graphs with

m = {2, 3} and two nodes for the grid graphs with m = {4, 5, 6, 7}. We set ε∗ = 10−8 for

the iterations of SteadyStateSpread, SSS-Noself and SSS-Bounded-Path. In order to show

the convergence of SSS-Bounded-Path, we set b0 = {0, 1, 2, 3, 4, 20, 40, 65, 85, 135}. The

influence propagation, i.e., the sum of activation probabilities of nodes, on Series-Grid with

m = {2, 3, 4, 5, 6, 7} using Monte Carlo simulation, Path Method, SteadyStateSpread and

SSS-Noself is shown in Table 3.3. The value for m = {4, 5, 6, 7} by the Path Method is not

given since the running time is more than 8 hours, i.e., out of time (o.o.t). The influence

propagation on Series-Grid with m = {2, 3, 4, 5, 6, 7} using SSS-Bounded-Path is shown in

Table 3.4. As a particular case, we list activation probability of each node for the grid graph

with m = 3 in Table 3.5 and Table 3.6 to show the difference of every node by these five

methods.

We can observe that while SSS-Bounded-Path (b0 = 0) provides a lower-bound, the

result by SSS-Noself is always between the exact result by Path Method and the result

by SteadyStateSpread for both activation probability of each node and sum of activation

probabilities of all node, i.e., the influence propagation of the network. It verifies the

relationship among these four methods in Proposition 3. We can also figure out that within

certain paths, the results computed by SSS-Bounded-Path converges to the results computed

by SteadyStateSpread. This is proved in Remark 2. Moreover, it shows that our SSS-Noself

algorithm provides more precise results than SteadyStateSpread.

Second, we compare the running time of these five methods for the influence
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TABLE 3.3 Influence propagation computed by Monte Carlo simulation, Path Method,
SteadyStateSpread, and SSS-Noself on Series-Grid with m = {2, 3, 4, 5, 6, 7}

Method m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Monte Carlo simulation 1.4343 1.9055 3.2171 4.5072 4.5527 5.1308
Path Method 1.4428 1.9098 o.o.t o.o.t o.o.t o.o.t

SteadyStateSpread 1.4467 2.0936 5.2166 5.8790 7.0053 13.1089
SSS-Noself 1.4428 1.9502 4.0661 5.0710 5.7296 9.1891

TABLE 3.4 Influence propagation computed by SSS-Bounded-Path with path bound b0 =
{0, 1, 2, 3, 4, 20, 40, 65, 85, 135} on Series-Grid with m = {2, 3, 4, 5, 6, 7}

Path bound m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

b0 = 0 1.4396 1.8769 2.8447 3.9560 4.0748 4.5891
b0 = 1 1.4396 1.8769 3.0590 4.1876 4.2843 4.8252
b0 = 2 1.4466 2.0078 3.3066 4.7612 4.8362 5.6117
b0 = 3 1.4466 2.0172 3.5094 4.9387 4.9569 5.7510
b0 = 4 1.4467 2.0566 3.6957 5.2234 5.3128 6.2450
b0 = 20 1.4467 2.0936 5.0722 5.8717 6.8181 10.1654
b0 = 40 1.4467 2.0936 5.2119 5.8790 6.9949 12.5893
b0 = 65 1.4467 2.0936 5.2166 5.8790 7.0050 13.0701
b0 = 85 1.4467 2.0936 5.2166 5.8790 7.0053 13.1045
b0 = 135 1.4467 2.0936 5.2166 5.8790 7.0053 13.1089

TABLE 3.5 Influence propagation computed by Monte Carlo simulation, Path Method,
SteadyStateSpread, and SSS-Noself on Series-Grid with m = 3

Node 1 2 3 4 5 6 7 8 9
Monte Carlo simulation 1 0.5076 0.0962 0.1099 0.1048 0.0302 0.0151 0.0168 0.0249

Path Method 1 0.5032 0.1009 0.1136 0.1049 0.0302 0.0161 0.0169 0.0238
SteadyStateSpread 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320

SSS-Noself 1 0.5049 0.1119 0.1182 0.1093 0.0345 0.0206 0.0227 0.0280

propagation computation, shown in Table 3.7 and Table 3.8. We can observe that Path

Method takes exponential time to give exact results as the size of network increases.

SSS-Noself provides better results than SteadyStateSpread with an acceptable increase of

computation time for the considered small networks. As b0 increases, SSS-Bounded-Path

involves more paths of the network, thus it cost a little more time to compute.
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TABLE 3.6 Activation probability of each node computed by SSS-Bounded-Path with b0 = {0, 1,
2, 3, 4, 20, 40, 65, 85, 135} on Series-Grid with m = 3

Node 1 2 3 4 5 6 7 8 9
b0 = 0 1 0.5000 0.0975 0.1000 0.1000 0.0296 0.0161 0.0137 0.0200
b0 = 1 1 0.5000 0.0975 0.1000 0.1000 0.0296 0.0161 0.0137 0.0200
b0 = 2 1 0.5296 0.1189 0.1264 0.1191 0.0432 0.0236 0.0203 0.0266
b0 = 3 1 0.5296 0.1213 0.1315 0.1191 0.0434 0.0238 0.0208 0.0276
b0 = 4 1 0.5354 0.1279 0.1382 0.1264 0.0491 0.0268 0.0233 0.0296
b0 = 20 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 40 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 65 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 85 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 135 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320

TABLE 3.7 Running time for influence propagation computation by Monte Carlo simulation, Path
Method, SteadyStateSpread, and SSS-Noself on Series-Grid with m = {2, 3, 4, 5, 6, 7}

Running time (s) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Monte Carlo simulation 0.48 1.25 0.95 1.40 1.82 1.58
Path Method 0.11 0.31 o.o.t o.o.t o.o.t o.o.t

SteadyStateSpread 0.01 0.02 0.10 0.09 0.34 0.55
SSS-Noself 0.01 0.06 0.66 1.42 4.80 11.41

TABLE 3.8 Running time for influence propagation computation by SSS-Bounded-Path with b0 =
{0, 1, 2, 3, 4, 20, 40, 65, 85, 135} on Series-Grid with m = {2, 3, 4, 5, 6, 7}

Running time (s) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
b0 = 0 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 1 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 2 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 3 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 4 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 20 0.01 0.01 0.01 0.01 0.01 0.02
b0 = 40 0.01 0.01 0.01 0.01 0.02 0.03
b0 = 65 0.01 0.01 0.01 0.02 0.03 0.02
b0 = 85 0.01 0.01 0.01 0.03 0.03 0.04
b0 = 135 0.01 0.02 0.02 0.03 0.05 0.07

Another experiment of influence propagation computation is performed on airportsi-

nUS network data. We evaluate the influence propagation by Monte Carlo simulation,
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SteadyStateSpread, SSS-Noself and SSS-Bounded-Path given different sizes of seed sets,

shown in Figure 3.6. We have not given the value computed by Path Method since it

can not be obtained within limited time for this size of network. The seven seed sets are

randomly generate with size |φ0| = {1, 5, 10, 15, 20, 25, 30}. The result of Monte Carlo

simulation is obtained by the average of 10,000 simulation runs proceeded as described in

the first experiment. The stopping criterion is fixed as ε∗ = 0.01 for SteadyStateSpread, SSS-

Noself and SSS-Bounded-Path. The path bound b0 is chosen from {0, 1, 5, 10, 15, 20, 25, 30}

for SSS-Bounded-Path. We can observe that the results computed by these approaches

are consistent with Equation 3-7. According to the proved relationship in Proposition 3,

although we have not been able to compute the exact value by Path Method because of

the net size, we can figure out that SSS-Noself is more precise than SteadyStateSpread.

Moreover, we can see that the results of SSS-Bounded-Path increase as the path bound b0’s

increase. As a lower-bound, the values computed by SSS-Bounded-Path (b0 = 0) are the

smallest among all approaches under the same seed set size.
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Fig. 3.6 Influence propagation computed by Monte Carlo simulation, SteadyStateSpread, SSS-Noself,
SSS-Bounded-Path (b0 = 0) and SSS-Bounded-Path (b0 = 5) on airportsinUS network data

However, as shown in Table 5.3, the running time of SSS-Noself is much longer than

SteadyStateSpread when the size of the network is large since SSS-Noself needs one more
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pass of all nodes in a network than SteadyStateSpread. For this reason we think that it

may be necessary to further improve the efficiency of SSS-Noself. Compared with the

running time of SSS-Bounded-Path in Table 3.10, SSS-Bounded-Path is obviously faster than

SteadyStateSpread when b0 = {0, 1, 5, 10, 15, 20}. As b0 increases, the running time of these

two approaches will be similar.

TABLE 3.9 Running time for influence propagation computation by Monte Carlo simulation,
SteadyStateSpread and SSS-Noself on airportsinUS network data given different sizes of seed sets |φ0|

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30

Monte Carlo simulation 3.86 6.23 36.39 57.70 68.81 98.59 110.99
SteadyStateSpread 5.05 3.20 1.35 1.18 1.10 0.94 0.82

SSS-Noself 1143.62 892.77 719.44 467.74 512.77 383.86 350.49

TABLE 3.10 Running time for influence propagation computation by SSS-Bounded-Path on airportsinUS
network data given different sizes of seed sets |φ0| with path bound b0 = {0, 1, 5, 10, 15, 20, 25, 30}

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30

b0 = 0 0.12 0.12 0.11 0.14 0.12 0.11 0.12
b0 = 1 0.16 0.22 0.16 0.18 0.16 0.15 0.16
b0 = 5 0.26 0.28 0.28 0.30 0.27 0.27 0.28
b0 = 10 0.36 0.38 0.38 0.40 0.38 0.37 0.37
b0 = 15 0.61 0.57 0.56 0.58 0.56 0.56 0.57
b0 = 20 0.57 0.64 0.63 0.65 0.64 0.63 0.62
b0 = 25 0.87 0.87 0.86 0.88 0.86 0.86 0.86
b0 = 30 0.90 0.90 0.91 0.91 0.89 0.88 0.89

Figure 3.7 shows the error between SSS-Bounded-Path and SSS-Noself which is

measured by |
∑

j∈V\φ0 π
bp
j −

∑
j∈V\φ0 π

n
j | \

∑
j∈V\φ0 π

n
j . We do not present the curve

for |φ0| = 25 due to the limit of space, but point out that it is similar to the curves for

|φ0| = {15, 20, 30}. We can find that in the beginning the error decreases as the path bound

b0’s increases. At certain path bound the error is the smallest and then increases a bit. Results

show that the path bound corresponding to the smallest error varies with different seed set

size.
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Fig. 3.7 Error between SSS-Bounded-t and SSS-Noself on airportsinUS network data given different
sizes of seed sets |φ0| with path bound b0 = {1, 5, 10, 15, 20, 30}
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3.6 Conclusion and Future Work

In this chapter, we analyze different approaches for influence propagation computation

in an Independent Cascade model. We initially propose an approach which can compute

the exact value of the influence propagation called Path Method. We also discuss

the convergence properties of the existing algorithm SteadyStateSpread, showing that it

converges to a fixed solution by fixed-point theory. We consider the elements resulting in the

inaccuracy of SteadyStateSpread: the dependency relation between nodes and the existence

of circuits. Furthermore, we show how to compute a lower approximation of influence

propagation by SSS-Bounded-Path and propose an improved algorithm called SSS-Noself

which partially decreases the error caused by circuits.

The objective of our future work will be to focus on proposing new algorithms to

improve efficiency while taking into account the factors that are at the root cause of the

inaccuracy of the SteadyStateSpread approach. Besides, since we observed that SSS-Noself

is quite time consuming in large-scale networks, another interesting line of research could

be to improve the efficiency of the SSS-Noself.

These computational approaches for estimating the influence propagation are applied

to solve the influence maximization problem in next chapter.
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Chapter 4 Influence Maximization by Seed
Selection

4.1 Introduction

As mentioned in Chapter 1, one strong motivation for studying the influence propaga-

tion is viral marketing. When one promotes a new product or information through social

networks by word-of-mouth effect, a cost-effective way is to target a set of initial adopters

in the network, by investing resources. The aim is that these initial users will drive other

individuals of the network to adopt the same product or information, thus leading to a

potentially large propagation in the network.

The problem of influence maximization by seed selection can be described as follows:

given a social network and an influence propagation model, choose a seed set of up to K

nodes such that the final influence propagation is maximized.

To solve the problem of influence maximization by seed selection, Kempe et al. [11]

firstly formulated the problem as a discrete stochastic optimization problem and proved

that the problem in both the Linear Threshold model and Independent Cascade model is

NP-hard. Then they proposed a greedy algorithm based on Monte Carlo simulation which

guarantees that the influence propagation approximates the optimal one within a factor of

(1 − 1/e). However, this approach is time-consuming, thus subsequent work concentrated

on improving the efficiency of algorithmic approaches.

In this chapter, we discuss how it is possible to use the algorithms for influence propa-

gation computation proposed in Chapter 3- SteadyStateSpread and SSS-Noself together with

SelectTopK, RankedReplace and greedy algorithm-to select a (possibly optimal) seed set.

47



Chapter 4 Influence Maximization by Seed Selection

4.2 Related Work

The influence maximization as an algorithmic technique for viral marketing was first

proposed by Domingos and Richardson [20], within a probabilistic framework based on

Markov random fields. Kempe et al. [40] also formulated the issue of choosing influential

sets of individuals as a discrete optimization problem. It aims to identify a small subset

of initial adopters in a social network to maximize the influence propagation under a given

diffusion model. They also proved this influence maximization problem [72–75] is NP-hard

and gave a greedy approximation algorithm which guarantees, under certain conditions, that

the influence propagation approximates the optimal one within a factor of (1− 1/e), where

e is the base of the natural logarithm. However, this approach requires a long time to run the

simulation, thus later much effort was devoted to improve the efficiency of the algorithm.

We grouped the subsequent solutions into three categories: approximation algorithms with

provable guarantee, heuristic approaches and community-based approaches.

Firstly, the following approximation algorithms with provable guarantee offer signifi-

cant improvement compared to the initial greedy algorithm proposed by Kempe et al. [40] in

terms of efficiency. Leskovec et al. [41] proposed a “Cost-Effective Lazy Forward” (CELF)

scheme to reduce the number of evaluations on the influence propagation, nevertheless it

still satisfies the approximation guarantee. To further improve the CELF heuristic, Chen

et al. [47] presented MixedGreedyIC algorithm for the Independent Cascade model and

MixedGreedyWC algorithm for the Weighted Cascade model. Goyal et al. [42] explored

the CELF++ approach. Cheng et al. [76] derived StaticGreedy algorithm and a dynamical

update strategy to provide both guaranteed accuracy and high scalability. Borgs et al. [48]

developed an elegant framework, named Reverse Influence Sampling (RIS), focusing on

the reduction of running time. Zhu et al. [77] converted the problem into a quadratic

integer programming problem and solved by the concept of semidefinite programming,

which improved the approximation guarantee from 1 − 1/e to 0.857. Cohen et al. [78]

proposed a Sketch-Based Influence Maximization (SKIM) algorithm which also has high

scalability. Tang et al. [49, 50] proposed the hop-based algorithm for both the Independent

Cascade model and Linear Threshold model. Recently, Nguyen et al. [79] developed Billion-
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scale Cost-award Targeted (BCT) algorithm for solving cost-aware targeted viral marketing

(CTVM) introduced by them. Their methodology can be adopted for solving the problem

of influence maximization by seed selection in both the Linear Threshold model and the

Independent Cascade model.

Secondly, the heuristic solutions do not provide an approximation bound but result in

faster running time and higher scalability. Chen et al. [39] and Wang et al. [80] proposed

Maximum Influence Arborescence (MIA) and Prefix excluding MIA (PMIA) model for

influence propagation. Experimental results showed that both MIA and PMIA can achieve

high scalability. Jung et al. [81] developed a novel IRIE algorithm based on influence

ranking (IR) and influence estimation (IE) in both the Independent Cascade model and

its extension IC-N which incorporates negative opinion propagation. Galhotra et al. [82]

proposed Opinion Cum Interaction (OCI) model and formulated a problem of Maximizing

the Effective Opinion (MEO). They introduced two heuristics, namely Opinion Spread

Influence Maximization (OSIM) and EaSyIm to solve the MEO problem. Then Cordasco

et al. [83, 84] derived a heuristic which can produce optimal solution for trees, cycles, and

complete graphs.

Thirdly, a community is basically a subset of nodes, densely connected among

themselves and sparsely connected with the other nodes. There are numerous solutions

based on the community-based framework. Wang et al. [85] proposed the community-

based greedy algorithm which consist of detecting communities based on information

propagation and selecting communities for finding influential nodes. Chen et al. [86, 87]

developed a new framework, community-based influence maximization (CIM). Shang et al.

[88] proposed CoFIM, a community-based framework in which the influence propagation

process is divided into two phases: seeds expansion; and intra-community propagation. Li et

al. [89] developed a community-based seeds selection (CSS) algorithm. The CSS algorithm

finds seeds efficiently by constructing the PR-tree based indexes offline that precompute

users’ community based influences, and preferentially computing the marginal influences of

those who would be selected as seeds with high probability online.
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4.3 Influence Maximization by Seed Selection in the Independent
Cascade Model

4.3.1 Problem Formulation

The problem of influence maximization by seed selection aims to maximize the

influence propagation through a social network, by targeting a subset of individuals to adopt

an innovation initially. We formalize it under the Independent Cascade model as follows.

Problem 1. Given an Independent Cascade model GIC = (V,E, p) and a constant integer

K, find a seed set φ0 ⊆ V of cardinality |φ0| = K, such that the influence propagation

σ(φ0) is maximized, i.e.,

φ0 = argmax
φ0⊆V

{σ(φ0)||φ0| = K}.

Note that solving this problem requires identifying a set of K nodes with the largest

influence which is different from identifying the K nodes with the largest individual

influence. For instance, if two nodes both have the largest influence on the same set of

individuals, it is sufficient that only one of them is selected as a seed node. In other words,

the K nodes with the largest individual influence are not always the best choice for seed

nodes.

4.3.2 Hardness of Influence Maximization by Seed Selection

Kempe et al. [11] proved that the problem of influence maximization by seed selection

is NP-hard, which is based on the hardness of influence propagation computation. In fact,

due to the combinatorial property of finding a set of K seed nodes when K is an input

instead of being a constant, the influence under Independent Cascade model also contains

NP-complete problems as special cases, making it NP-hard without relying on the counting

hardness of influence propagation computation as shown in Theorem 4. The detailed proof

for Theorem 4 can be found in [11].

Theorem 4. [11] The influence maximization problem is NP-hard in the Independent
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Cascade model.

4.3.3 Greedy Approach and Approximation Guarantee

It has been shown that the problem of influence maximization by seed selection is hard

to solve exactly. Kempe et al. [11, 40] gave a greedy approach with Monte Carlo simulation

which can achieve a (1 − 1/e) approximation guarantee. We describe the general greedy

approach in Algorithm 8.

Algorithm 8 Greedy Algorithm
Input: a monotone and submodular set function f , an integer K ∈ N+;
Output: the selected subset S;

1: Initialize S = ∅;
2: for q = 1 to K do
3: Select i = argmaxj∈V \S{σ(S ∪ {j})− σ(S)};
4: S = S ∪ {i};
5: end for
6: return set S.

Nemhauser et al. [68] proved that when set function f is monotone and submodular,

the greedy algorithm can achieve an approximation guarantee shown in Theorem 5.

Theorem 5. [11] For a non-negative, monotone submodular function f , let φ0 be a set of

size K obtained by selecting one node at a time, each time choosing a node that provides

the largest marginal increase in the function value. Let φ∗0 be a set that maximizes the value

of f over all K-node sets. Then f(φ0) ≥ (1 − 1/e) · f(φ∗0); i.e., φ0 provides a (1 − 1/e)-

approximation, where e is the base of natural logarithm.

4.4 Methodology

In this section, we present three basic algorithms, named SelectTopK, RankedReplace

and greedy algorithm, which will later be combined with the approaches for influence

propagation computation in Section 3 to solve the influence maximization problem.
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4.4.1 SelectTopK Algorithm

In order to select a set of K nodes to maximize the final influence propagation, the

basic idea is as follows: let each node j ∈ V be the single seed node, i.e., φ0 = {j}, then

compute the influence propagation by one of algorithms discussed in Section 3. Knowing the

influence propagation when each node is set as the single seed node, we select the K nodes

with the largest influence propagation as seed set φ0. The detail is described in Algorithm 9.

Algorithm 9 SelectTopK
Input: An independent cascade network GIC = (V,E, p), an integer K ∈ N+;
Output: Seed set φ0;

1: Compute the influence propagation σ({j}) for each node j ∈ V ;
2: Select K nodes with the highest value of σ(·) as seed set φ0;
3: return seed set φ0.

Let T be the time complexity required to compute the influence propagation for a given

network with N nodes. As we have previously discussed, these values have order O(N ·3N)

for Path Method, O(N) for SteadyStateSpread, O(N2) for SSS-Noself and O(N) for SSS-

Bounded-Path. Since SelectTopK computes the influence propagation for each node j ∈ V

as a single seed node, we have Proposition 4.

Proposition 4. The time complexity of SelectTopK is O(NT ), with N = |V |.

4.4.2 RankedReplace Algorithm

To further improve the SelectTopK algorithm, a number of replacements of seed nodes

happen after the selection of initial seed set. As shown in Algorithm 10 [43], the nodes in

V \φ0 are sorted in descending order of the influence propagation value σ(φ0). Then in each

iteration, the nodes in φ0 are sorted in ascending order of influence propagation value σ(φ0).

We pick in order the node in V \ φ0 to replace a node in φ0, if this replacement can increase

the influence propagation. Note that in ascending order only the first replacement of a node

in φ0 which increases σ(φ0) is executed.

Let T be the time complexity required to compute the influence propagation for a given

network with N nodes. As we have previously discussed, these values have order O(N ·3N)
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Algorithm 10 RankedReplace
Input: An independent cascade network GIC = (V,E, p), an integer K ∈ N+;
Output: Seed set φ0;

1: Compute the influence propagation σ({j}) for each node j ∈ V ;
2: Initialize seed set φ0 by K nodes with the highest value of σ(·);
3: Sort nodes j ∈ V \ φ0 in descending order of σ({j});
4: for j ∈ V \ φ0 in descending order of σ(j) do
5: Sort nodes i ∈ φ0 in ascending order of σ({i});
6: for i ∈ φ0 in ascending order of σ({i}) do
7: if σ(φ0 ∪ {j} \ {i}) > σ(φ0) then
8: φ0 = φ0 ∪ {j} \ {i};
9: break;

10: end if
11: end for
12: end for
13: return seed set φ0.

for Path Method, O(N) for SteadyStateSpread, O(N2) for SSS-Noself and O(N) for SSS-

Bounded-Path. Then we have Proposition 5.

Proposition 5. The time complexity of RankedReplace is O(K(N −K)T ), with N = |V |

and K = |φ0|.

4.4.3 Greedy Algorithm

Algorithm 11 describes the general greedy algorithm for influence maximization which

can guarantee that the influence propagation φ0 is within (1− 1/e) of the optimal value, as

pointed by Kempes et al. [11]. In this algorithm, the node which maximizes the incremental

influence propagation is selected in each iteration.

Algorithm 11 Greedy Algorithm
Input: An independent cascade network GIC = (V,E, p), an integer K ∈ N+;
Output: Seed set φ0;

1: Initialize φ0 = ∅;
2: for q = 1 to K do
3: Select i = argmaxj∈V \φ0{σ(φ0 ∪ {j})− σ(φ0)};
4: φ0 = φ0 ∪ {i};
5: end for
6: return seed set φ0.

Let T be time complexity required to compute the influence propagation for a given
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network with N nodes. As we have previously discussed, these values have order O(N ·3N)

for Path Method, O(N) for SteadyStateSpread, O(N2) for SSS-Noself and O(N) for SSS-

Bounded-Path. Then we have Proposition 6.

Proposition 6. The time complexity of greedy algorithm is O(KNT ), with N = |V | and

K = |φ0|.

4.5 Experimental Evaluation

4.5.1 Data Set

In this part, the real-world dataset used in seed selection for influence maximization is

HighSchool [90]. It is a directed network, containing friendship links among 73 boys in a

small high-school in Illinois. A node represents a boy and an edge from node i to node j

shows that the i−th boy chose the j−th boy as a friend. The activation probability pi,j is

randomly selected from the set {0.1, 0.2, 0.5}.

4.5.2 Experimental Setup

In this part of experiment, we evaluate the performances of SteadyStateSpread and

SSS-Noself in terms of selecting seed set to maximize the influence propagation. During the

process of seed set selection by SelectTopK, RankedReplace or greedy algorithm, we apply

SteadyStateSpread or SSS-Noself to compute the influence propagation. After selecting the

seed set by these different combination of methods, the influence propagation of the selected

seed set is evaluated by running Monte Carlo simulation for 10,000 times. The tolerance for

SteadyStateSpread and SSS-Noself is fixed as ε∗ = 0.01. The tested algorithms are briefly

described as following:

Random: Randomly select a set of nodes to be activated.

SelectTopK-SSS: Compute the influence propagation by SteadyStateSpread and then

select K nodes with the largest influence propagation as the seed nodes.
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SelectTopK-SN: Compute the influence propagation by SSS-Noself and then select K

nodes with the largest influence as the seed nodes.

Replace-SSS: Compute the influence propagation by SteadyStateSpread and then select

seed nodes by RankedReplace.

Replace-SN: Compute the influence propagation by SSS-Noself and then select seed

nodes by RankedReplace.

Greedy-SSS: Select seed nodes by greedy algorithm, in which computing the influence

propagation by SteadyStateSpread.

Greedy-SN: Select seed nodes by greedy algorithm, in which computing the influence

propagation by SSS-Noself.

4.5.3 Experimental Results

We evaluate the algorithms above on the Highschool network under the Independent

Cascade model in terms of the influence propagation and the running time. The influence

propagation is denoted with the total activation probabilities of all nodes in the network.

After selecting a seed set by any one of the above algorithms, the influence propagation is

computed by Monte Carlo simulation.

The influence propagation with a seed set of size K = {1, 5, 10, 15, 20, 25} computed

by different algorithms is shown in Figure 4.1. Regardless of which approach computes

the influence propagation, either SteadyStateSpread or SSS-Noself, it is obvious that greedy

algorithm performs better than RankedReplace, and RankedReplace performs better than

SelectTopK when K = {5, 10, 15, 20, 25}. Moreover, based on the same algorithm

for seed set selection (SelectTopK, RankedReplace or greedy algorithm), SSS-Noself can

select a better set of seed nodes, i.e., give a larger influence propagation, compared with

SteadyStateSpread.

Figure 4.2 shows the running time for selecting nodes by different algorithms above.

Greedy-SN takes much longer time than other algorithms. Although SelectTopK-SN takes
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Fig. 4.1 Influence propagation computed by different algorithms on Highschool network data given size
of seed set K = {1, 5, 10, 15, 20, 25}

a bit longer time than SelectTopK-SSS and as well Replace-SN takes a bit longer time than

Replace-SSS, these four algorithms are efficient enough.
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Fig. 4.2 Running time for selecting seed nodes by different algorithms on Highschool network data given
size of seed set K = {1, 5, 10, 15, 20, 25}
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4.6 Conclusion and Future Work

Focusing on the influence maximization problem by seed selection, we evaluate

the approaches to influence propagation computation: SteadyStateSpread and SSS-Noself

in terms of selecting seed set by combining a selection strategy among SelectTopK,

RankedReplace and greedy algorithm. The experiments performed in real networks show

that Greedy-SSS and Greedy-SN can achieve a larger influence propagation, i.e., select more

effective seed set. However, Greedy-SN cost much longer time.

Further research directions can be summarized as follows:

• Due to the complexity of computation algorithms, our approaches are not suitable

for large-scale networks. Thus it is important to develop more scalable heuristics to

handle large network datasets.

• The classic problem of influence maximization by seed selection assumes that the cost

for activating a node and the influence ability of each node are the same. However, it

is more practical to consider the case where these two parameters differs for different

nodes, which is called profit maximization, rather than influence maximization.
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Chapter 5 Budgeted Influence Maximization by
Link Activation

5.1 Introduction

As mentioned in previous chapters, influence propagation in social networks has

been widely studied recently. Previous research mostly focuses on either maximizing

the influence by identifying a set of initial adopters, or minimizing the influence by link

blocking, node blocking or competitive strategies under a certain diffusion model. In

this chapter, we address a budgeted influence maximization problem considering the link

activation under the Independent Cascade model.

We assume that the network and the number of initial adopters are given. However,

unlike previous approaches, we regard the set of initial adopters as a stochastic variable,

while the decision variables that we choose to maximize the influence propagation are the

active links in the network. Activating a link has a certain cost and we have a limited budget

for that. Our aim is to activate a set of links within a limited budget such as to maximize the

expected influence propagation.

We believe that the Independent Cascade model can describe quite well the decision of

a company that has a given budget for a publicity campaign. The links of the network

could represent different ways in which the influence may propagate and the objective

of the campaign is supporting the most successful ones so as to maximize the publicity

propagation.

We control the links in order to maximize the influence propagation. Previously, the

link control has been used only for influence minimization. Most of the work which aimed

to solve the influence minimization problem by link control applied “link blocking” [51–

57]. They proposed various approaches to limit the spread of negative innovation such as

injection, rumor, virus, etc., in either preventive or reactive way. A preventive strategy
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focuses on the network topology modification in order to make the network more resistant

to a negative innovation. The algorithm proposed by Tong et al. [55] optimized the leading

eigenvalue of the network adjacency matrix to control the influence dissemination process.

Unlike the preventive strategy, a reactive strategy takes the initially affected nodes into

account to guide the link removal operation. Kimura et al. [53, 58] combined the bond

percolation method with the greedy algorithm to approximately solve this problem and

compared with the link-removal heuristics based on betweenness and out-degree.

To the best of our knowledge, this is the first study on the influence maximization

by means of link activation considering the Independent Cascade model. Unlike other

works on influence maximization which focused on selecting a certain number of optimal

initial adopters, we aim to activate the most effective links within a limited budget to

achieve influence maximization. Unfortunately, the heuristics we consider cannot provide

an optimal solution to this problem, but our SimID algorithm is proved to guarantee, under a

certain constraint, that the influence propagation is within 1
2
(1− 1

e
) of the optimal solution.

Specifically, our main contribution can be summarized as follows:

• We initially propose the problem of influence maximization by link activation under a

limited budget and prove that this problem is NP-hard.

• We analyze the monotonicity and submodularity of our function of expectation of

influence propagation (EIP for short) on two variables: seed set and active links. It

shows that the function is monotone and submodular with respect to the variable of

seed set, but monotone and non-submodular with respect to the variable of active links.

• Aiming at activating a set of links to achieve the maximum influence propagation,

we propose two heuristics based on a cost-degree coefficient as well as two heuristics

based on an inf-degree coefficient. We prove that our SimID algorithm can activate a

set of links to gain the EIP which is within 1
2
(1− 1

e
) of the optimal one under a certain

constraint.
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5.2 Related Work

We recall some previous work addressing two related problems: budgeted influence

maximization by individual selection and influence minimization by link control.

Firstly, most previous work about budgeted influence maximization focused on the

individual selection, i.e., identify a set of influential individuals to gain a maximum influence

propagation within a limited budget. Nguyen and Zheng [91] proposed a selection algorithm

which guarantees an approximation ratio of (1 − 1√
e
). Han et al. [92] addressed this

problem by a balanced seed selection algorithm which combines three different selection

mechanisms. Güney [93] reformulated the problem as a mixed integer linear program and

proposed a sample average approximation (SAA) scheme. Recently a community-based

solution approach is presented by Banerjee et al. [94] to solve the problem.

Secondly, the studies related to link control mostly aimed to solve the influence

minimization problem, i.e., minimizing the propagation of negative innovation by blocking

a number of links of a network. Kimura et al. [53, 58, 95] considered minimizing

both the average contamination degree and the worst contamination degree on basis of

a bond percolation mechanism. Nandi et al. [57] proposed mixed-integer programming

formulations of four network interdiction models for removing a set of links from a network

to minimize the negative influence propagation. Enns et al. [51] evaluated both rank-based

and optimization-based approaches for link blocking in various networks.

Different from above two groups of previous studies, our work focuses on solving the

influence maximization problem within a limited budget by link activation, rather than by

individual selection. It opens another door for network control to achieve a certain goal,

e.g., influence maximization. We believe it benefits a lot the management of online network

interactive platform, transportation system, etc.
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5.3 Budgeted Influence Maximization by Link Activation in the
Independent Cascade Model

5.3.1 Problem Formulation

We assume that in a given Independent Cascade network GIC = (V,E, p), edges in

E are normally inactive but may activated by an external control agent. Assume we are

given a cost vector c ∈ V × V , where activation cost ci,j denotes the cost for activating the

link (i, j) between node i and node j. Let us denote ΦK ⊆ 2V the set of all subsets of V of

cardinalityK: we assume that the seed set is a uniformly distributed random variable, which

takes value φ0 with probability pr(φ0) = 1
|ΦK |

for all φ0 ∈ ΦK , where |ΦK | is the number

of elements in ΦK . Then we activate a set of links Ea ⊆ E to construct an active graph and

the total cost should not exceed a budget B. The set of nodes connected by Ea, which are

denoted as potentially active nodes, is represented by Va. The active graph is represented by

ĜIC = (Va, Ea, p). The goal is to maximize the expectation of influence propagation (EIP),

denoted by E[σ(Ea, φ0)] by the activation of the set of links Ea. We formalize this problem

as follow:

Problem 2. Given an Independent Cascade model GIC = (V,E, p) and a constant integer

K, let c ∈ V × V be a cost vector. ΦK ⊆ 2V denotes the set of all subsets of V of

given cardinality K. The seed set φ0, i.e., the initial state of the network, is a random

variable taking values in ΦK with probability pr(φ0) = 1
|ΦK |

. Activate a set of edges Ea ⊆

E to construct an active graph ĜIC = (Va, Ea, p), such that the expectation of influence

propagation (EIP) E[σ(Ea, φ0)] is maximized and the total cost for activating the edges

(i, j) ∈ Ea is no more than a budget B, i.e.,

max E[σ(Ea, φ0)]

s.t.
∑

(i,j)∈Ea

ci,j ≤ B

Ea ⊆ E

φ0 ⊆ ΦK ⊆ 2V (5-1)

B ∈ R+
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where

E[σ(Ea, φ0)] =
∑
φ0∈ΦK

σ(Ea, φ0) · pr(φ0)

=
1

|ΦK |
·
∑
φ0∈ΦK

σ(Ea, φ0),

and

σ(Ea, φ0) =
∑

j∈Va\φ0

πj.

(5-2)

Note that this is a stochastic optimization problem where both the input data (the seed

set φ0) and the system’s performance index (the EIP) are random variables.

5.3.2 Submodularity and Monotonicity

In order to analyse the monotonicity and submodularity of the EIP function with respect

to both seed set and active links, we recall a closure property of monotone functions [96] in

Proposition 7 and a closure property of submodular functions [97] in Proposition 8.

Proposition 7. If for i ∈ {1, 2, ...,m}, set functions fi : 2V → R are all monotone and

αi ≥ 0, then the positive linear combination

S =
n∑
i=1

αifi(S)

is monotone.

Proposition 8. If for all i ∈ {1, 2, ...,m}, set functions fi : 2V → R are all submodular and

αi ≥ 0, then the positive linear combination

S =
n∑
i=1

αifi(S)

is submodular.

First, when the set of active links Ea is fixed, for a given seed set φ0 the influence
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propagation function σ(Ea, φ0) coincides with the usual influence propagation function

σ(φ0) for network (V,Ea, p), as we have defined in chapter 2. This set function was shown

in [11, 40, 47] to be monotone and submodular. Then by Proposition 7 and Proposition 8, we

have that the EIP function E[σ(Ea, φ0)], which is positive linear combination of monotone

and submodular functions, is monotone and submodular with respect to the seed set φ0.

Second, when the seed set φ0 is fixed, differently from the influence maximization

problem based on node selection discussed in Chapter 4 [11, 40, 47], our EIP function

E[σ(Ea, φ0)] with respect to the active links Ea is monotone but is not submodular.

The monotonicity of our EIP function E[σ(Ea, φ0)] with respect to the set of active

links Ea is straightforward: adding an activated link will definitely not lead to a reduction

of influence propagation, i.e, E[σ(Ea ∪ {(i, j)}, φ0)] ≥ E[σ(Ea, φ0)] . To show that it is not

submodular, we build a counterexample as follows.

Example 5. Consider an Independent Cascade model, where V = {1, 2, 3, 4}, E = {(1, 3),

(2, 3), (3, 4)}, p1,3 = p2,3 = p3,4 = 0.5, and c = 1, shown in Figure 5.1. We set the

cardinality of seed set K = 2, i.e., Φ2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, and

let S = {(1, 3)}, T = {(1, 3), (3, 4)}, u = {(2, 3)}.

1

2

3 4

0.5

0.5

0.5

Fig. 5.1 An Independent Cascade model with 4 nodes

Then when fix seed set φ0 = {1, 2} we have

σ(S, φ0) = p1,3 = 0.5,

σ(T, φ0) = p2,3 + p2,3 · p3,4 = 0.75,

σ(S ∪ {u}, φ0) = p1,3 + (1− p1,3) · p2,3 = 0.75,

σ(T ∪ {u}, φ0)= (p1,3+(1−p1,3)· p2,3)(1+p3,4)=1.125,
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σ(S ∪ {u}, φ0)− σ(φ0, S) = 0.25,

σ(T ∪ {u}, φ0)− σ(φ0, T ) = 0.375.

i.e., when φ0 = {1, 2},

E[σ(φ0,S ∪ {u})]− E[σ(φ0,S)]<E[σ(φ0,T ∪ {u})]− E[σ(φ0,T )].

Obviously, the EIP function E[σ(Ea, φ0)] for this model is not submodular with respect

to the set of active links Ea.

Summarizing, for the problem of budgeted influence maximization by link activation,

the following result holds.

Theorem 6. The EIP function E[σ(Ea, φ0)] in the Independent Cascade model is monotone

and submodular with respect to the seed set φ0; monotone but not submodular with respect

to the set of active links Ea.

5.3.3 Hardness of Budgeted Influence Maximization by Link
Activation

We now explore the complexity of the budgeted influence maximization by link

activation problem. We will show it is NP-hard by reducing it to the well known maximal

covering, which is known to be NP-hard.

Theorem 7. The problem of budgeted influence maximization by link activation is NP-hard

under the Independent Cascade model.

Proof. Consider an instance of the NP-hard Maximum Coverage problem, defined by a

constant integer k and a collection of sets S = {S1, S2, ..., Sm}, where each set has a weight

w(Si), i = 1, 2, ...,m. The objective is to find a subset S ′ ⊆ S of sets, such that |S ′| ≤ k

and the total weights of covered elements
⋃

Si∈S′
w(Si) is maximized.

Consider the set SE = {S(i,j) | (i, j) ∈ E} and let the EIP obtained by an arbitrary link

(i, j) be the weight of set S(i,j). Then the maximum coverage problem can be viewed as a
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special case of our problem of the budgeted influence maximization by link activation when

the cost ci,j is the same among all links.

5.4 Cost-Degree Heuristics

Our goal is to maximize EIP on the condition that the total cost for link activation is

no more than a given budget. Thus the edges with big propagation probability but small

activation cost are considered to be activated firstly. The two approaches proposed in this

section are based on the cost-degree coefficient, which takes both propagation probability

and activation cost into account.

5.4.1 SimCD Algorithm

Denote Θ
(1)
i,j =

pi,j
ci,j

as the simplex cost-degree of link (i, j), then select the link (i, j)

with the maximum value of Θ
(1)
i,j to be activated in each iteration. The iteration process stops

when the total cost for link activation does not satisfy the budget constraint. The SimCD

(Simplex Cost-Degree) algorithm shown in Algorithm 12 describes the detailed procedure.

Algorithm 12 SimCD
Input: An Independent Cascade network GIC = (V,E, p), a cost vector c, a budget B;
Output: An active edge set Ea;

1: Initialize Ea = ∅;
2: Compute Θ

(1)
i,j =

pi,j
ci,j

for ∀(i, j) ∈ E;
3: while

∑
(i,j)∈Ea

ci,j ≤ B do

4: Ea = Ea ∪ {argmax
(i,j)∈E\Ea

(Θ
(1)
i,j )};

5: end while
6: return Ea.

The time complexity of SimCD is O(m) with m = |E| (the number of edges) since

SimCD computes Θ
(1)
i,j for each edge (i, j) ∈ E. Θ

(1)
i,j is easy to compute and this approach

is time-efficient. However, SimCD may not perform well when in a network there is a

scenario as follows: a link (i, j) is associated with a big simplex cost-degree Θ
(1)
i,j , but the

out-neighbors of node j are mostly associated with a small Θ
(1)
i,j . In this case, the link (i, j)
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is in fact not a good choice for deriving a large influence propagation under a limited budget.

Nevertheless SimCD can not filter out the links described above since it ignores the impact

of subsequent links.

5.4.2 MulCD Algorithm

In order to improve SimCD, we further propose the MulCD (Multiple Cost-Degree)

algorithm based on the multiple cost-degree. The multiple cost-degree is computed by

Θ
(2)
i,j =

pi,j ·
∑

s∈Nout
j

pj,s

ci,j
, which considers the propagation probabilities of link (i, j) and also of

its subsequent links. As with SimCD, the time complexity of MulCD shown in Algorithm

13 is O(m) with m = |E| (the number of edges).

Algorithm 13 MulCD
Input: An Independent Cascade network GIC = (V,E, p), a cost vector c, a budget B;
Output: An active edge set Ea;

1: Initialize Ea = ∅;

2: Compute Θ
(2)
i,j =

pi,j ·
∑

s∈Nout
j

pj,s

ci,j
for ∀(i, j) ∈ E;

3: while
∑

(i,j)∈Ea

ci,j ≤ B do

4: Ea = Ea ∪ {argmax
(i,j)∈E\Ea

(Θ
(2)
i,j )};

5: end while
6: return Ea.

We give an example in Example 6 to describe the selection procedure of the set of active

links by these two cost-degree heuristics.

Example 6. Figure 5.2 shows an Independent Cascade model, and we assume: c1,3 = 10,

c2,3 = 9, c3,4 = 4, c4,3 = 8, c4,5 = 10, c4,6 = 5, c4,7 = 9, the cardinality of seed set K = 2

and the budget B = 25.

The simplex cost-degree of each link is:

Θ
(1)
1,3 =

p1,3

c1,3

= 0.040, Θ
(1)
2,3 =

p2,3

c2,3

= 0.033, Θ
(1)
4,3 =

p4,3

c4,3

= 0.025,

Θ
(1)
4,5 =

p4,5

c4,5

= 0.020, Θ
(1)
4,6 =

p4,6

c4,6

= 0.080, Θ
(1)
4,7 =

p4,7

c4,7

= 0.067,

Θ
(1)
3,4 =

p3,4

c3,4

= 0.100.

67



Chapter 5 Budgeted Influence Maximization by Link Activation
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Fig. 5.2 An Independent Cascade model with 7 nodes

Limited by the budget B = 25, the set of active links selected by SimCD is Ea =

{(3, 4), (4, 6), (4, 7)} and the EIP E[σ(Ea, φ0)] = 0.410.

The multiple cost-degree of each link is:

Θ
(2)
1,3 =

p1,3 · p3,4

c1,3

= 0.016, Θ
(2)
2,3 =

p2,3 · p3,4

c2,3

= 0.013,

Θ
(2)
4,3 =

p4,3 · p3,4

c4,3

= 0.010, Θ
(2)
4,5 =

p4,5

c4,5

= 0,

Θ
(2)
4,6 =

p4,6

c4,6

= 0, Θ
(2)
4,7 =

p4,7

c4,7

= 0,

Θ
(2)
3,4 =

p3,4 · (p4,3 + p4,5 + p4,6 + p4,7)

c3,4

= 0.120.

Limited by the budget B = 25, the set of active links selected by MulCD is Ea =

{(3, 4), (1, 3), (2, 3)} and the EIP E[σ(Ea, φ0)] = 0.307.

Evidently, these two cost-degree approaches select activated link (i, j) based on the

values of propagation probability pi,j and activation cost ci,j . Nevertheless in a network

there can be some links associated with a big cost-degree value but have few out-neighbors,

or are not connected with seed set. These links are not good selections for achieving a

large influence propagation but may be selected by SimCD or MulCD. Thus besides the

activation cost and the propagation probability, the seed set and the influence propagation

of Ea in each iteration are also important parameters for selection of active links. In the
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next part, we propose two approaches based on the inf-degree coefficient, which consider

both the influence propagation of real-time Ea and the activation cost during the selection of

active links.

5.5 Inf-Degree Heuristics

In this section, we propose two approaches based on the inf-degree coefficient for

solving this budgeted influence maximization problem.

5.5.1 SimID Algorithm

The SimID (Simplex Inf-Degree) algorithm is based on the simplex inf-degree ζ(1)
i,j

which involves the influence propagation of Ea at current selection step and the activation

cost. In the SimID shown in Algorithm 14, we compute ζ(1)
i,j = E[σ(Ea∪{(i,j)})]−E[σ(Ea)]

ci,j
for

each link (i, j) ∈ E \ Ea and choose the link (i, j) with the maximum value of ζ(1)
i,j to be

activated in each iteration. Let ΦK denote the set of all subsets of V of cardinality K and

assume ΦK = {φ0,1, φ0,2, ..., φ0,r, ...}, ∆r = σ(Ea ∪ {(i, j)}, φ0,r) − σ(Ea, φ0,r), then we

have

ζ
(1)
i,j =

E[σ(Ea ∪ {(i, j)}, φ0)]− E[σ(Ea, φ0)]

ci,j

=

1
|ΦK |
· [

∑
φ0∈ΦK

σ(Ea ∪ {(i, j)}, φ0)−
∑

φ0∈ΦK

σ(Ea, φ0)]

ci,j

=

1
|ΦK |
·

∑
φ0,r∈ΦK

∆r

ci,j
.

The iteration process stops when the total cost for link activation does not satisfy the budget

constraint. Let T be the time required to compute the influence propagation σ(·), then the

time complexity of SimID isO(m2|ΦK |T ) wherem = |E| and |ΦK | = N !
K!(N−K)!

(N = |V |).

Unfortunately, the greedy procedure of SimID, which selects a link maximizing the
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Algorithm 14 SimID
Input: An Independent Cascade network GIC = (V,E, p), a cost vector c, a budget B, a

seed set size K;
Output: An active edge set Ea;

1: Let ΦK denote the set of all subsets of V of given cardinality K;
2: Initialize Ea = ∅;
3: while

∑
(i,j)∈Ea

ci,j ≤ B do

4: Compute ζ(1)
i,j = E[σ(Ea∪{(i,j)},φ0)]−E[σ(Ea,φ0)]

ci,j
for ∀(i, j) ∈ E \ Ea;

5: Ea = Ea ∪ {argmax
(i,j)∈E\Ea

(ζ
(1)
i,j )};

6: end while
7: return Ea.

simplex inf-degree ζ(1)
i,j at each iteration, has unbounded approximation factor. We explain it

in Example 7. However, we observe that if the EIP of Ea selected by SimID is no less than

the incremental change of EIP caused by addition of any unselected link, SimID can achieve

an approximation ratio of 1
2
(1− 1

e
).

Example 7. We consider the network in Figure 5.3 with V = {i, j1, j2},E = {(i, j1), (i, j2)},

pi,j1 = 0.1, pi,j2 = p. Let ci,j1 = 0.1, ci,j2 = p+ 1, B = p+ 1 and K = 1. Then we have

i

1j

2j

0.1

p

Fig. 5.3 An Independent Cascade model with 3 nodes

E[σ({(i, j1)}, φ0)] =
1

3
· [

∑
φ0∈{i,j1,j2}

σ({(i, j1)}, φ0) =
1

30
,

E[σ({(i, j2)}, φ0)] =
1

3
· [

∑
φ0∈{i,j1,j2}

σ({(i, j2)}, φ0) =
p

3
,

ζ
(1)
i,j1

=
E[σ({(i, j1)}, φ0)]

ci,j1
=

1

3
,

ζ
(1)
i,j2

=
E[σ({(i, j2)}, φ0)]

ci,j2
=

p

3(p+ 1)
.
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Thus the solution obtained by the SimID is Ea = {(i, j1)}, while the optimal solution in fact

depends on the value of p.

In order to analyse the performance guarantee of SimID under a certain constraint, first

we propose two lemmas based on the theorems presented by Khuller et al. [98].

Given an Independent Cascade model GIC = (V,E, p), a cost vector c ∈ V × V , and

a constant integer K such that the cardinality of seed set is |φ0| = K, there must be an

optimal set of links E∗a maximizing the EIP E[σ(Ea, φ0)] while the total cost
∑

(i,j)∈Ea

ci,j does

not exceed a given budget B. Assuming that the SimID is executed for l times before the first

link belonging to E∗a is considered but not added to Ea, obviously the number of links added

to Ea during these iterations equals to l. We denote the k-th link added to Ea, k = 1, 2, ..., l,

as (i, j)k, the first considered link from E∗a as (i, j)l+1 and the cost of the k-th added link as

cki,j , k = 1, 2, ..., l + 1. Then the union of selected links in each iteration Ek
a is represented

as Ek
a =

⋃k
s=1(i, j)s, k = 1, 2, ..., l + 1.

Lemma 1. Given an Independent Cascade model GIC = (V,E, p), a constant integer K

such that the cardinality of seed set |φ0| = K and a cost vector c ∈ V × V , let E∗a =

argmax∑
(i,j)∈Ea

ci,j≤B
E[σ(Ea, φ0)] be the optimal set of links maximizing the EIP within a budget B,

Ek
a =

⋃k
s=1(i, j)s be the union of selected links in iteration k = 1, 2, ..., l+ 1, and cki,j be the

cost for adding the k-th link (i, j)k. For k = 1, 2, ..., l + 1, we have

E[σ(Ek
a , φ0)]− E[σ(Ek−1

a , φ0)] ≥
cki,j
B

(E[σ(E∗a, φ0)]− E[σ(Ek−1
a , φ0)]).

Proof. For ∀(i, j) ∈ E∗a \ Ek−1
a , we have ζ(1)

i,j ≤ ζ
(1)k
i,j , where ζ(1)k

i,j is the inf-degree of

link (i, j)k, since the link (i, j)k maximizes the inf-degree over all links that have not been

selected before iteration k. The total cost of the links in E∗a \Ek−1
a is limited by a budget B,

thus we have

E[σ(Ek−1
a ∪ (E∗a \ Ek−1

a ), φ0)]− E[σ(Ek−1
a , φ0)] ≤ B · ζ(1)k

i,j ,
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i.e.,

E[σ(E∗a, φ0)]− E[σ(Ek−1
a , φ0)] ≤ B · ζ(1)k

i,j . (5-3)

According to the definition of ζ(1)k
i,j , we have

ζ
(1)k
i,j =

E[σ(Ek
a , φ0)]− E[σ(Ek−1

a , φ0)]

cki,j
. (5-4)

Substitute Equation 5-4 for ζ(1)k
i,j in Inequality 5-3, then the lemma holds.

Lemma 2. Given an Independent Cascade model GIC = (V,E, p), a cost vector c ∈

V × V and a constant integer K such that the cardinality of seed set |φ0| = K, let

E∗a = argmax∑
(i,j)∈Ea

ci,j≤B
E[σ(Ea, φ0)] be the optimal set of links maximizing the EIP within a

budget B, Ek
a =

⋃k
s=1(i, j)s be the union of selected links in iteration k = 1, 2, ..., l+ 1, and

cki,j be the cost for adding the k-th link (i, j)k. For k = 1, 2, ..., l + 1, we have

E[σ(Ek
a , φ0)] ≥ [1−

k∏
s=1

(1−
csi,j
B

)] · E[σ(E∗a, φ0)].

Proof. The proof is by induction on k.

For k = 1, we have

E[σ(Ek=1
a , φ0)] = E[σ({(i, j)k=1}, φ0)] = ck=1

i,j · ζ
(1)k=1
i,j .

From Lemma 1, we obtain

E[σ(Ek=1
a , φ0)] ≥

ck=1
i,j

B
· E[σ(E∗a, φ0)]. (5-5)

Suppose that the statement holds for iterations 1, 2, ..., k − 1, then based on Lemma 1 for

iteration k, we write

E[σ(Ek
a , φ0)] = E[σ(Ek−1

a , φ0)] + (E[σ(Ek
a , φ0)]− E[σ(Ek−1

a , φ0)])

≥ E[σ(Ek−1
a , φ0)] +

cki,j
B
· (E[σ(Ek

a , φ0)]− E[σ(Ek−1
a , φ0)])

= (1−
cki,j
B

) · E[σ(Ek−1
a , φ0)] +

cki,j
B
· E[σ(E∗a, φ0)]
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≥ (1−
cki,j
B

) · [(1−
ck−1
i,j

B
) · E[σ(Ek−2

a , φ0)] + 1− (1−
ck−1
i,j

B
) ·

E[σ(E∗a, φ0)]] +
cki,j
B
· σ(E∗a)

≥ (1−
cki,j
B

)· {(1−
ck−1
i,j

B
)· [(1−

ck−2
i,j

B
)E[σ(Ek−3

a , φ0)] +
ck−2
i,j

B
·

E[σ(E∗a, φ0)]] +
ck−1
i,j

B
· E[σ(E∗a, φ0)]}+

cki,j
B
· E[σ(E∗a, φ0)]

= (1−
cki,j
B

) · [
k−1∏
s=k−2

(1−
csi,j
B

) · E[σ(Ek−3
a , φ0)] + (1−

k−1∏
s=k−2

(1−
csi,j
B

)) ·

E[σ(E∗a, φ0)]] +
cki,j
B
· E[σ(E∗a, φ0)]

≥ ...

≥ (1−
cki,j
B

) · [
k−1∏
s=2

(1−
csi,j
B

) · E[σ(Ek=1
a , φ0)] + (1−

k−1∏
s=2

(1−
csi,j
B

)) ·

E[σ(E∗a, φ0)]] +
cki,j
B
· E[σ(E∗a, φ0)]. (5-6)

Plugging inequality 5-5 into inequality 5-6, we have

E[σ(Ek
a , φ0)] ≥ (1−

cki,j
B

)· (
k−1∏
s=2

(1−
csi,j
B

)·
ck=1
i,j

B
+ 1−

k−1∏
s=2

(1−
csi,j
B

)) · E[σ(E∗a, φ0)]

+
cki,j
B
· E[σ(E∗a, φ0)]

= (1−
cki,j
B

) · (1−
k−1∏
s=1

(1−
csi,j
B

)) · E[σ(E∗a, φ0)] +
cki,j
B
· E[σ(E∗a, φ0)]

= [1−
k∏
s=1

(1−
csi,j
B

)] · E[σ(E∗a, φ0)].

The lemma follows.

One remark is recalled for the latter analysis of approximation guarantee [98].

Remark 3. For λ1, λ2, ..., λn ∈ R+ such that
n∑
i=1

λi = Λ, the function (1 −
n∏
i=1

(1 − λi
Λ

))

achieves the minimum value when λ1 = λ2 = ... = λn = Λ
n

.

73



Chapter 5 Budgeted Influence Maximization by Link Activation

Based on the lemmas and remark above, the theorem for the approximation guarantee

of the SimID follows.

Theorem 8. Given an Independent Cascade model GIC = (V,E, p), a cost vector c ∈

V × V and a constant integer K such that the cardinality of seed set is |φ0| = K, let

E∗a = argmax∑
(i,j)∈Ea

ci,j≤B
E[σ(Ea, φ0)] be the optimal set of links maximizing the EIP within a

budget B. Compute the set of active links Ea ⊆ E by Algorithm 14 with the same budget

and let (u, v) ∈ E \Ea denote any of the unselected links. If the EIP of Ea is no less than the

incremental change of EIP caused by addition of any unselected link, i.e., E[σ(Ea, φ0)] ≥

E[σ(Ea ∪ {(u, v)}, φ0)]− E[σ(Ea, φ0)] for ∀(u, v) ∈ E \ Ea, we have

E[σ(Ea, φ0)] ≥ 1

2
(1− 1

e
) · E[σ(E∗a, φ0)].

Proof. From Lemma 2 we obtain

E[σ(El+1
a , φ0)] ≥ [1−

l+1∏
s=1

(1−
csi,j
B

)] · E[σ(E∗a, φ0)].

Since adding (i, j)l+1 to El
a violates the budget B, i.e.,

l+1∑
s=1

csi,j =
l∑

s=1

csi,j + cl+1
i,j > B, we have

E[σ(El+1
a , φ0)] ≥ [1−

l+1∏
s=1

(1−
csi,j

l+1∑
s=1

csi,j

)] · E[σ(E∗a, φ0)].

According to Remark 3, when csi,j =

l+1∑
s=1

csi,j

l+1
, s = 1, 2, ..., l+1, (1−

l+1∏
s=1

(1− csi,j
l+1∑
s=1

csi,j

)) achieves

its minimum value (1− (1− 1
l+1

)l+1). Then since lim
l→∞

(1− 1
l+1

)l+1 = 1
e
, we have

E[σ(El+1
a , φ0)] ≥ (1− 1

e
) · E[σ(E∗a, φ0)],

i.e.,

E[σ(El
a, φ0)] + E[σ(El+1

a , φ0)]− E[σ(El
a, φ0)]) ≥ (1− 1

e
) · E[σ(E∗a, φ0)].

From the assumption of theorem, we get E[σ(El
a, φ0)] ≥ E[σ(El+1

a , φ0)] − E[σ(El
a, φ0)].
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Thus we have

E[σ(El
a, φ0)] ≥ 1

2
(1− 1

e
) · E[σ(E∗a, φ0)].

The theorem follows.

Whether the set of active linksEa selected by SimID can achieve the EIP approximating

the optimal one within a factor of 1
2
(1 − 1

e
) depends on whether Ea satisfies the sufficient

condition of Theorem 8. To verify that, after the selection of Ea, we still compute

E[σ(Ea∪{(u, v)}, φ0)]−E[σ(Ea, φ0)] for unselected links (u, v) ∈ E\Ea. If E[σ(Ea, φ0)] ≥

max
(u,v)∈E\Ea

(E[σ(Ea∪{(u, v)}, φ0)]−E[σ(Ea, φ0)]), then the sufficient condition holds and the

selected set of active links Ea can achieve an approximation guarantee of 1
2
(1− 1

e
). Usually

the sufficient condition holds for most real-world networks as long as the budget B is not too

small, which means that adequate links have been added to Ea and one more addition will

not lead to a big incremental change of the EIP.

5.5.2 MulID Algorithm

The SimID considers the activation cost of the currently investigative link, and it can

achieve a constant approximation guarantee under a certain constraint. However, it is more

reasonable to consider the total activation cost of all links in the set Ea. In the MulID

(Multiple Inf-Degree) algorithm shown in Algorithm 15, we denote the multiple inf-degree

of link (i, j) as ζ(2)
i,j = E[σ(Ea∪{(i,j)},φ0)]−E[σ(Ea,φ0)]∑

(u,v)∈Ea∪{(i,j)}
cu,v

.

Similar to SimID, let T be the time required to compute the influence propagation σ(·),

then the time complexity of MulID is O(m2|ΦK |T ) where m = |E|, |ΦK | = N !
K!(N−K)!

(N = |V |).

Example 8. Consider the Independent Cascade model in Figure 5.2, and the values of the

activation cost c, the cardinality of seed set K and the budget B are set as the same as

Example 6.
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Algorithm 15 MulID
Input: An Independent Cascade network GIC = (V,E, p), a cost vector c, a budget B, a

seed set size K;
Output: An active edge set Ea;

1: Let ΦK denote the set of all subsets of V of given cardinality K;
2: Initialize Ea = ∅;
3: while

∑
(i,j)∈Ea

ci,j ≤ B do

4: Compute ζ(2)
i,j = E[σ(Ea∪{(i,j)},φ0)]−E[σ(Ea,φ0)]∑

(u,v)∈Ea∪{(i,j)}
cu,v

for ∀(i, j) ∈ E \ Ea;

5: Ea = Ea ∪ {argmax
(i,j)∈E\Ea

(ζ
(2)
i,j )};

6: end while
7: return Ea.

Applying SimID, at step t = 1, we have:

ζ
(1)
1,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(1, 3)}, φ0)

c1,3

= 0.0095, ζ
(1)
2,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(2, 3)}, φ0)

c2,3

= 0.0079,

ζ
(1)
4,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 3)}, φ0)

c4,3

= 0.0060, ζ
(1)
4,5 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 5)}, φ0)

c4,5

= 0.0048,

ζ
(1)
4,6 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 6)}, φ0)

c4,6

= 0.0190, ζ
(1)
4,7 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 7)}, φ0)

c4,7

= 0.0159,

ζ
(1)
3,4 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(3, 4)}, φ0)

c3,4

= 0.0238.

After step t = 1, Ea = {(3, 4)}, E[σ({(3, 4)}, φ0)] = 0.0952 and c3,4 = 4.

At step t = 2, we have:

ζ
(1)
1,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(1, 3) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c1,3

= 0.0126,

ζ
(1)
2,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(2, 3) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c2,3

= 0.0105,

ζ
(1)
4,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 3) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c4,3

= 0.0060,
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ζ
(1)
4,5 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 5) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c4,5

= 0.0063,

ζ
(1)
4,6 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 6) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c4,6

= 0.0252,

ζ
(1)
4,7 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 7) ∪ (3, 4)}, φ0)− E[σ({3, 4}, φ0)]

c4,7

= 0.0210.

After step t=2,Ea={(3, 4), (4, 6)}, E[σ({(3, 4)∪(4, 6)}, φ0)]=0.2210, c3,4+c4,6 = 9.

At step t = 3, we have:

ζ
(1)
1,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(1, 3) ∪ (3, 4) ∪ (4, 6)}, φ0)− E[σ({(3, 4) ∪ (4, 6)}, φ0)]

c1,3

= 0.0135,

ζ
(1)
2,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(2, 3) ∪ (3, 4) ∪ (4, 6)}, φ0)− E[σ({(3, 4) ∪ (4, 6)}, φ0)]

c2,3

= 0.0133,

ζ
(1)
4,3 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 3) ∪ (3, 4) ∪ (4, 6)}, φ0)− E[σ({(3, 4) ∪ (4, 6)}, φ0)]

c4,3

= 0.0059,

ζ
(1)
4,5 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 5) ∪ (3, 4) ∪ (4, 6)}, φ0)− E[σ({(3, 4) ∪ (4, 6)}, φ0)]

c4,5

= 0.0063,

ζ
(1)
4,7 =

1
|ΦK |
·

∑
φ0∈ΦK

σ({(4, 7) ∪ (3, 4) ∪ (4, 6)}, φ0)− E[σ({(3, 4) ∪ (4, 6)}, φ0)]

c4,7

= 0.0210.

After step t = 3, Ea = {(3, 4), (4, 6), (4, 7)}, E[σ({(3, 4) ∪ (4, 6) ∪ (4, 7)}, φ0)] =

0.4100 and c3,4 + c4,6 + c4,7 = 18.

At step t = 4, we have:

ζ
(1)
1,3 =

1
|ΦK |
·
∑

φ0∈ΦK

σ({(1, 3)∪(3, 4)∪(4, 6)∪(4, 7)}, φ0)−E[σ({(3, 4)∪(4, 6)∪(4, 7)}, φ0)]

c1,3

=0.0110,

ζ
(1)
2,3 =

1
|ΦK |
·
∑

φ0∈ΦK

σ({(2, 3)∪(3, 4)∪(4, 6)∪(4, 7)}, φ0)−E[σ({(3, 4)∪(4, 6)∪(4, 7)}, φ0)]

c2,3
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=0.0013,

ζ
(1)
4,3 =

1
|ΦK |
·
∑

φ0∈ΦK

σ({(4, 3)∪(3, 4)∪(4, 6)∪(4, 7)}, φ0)−E[σ({(3, 4)∪(4, 6)∪(4, 7)}, φ0)]

c4,3

=0,

ζ
(1)
4,5 =

1
|ΦK |
·
∑

φ0∈ΦK

σ({(4, 5)∪(3, 4)∪(4, 6)∪(4, 7)}, φ0)−E[σ({(3, 4)∪ (4, 6)∪(4, 7)}, φ0)]

c4,5

=0.0062.

Since argmax
(i,j)∈E\Ea

(ζ
(1)
i,j ) = (1, 3) and c3,4+c4,6+c4,7+c1,3 = 28 > B for step t = 4, the set

of active links selected by SimID is Ea = {(3, 4), (4, 6), (4, 7)} and E[σ(Ea, φ0)] = 0.4100.

Now we verify that the solution of SimID provides the EIP approximating the optimal

one within 1
2
(1− 1

e
) for this example.

Since

E[σ(Ea ∪ {1, 3}, φ0) = 0.52, E[σ(Ea ∪ {2, 3}, φ0) = 0.42,

E[σ(Ea ∪ {4, 3}, φ0) = 0.41, E[σ(Ea ∪ {4, 5}, φ0) = 0.47,

we have E[σ(Ea, φ0)] ≥ E[σ(Ea ∪ {(u, v)}, φ0)] − E[σ(Ea, φ0)] for ∀(u, v) ∈ E \ Ea.

According to Theorem 8, E[σ(Ea, φ0)] ≥ 1
2
(1− 1

e
) · E[σ(E∗a, φ0)] holds for this example.

Similarly, when applying MulID, at step t = 1, we have ζ(2)
i,j = ζ

(1)
i,j for (i, j) ∈ E.

Thus Ea = {3, 4}, E[σ({(3, 4)}, φ0)] = 0.0952 and c3,4 = 4 after step t = 1.

At step t = 2, we have

ζ
(2)
1,3 = 0.0090, ζ

(2)
2,3 = 0.0073, ζ

(2)
4,3 = 0.0040, ζ

(2)
4,5 = 0.0045, ζ

(2)
4,6 = 0.0140, ζ

(2)
4,7 = 0.0145.

After step t=2,Ea={(3, 4), (4, 7)}, E[σ({(3, 4)∪(4, 7)}, φ0)] = 0.2837 and c3,4+c4,7 =13.
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At step t = 3, we have

ζ
(2)
1,3 = 0.0061, ζ

(2)
2,3 = 0.0048, ζ

(2)
4,3 = 0.0023, ζ

(2)
4,5 = 0.0027, ζ

(2)
4,6 = 0.0070.

After step t = 3, Ea = {(3, 4), (4, 7), (4, 6)}, E[σ({(3, 4) ∪ (4, 7) ∪ (1, 3)}, φ0)] = 0.4100

and c3,4 + c4,7 + c1,3 = 18.

At step t = 4, we have

ζ
(2)
1,3 = 0.0053, ζ

(2)
2,3 = 0.0041, ζ

(2)
4,3 = 0.0018, ζ

(2)
4,5 = 0.0022.

Since argmax
(i,j)∈E\Ea

(ζ
(2)
i,j ) = (1, 3) and c3,4+c4,7+c4,6+c1,3 = 28 > B for step t = 4, the set

of active links selected by MulID is Ea = {(3, 4), (4, 7), (4, 6)} and E[σ(Ea, φ0)] = 0.4100.

We list the set of active linksEa and EIP value obtained by SimCD, MulCD, SimID and

MulID for the network in Figure 5.2 in Table 5.1. SimID selects the same set of active links

with SimCD and MulID, and the solution of SimID provides a EIP value approximating the

optimal one within 1
2
(1− 1

e
).

TABLE 5.1 Comparison ofEa and EIP computed by SimCD, MulCD, SimID and MulID for the network
in Figure 5.2

Heuristics Ea E[σ(Ea, φ0)]

SimCD {(3,4),(4,6),(4,7)} 0.4100
MulCD {(3,4),(1,3),(2,3)} 0.3072
SimID {(3,4),(4,6),(4,7)} 0.4100
MulID {(3,4),(4,7),(4,6)} 0.4100

Summarized from Example 6 and Example 8, the simplex cost-degree and multiple

cost-degree are unique for each link once the network and the activation cost are set.

Differently, the simplex inf-degree and multiple inf-degree change in different iteration for

the selection of active links.
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5.6 Experimental Evaluation

We perform a series of experiments on real-world datasets to evaluate the heuristics

proposed above in the aspect of maximizing the EIP by activating a set of links.

All approaches are implemented in Python. All experiments are run on a PC with

2.40GHz Intel Core i5 Processor and 8GB memory.

5.6.1 Data Set

We consider two real-world datasets. The first one, called Advise-Seek, is from a study

by Robins on one branch of an Australian bank [99]. It presents the advise-seek relation

among a staff of 11 people, i.e, a directed edge from i to j denotes that i asks advice from

j if an issue arises in work. There are 11 nodes and 30 edges in the Advise-Seek network.

The second dataset, called HighTec, was collected from the managers of a high-technical

company in the United States [100]. It presents the report relation among 21 managers, i.e.,

a directed edge from i to j denotes that i reports to j. There are 21 nodes and 20 edges in

this network.

5.6.2 Experimental Setup

The two considered networks are both directed and binary. To construct from them

generally Independent Cascade models, we generate a value of propagation probability pi,j

uniformly at random from the interval [0.1, 0.5) for each edge (i, j). The activation cost ci,j

for activating the edge (i, j) is uniformly selected at random from the interval [1, 10). The

budget for link activation B varies in the set {10, 20, 30, 40, 50}. The cardinality of seed set

K is selected from {1, 3, 5}.

We evaluate the performance of SimCD, MulCD, SimID and MulID in terms of

influence propagation and running time for link selection. For SimCD and MulCD, we

select the set of active links according to the value of either simplex cost-degree or multiple

cost-degree. To validate the solution, the influence propagation of each possible seed set
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is computed by SteadyStateSpread. Then EIP is obtained by averaging these values of

influence propagation. For SimID and MulID, the computation of EIP is also based on

the influence propagation computation by SteadyStateSpread.

5.6.3 Experimental Results

The EIPs computed by SimCD, MulCD, SimID and MulID for a given cardinality of

seed set K = {1, 3, 5} within budget B = {10, 20, 30, 40, 50} on networks Advise-Seek and

HighTec are shown in Figure 5.4 and Figure 5.5. In the network Advise-Seek, we observe

that SimID outperforms the other heuristics in most cases, except when B = 20, K = 3

and B = 20, K = 5, MulID provides larger EIPs than SimID. SimCD and MulCD perform

similarly for all given values of K and budget B. In the network HighTec, when K = 1 and

B = 30, link (20, 6) is selected by SimID and the activation of it contributes a large value

of EIP. When K = 3 and K = 5, SimID and MulID almost perform the same, SimCD and

MulCD almost perform the same. On the whole SimID can select the set of active links to

achieve a larger value of EIP than the other heuristics in most cases.
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Fig. 5.4 EIP computed by SimCD, MulCD, SimID and MulID on Advise-Seek network data given
K = {1, 3, 5} within budget B = {10, 20, 30, 40, 50}

Note that the running time recorded is the time for selecting active links by different

heuristics, not including the time for EIP computation. The link selection by SimCD or

MulCD does not depend on the seed set and it only takes very short time in both networks

Advise-Seek and High-Tec. The complexity of SimID and MulID is tightly related with the

cardinality of seed set K, thus SimID and MulID take much longer time when K increases.
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Fig. 5.5 EIP computed by SimCD, MulCD, SimID and MulID on HighTec network data given K =
{1, 3, 5} within budget B = {10, 20, 30, 40, 50}

Besides, a larger budget makes it possible to iterate more to select more active links. Thus

the running time of SimID and MulID also increases as the budget increases, nevertheless

the growth of the computation time of SimID and MulID still depends more on cardinality

of seed set K than budget B.

TABLE 5.2 Running time for link selection by SimCD, MulCD, SimID and MulID on Advise-Seek
network data given K = {1, 3, 5} within budget B = {10, 20, 30, 40, 50}

Seed set size K = 1 K = 3 K = 5

Approach

Running time(s) Budget
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

SimCD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
MulCD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SimID 0.9 1.3 1.6 2.0 2.2 12.4 18.0 21.9 28.1 30.9 38.1 54.2 76.3 70.1 76.1
MulID 0.7 0.9 1.2 1.7 2.3 11.2 22.2 19.0 26.6 27.2 28.1 50.0 50.1 65.1 62.3

TABLE 5.3 Running time for link selection by SimCD, MulCD, SimID and MulID on HighTec network
data given K = {1, 3, 5} within budget B = {10, 20, 30, 40, 50}

Seed set size K = 1 K = 3 K = 5

Approach

Running time(s) Budget
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

SimCD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
MulCD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SimID 1.2 1.2 2.0 4.1 6.8 52.4 80.0 123.6 193.9 295.9 797.4 1386.6 2006.3 2646.0 3892.6
MulID 0.6 1.2 1.4 2.1 2.0 41.4 80.2 92.3 179.1 240.7 671.0 1029.3 3612.3 3217.9 4175.3

Finally, an experimental study on random networks of different size is carried out to

test the scalability of the four algorithms. The networks are generated by Software Gephi

with the number of nodes |V | from 10 to 40 where the rewiring probability is selected as

0.05. We set the budget B to 20 and the cardinality of seed set K to 3. The result is shown
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in Figure 5.6, which suggests: SimCD and MulCD are very efficient and the running time

of them does not change a lot with the network size; the time for selecting the set of active

links by SimID or MulID increases exponentially when the scale of network is large.
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Fig. 5.6 Scalability of the algorithms

Summarily, while Simplex Inf-Degree (SimID) algorithm seems to be the heuristic

providing the best EIP, it has a high computational complexity, in terms of execution time.

For this reason, as the size of network increases it may be necessary to use different heuristics

such as Simplex Cost-Degree (SimCD) algorithm and Multiple Cost-Degree (MulCD)

algorithm whose computation time does not grow with the number of nodes |V | and the

cardinality of seed set K.

5.7 Conclusion and Future Work

Most previous works focus on the approaches to either influence maximization con-

sidering the initial adopters or influence minimization based on link blocking. Differently

in this chapter, we formulate an influence maximization problem within a limited budget

considering to activate the relatively most effective links. For approximately solving this

problem, we propose two types of heuristics associated with either a cost-degree coefficient

or an inf-degree coefficient. Emphatically, it is proved that the SimID algorithm can select a
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set of active links which under a certain constraint achieves an approximation guarantee of
1
2
(1− 1

e
) .

There are several future directions for this work. First, the propagation probability and

cost vector for our current diffusion model are fixed and unrelated. We plan to generalize

our model in terms of associating these two parameters together in order to better describe

the real-world scenarios. Second, our inf-degree heuristics (SimID and MulID algorithms)

consider the real-time innovation diffusion process and thus it is time-consuming to select

the set of active links. We aim to improve the efficiency of inf-degree heuristics in the future.
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Chapter 6 Conclusion and Future Work

We conclude the thesis by summarizing our main results and discuss possible directions

for future research.

6.1 Main Results of the Thesis

Influence maximization in social networks is the central theme of the thesis. Among

models for simulating the influence propagation process, we choose the Independent

Cascade model to describe and solve our problems. We are mainly interested in the three

problems under the Independent Cascade model: the influence propagation estimation from

an initial set of adopters; methodology for selecting a suboptimal set of initial adopters

to maximize the final influence propagation; formulation and solution to the budgeted

influence maximization problem by link activation, i.e., maximizing the expected influence

propagation by activating a set of links within a certain budget.

Influence propagation computation is a preliminary step for further network analysis.

We propose Path Method to compute the exact value of influence propagation for small

networks. Two elements leading to the inaccuracy of SteadyStateSpread are pointed:

dependency relation among nodes and existence of circuits. Then improved algorithms

called SSS-Bounded-Path and SSS-Noself are further proposed to partially decrease the error

caused by circuits.

As for influence maximization by seed selection, we evaluate the approaches to

influence propagation computation: SteadyStateSpread and SSS-Noself together with one

selection strategy among SelectTopK, RankedReplace and greedy algorithm.

We initially formulate the problem of influence maximization by link activation under

a certain budget. We prove that this problem is a NP-hard and point out that the expectation

of influence propagation is monotone and submodular in terms of seed set and monotone but
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non-submodular in terms of active links. Heuristics based on a cost-degree coefficient or an

inf-degree coefficient are proposed to provide suboptimal solution. We prove that the SimID

can select a set of activated links which achieves an approximation guarantee of 1
2
(1 − 1

e
)

under a certain constraint.

6.2 Future Work

Specific extended directions for, respectively, influence propagation computation,

influence maximization by seed selection and budgeted influence maximization by link

activation have been given in Chapter 3, Chapter 4 and Chapter 5. In this section, we discuss

three directions of further research addressing the problem of influence maximization in

social networks.

• The first is about the extension of classic diffusion models. Most studies about the

influence maximization problem are done under either the Linear Threshold model

or the Independent Cascade model. Recently, some diffusion models are developed

by adding various parameters such like negative opinion, time label and competitive

innovations. We will consider extending our solutions for influence maximization

problem to these newly developed diffusion models.

• The second is about the efficiency and scalability of the methodologies for maximizing

influence propagation. Some of our approaches are not viable for large networks

currently. Thus it is important to develop more scalable algorithms to handle large

datasets.

• The third is about the model parameter learning. Our current studies assume that

the network structure and the model parameter, such as influence weight for Linear

Threshold model and activation probability for Independent Cascade model, are

known and fixed. The point we focus on is the performance of algorithms in a fixed

network. However, it is more practical to learn these parameters from real-world

dataset. We try to analyse methodologies about influence propagation in the networks

constructed according to real dataset.
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[40] D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusion model for social networks,”

in International Colloquium on Automata, Languages, and Programming. Springer, 2005, pp.

1127–1138.

[41] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, “Cost-

effective outbreak detection in networks,” in Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2007, pp. 420–429.

[42] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: optimizing the greedy algorithm for influence

89



References

maximization in social networks,” in Proceedings of the 20th international conference companion

on World wide web. ACM, 2011, pp. 47–48.

[43] C. C. Aggarwal, A. Khan, and X. Yan, “On flow authority discovery in social networks,” in

Proceedings of the 2011 SIAM International Conference on Data Mining. SIAM, 2011, pp.

522–533.

[44] Y. Yang, E. Chen, Q. Liu, B. Xiang, T. Xu, and S. A. Shad, “On approximation of real-world

influence spread,” in Joint European Conference on Machine Learning and Knowledge Discovery

in Databases. Springer, 2012, pp. 548–564.

[45] P. Domingos, “Mining social networks for viral marketing,” IEEE Intelligent Systems, vol. 20, no.

1, pp. 80–82, 2005.

[46] C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo, “Ublf: An upper bound based approach to discover

influential nodes in social networks,” in Data Mining (ICDM), IEEE 13th International Conference

on. IEEE, 2013, pp. 907–916.

[47] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social networks,” in

Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 2009, pp. 199–208.

[48] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social influence in nearly optimal

time,” in Proceedings of the 25th annual ACM-SIAM symposium on Discrete algorithms. SIAM,

2014, pp. 946–957.

[49] J. Tang, X. Tang, and J. Yuan, “Influence maximization meets efficiency and effectiveness: A hop-

based approach,” in Proceedings of the 2017 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining. ACM, 2017, pp. 64–71.

[50] J. Tang, X. Tang, and J. Yuan, “An efficient and effective hop-based approach for influence

maximization in social networks,” Social Network Analysis and Mining, vol. 8, no. 1, p. 10, 2018.

[51] E. A. Enns and M. L. Brandeau, “Link removal for the control of stochastically evolving epidemics

over networks: A comparison of approaches,” Journal of theoretical biology, vol. 371, pp. 154–

165, 2015.

[52] J. He, H. Liang, and H. Yuan, “Controlling infection by blocking nodes and links simultaneously,”

in International workshop on internet and network economics. Springer, 2011, pp. 206–217.

[53] M. Kimura, K. Saito, and H. Motoda, “Blocking links to minimize contamination spread in a social

network,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no. 2, p. 9, 2009.

[54] J. Marcelino and M. Kaiser, “Critical paths in a metapopulation model of h1n1: Efficiently

delaying influenza spreading through flight cancellation,” PLoS currents, vol. 4, 2012.

[55] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos, “Gelling, and melting,

90



References

large graphs by edge manipulation,” in Proceedings of the 21st ACM international conference on

Information and knowledge management. ACM, 2012, pp. 245–254.

[56] C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. Ravi, “Blocking simple and complex

contagion by edge removal,” in 2013 IEEE 13th International Conference on Data Mining. IEEE,

2013, pp. 399–408.

[57] A. K. Nandi and H. R. Medal, “Methods for removing links in a network to minimize the spread

of infections,” Computers & Operations Research, vol. 69, pp. 10–24, 2016.

[58] M. Kimura, K. Saito, and H. Motoda, “Minimizing the spread of contamination by blocking links

in a network.” in AAAI, vol. 8, 2008, pp. 1175–1180.

[59] B. Ryan and N. C. Gross, “The diffusion of hybrid seed corn in two iowa communities.” Rural

sociology, vol. 8, no. 1, p. 15, 1943.

[60] J. S. Coleman, E. Katz, H. Menzel et al., Medical innovation: A diffusion study. Bobbs-Merrill

Indianapolis, 1966.

[61] J. Wortman, “Viral marketing and the diffusion of trends on social networks,” 2008.

[62] D. Rosa, “Graph methods in multi agent systems coordination and social network analysis,” Ph.D.

dissertation, Universita’degli Studi di Cagliari, 2014.
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