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A B S T R A C T

To flexibly and efficiently navigate in their natural habitat, mammals
can rely on an internal representation of space, also called a cognitive
map. The hippocampus is thought to be important for the elaboration
of this map. It contains a peculiar type of cells: the place cells, which
are active in specific parts of the environment (called their place fields)
and virtually silent elsewhere. Place cell spatial coding can be more or
less precise depending on the scale of the environment, the availability
of sensory cues or the location of their cell body along the septo-
temporal axis of the hippocampus. However, whether and how place
cells’ spatial coding resolution can adapt to local features of the same
environment remains unclear. In this thesis work, we explored this
possibility by recording the activity of hippocampal neurons in the
dorsal hippocampal area CA1 of mice navigating a virtual linear track.
We used several types of visual information, unevenly distributed in
the environment, such as 3D visual objects and 2D patterns on the
walls or their combination to investigate their impact on spatial coding
resolution. We observed that virtual objects improved spatial coding
resolution in their vicinity. Place fields were more numerous, smaller,
with better spatial information and stability. This effect was highly
dynamic upon objects manipulations. On the other hand, patterns on
the wall led to an enhancement of spatial coding resolution, but to
a lesser extent. These results were confirmed at the population level
using a Bayesian decoder. Objects also strengthened temporal coding
resolution through improved theta phase precession. We propose that
the hippocampal place cells representation can have a heterogenous
resolution, which could be used to improve coding or inference notably
in large-scale environments.

Key words: Hippocampus, spatial cognition, place cells, virtual reality,
object, resolution, CA1
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R É S U M É

Pour naviguer de manière flexible et efficace dans leur habitat naturel,
les mammifères peuvent s’appuyer sur une représentation interne du
monde qui les entoure. L’hippocampe est considéré comme l’un des
acteurs prenant part à l’élaboration de cette représentation notamment
parce qu’il contient un type particulier de cellules : les cellules de
lieu. Lorsque l’animal se déplace, chacune de ces cellules s’active
dans une partie spécifique de l’environnement qui lui est propre, son
champ de lieu, et reste silencieuse ailleurs. Par conséquent, ces cellules
sont supposées coder pour un endroit spécifique d’un environnement.
Néanmoins, la précision de leur patron de décharge peut être plus
ou moins importante en fonction de la taille de l’environnement,
de la disponibilité d’indices sensoriels ou de la localisation de leur
corps cellulaire le long de l’axe septo-temporal de l’hippocampe. Une
question importante est de savoir si et comment la résolution spatiale
de l’hippocampe dorsal peut s’adapter aux caractéristiques locales
d’un même environnement. Dans ce travail de thèse, nous avons
exploré cette question en enregistrant l’activité de neurones de la
région CA1 de l’hippocampe chez des souris effectuant des allers-
retours dans un couloir virtuel. L’utilisation de la réalité virtuelle nous
a permis de finement manipuler les indices visuels disponibles pour
l’animal. Plusieurs sortes d’indices visuels ont été utilisées, distribuées
de façon non homogène dans l’environnement, comme des objets
visuels 3D, de motifs sur les murs ou leur combinaison pour étudier
leur impact sur la résolution du codage de l’information spatiale.
Nous avons observé que les objets virtuels améliorent la résolution
du codage spatial dans leur voisinage. Les champs de lieu étaient
plus nombreux, plus petits, avec une meilleure information spatiale
et une meilleure stabilité. Ces effets étaient également observables
instantanément suite à une manipulation des indices visuels. D’autre
part, les motifs sur les parois ont également permis d’améliorer la
résolution du codage spatial, mais dans une moindre mesure. Ces
résultats ont été confirmés au niveau de la population à l’aide d’un
décodeur bayésien. Les objets ont également renforcé la résolution
du codage temporel en améliorant la précession de phase. Nous
proposons que la carte cognitive portée par les cellules de lieu de
l’hippocampe pourrait avoir une résolution hétérogène pouvant être
utilisée pour améliorer le codage et les inférences, notamment lors de
la navigation dans de grands environnements.

Mots clés : Hippocampe, cognition spatiale, cellules de lieu, réalité virtuelle,
objet, résolution, CA1
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Part I

I N T R O D U C T I O N





1
T H E O RY O F S PAT I A L C O G N I T I O N

No animal lives isolated. Even the most solitary creature will, at some
point in its life, interact with another organism in order to promote
its survival. Animals have to hunt preys, hide from predators or find
mates for their reproduction. In addition to these interactions with liv-
ing things, the survival of an animal also depends on the maintenance
of suitable relation with its non living environment. For example, swal-
lows fly thousands of kilometers south during winter to seek a more
bearable climate. Animals base their actions on acquired knowledge of
their surrounding and act outside of the reach imposed by their body,
they are mobile [Dethier and Stellar 1961]. These movements are neces-
sary to find nutriments, congeners or avoid danger. These abilities can
be optimized by acquiring knowledge on the environment through
active exploration. Indeed, animals developed various strategies in
order to find their way to a goal with diverse availability of sensory
information and different levels of knowledge about the environment.
According to Gallistel [1990], “Navigation is the process of determining
and maintaining a course or trajectory from one place to another” [Gallistel
1990, p. 35]. As opposed to exploration, which consists in moving
from a starting point to an unknown location, navigation implies the
existence of a goal directing the movement. The implementation of
navigation can be more or less complex and a large body of orientation
behaviors can support the process of getting from one place to another.
First, some "simple" strategies involve moving towards a perceived
goal using direct external sensory information. Other strategies can
often be summarized by stereotyped series of actions initiated by in-
ternal or external stimuli. Also, numerous organisms have developed
more refined navigational methods allowing flexible and efficient nav-
igation. They are able to bypass this sequential stimulus-response
strategy by the integration of multiple stimuli to construct an internal
representation of the external world [Tolman 1948; O’Keefe and Nadel
1978; Benhamou 2010]. Spatial cognition can thus be defined as the
acquisition, the organization, the use (potentially through various
strategies) and the update of spatial knowledge about an organism’s
environment in order to flexibly navigate in it.

1



2 theory of spatial cognition

A B

C Egocentric sequence

Figure 1.1: Illustration of taxic and praxic navigation system. A: a male moth follows the odor-
ant plume of a female congener. B: a rat searching for a particular reward can use
an object as a ’beacon’ to find it. C: a mouse in a multiple T-maze has to perform
the adequate egocentric sequence in order to find its goal.

1.1 taxon and praxic navigation

1.1.1 Taxis

Numerous mobile organisms have developed innate behavioral re-
sponses: taxis, that allow them to move toward or away from a stimulus
such as light or chemical gradient [Jacobs 2012]. These taxis, consist
in following the augmentation or reduction of a stimulus intensity
and can be performed by low-level sensory processing1. In this form
of taxic navigation the stimulus is used as a "beacon" towards which
the animal moves. Classical examples of such kind of behavior can be
a bacteria reaching a place with high concentration of nutrients or a
male moth following pheromone plume of a female congener or even
you, chasing the origin of a pleasing "croissant" perfume while going
to work in the morning (Figure 1.1 -A). This kind of strategy has been
shown to be used by rodents in order to locate single odorant sources
in an arena [Wallace et al. 2002; Khan et al. 2012; Gire et al. 2016; Liu
et al. 2019].

Beaconing is essentially a stimulus-response strategy and need the
constant perception of the beacon or goal landmark [O’Keefe and
Nadel 1978](Figure 1.1 -B). It is computationally very simple to learn
and to use, because it only requires the association of a single landmark
with a goal. However it comes at a cost of a lack of flexibility. If the
beacon disappears or moves, the animal will unfortunately be lost and
unable to reach its goal.

1 This process is even performed without a nervous system in some cells of our body
or some unicellular organisms.
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1.1.2 Praxis

Praxic navigation, sometimes called kinetic strategies2, consists in reach-
ing a goal using a sequence of stereotyped movements. These strategies
rely solely on information about the position and displacement of the
limbs, independently from a starting position3 (Figure 1.1 -C). This
method is nevertheless useful only if the starting point is kept at a
constant location. Imagine yourself for a moment in your room in total
darkness. Your bedside lamp no longer works, but you want to turn on
the ceiling light. You could then get up from your bed, step forward,
turn 90 degrees and then take two more steps to reach the wall switch.
The success of this sequence of actions requires the precise execution
of each of the movements, in a specific order, and can therefore take
a long time to be learned. But above all, you will have to start at the
right place on the bed to hope to reach the switch rather than a wall...
Evidence of the use of kinetic strategies have been provided in rats. In
the Morris water maze, if they are introduced in the pool under full
darkness, always at the same location and orientation, they can learn
a stereotyped trajectory to reach the platform location [Eichenbaum
et al. 1990; Packard and McGaugh 1996; Save and Moghaddam 1996].

Early studies on rodent navigation suggested that rats could perform
praxic navigation in complex mazes [Watson 1907; Carr and Watson
1908; Carr 1917; Honzik 1936]. In these experiments, rats submitted
to different levels of sensory deprivation, were trained to navigate in
complex mazes characterized by multiple paths and choice points.

Watson [1907] demonstrated that rats could solve a complex maze,
named "Hampton-Court maze" [Small 1901], after several types of
sensory deprivation (vision, smell, vibrissae removal). Even a rat
simultaneously blind, deaf, anosmic4 and lacking vibrissae was able to
solve the maze but needed a longer training period5. In a later study,
Honzik [1936] confirmed that rats could find the goal in a maze with
14-junctions even after being blinded or made anosmic.

2 kinesthesia is the sense that detects body position, orientation or movements of muscles,
tendons and joints.

3 kinaesthetic strategy is sometimes used in the literature to describe a navigational pro-
cess solely relying on internal cues like path integration [see: Save and Moghaddam
1996; Redish 1997]. It will not be the case in the present section.

4 anosmia is the absence or the loss of smell.
5 "Believing that the proof of the establishment of the maze association in an animal deprived of

the possibility of receiving most of the important extra-organic sensory stimulations would
add the needed confirmation to our previous work, we removed the eyes, the olfactory bulbs,
and the vibrissa simultaneously from a young male rat on September 6, 1906. There is no
need to describe the operations. Naturally recovery was slow in this animal. A certain lack of
tonicity was observable. [...] The animal finally completely recovered and is still alive (March
1, 1907) and in absolutely perfect condition. [...] He began at once to learn the maze and
finally became the usual automaton. The elimination of errors went on more slowly, however,
than in the case of the normal animals and consequently the number of trials is greater in his
case than in the former. " [Watson 1907, p.98]



4 theory of spatial cognition

Even if the removal of one to most of the external sensory cues did
not affect rats ability to find the goal location in a complex maze, it
does not rule out the possibility that they compensated the loss of
some external sensory cues, using spared ones (e.g.: tactile cues for
the rat blind, deaf, anosmic and lacking vibrissae of Watson [1907]).
Thus, in a follow up study Carr and Watson [1908] addressed this
problem by interfering with the kinaesthetic sequence itself either by
changing the starting position or by shortening/lengthening some
corridors once "the reactions to the maze became automatic". If placed
at a new starting point, rats were first confused but were then able
to reinstate their sequence of movements. For the second type of
manipulation, the animal’s behavior was deeply disrupted, to the
detriment of the rat itself: "the rats frequently ran full speed into the end of
the alley." [Carr and Watson 1908]. Similarly, Dorcus and Gray [1932]
reported that even with physical alteration of the limbs or muscles
of the rats, in order to perturb their motor sequence, rats managed
to perform with similar degree of accuracy than before their lesion.
Thus kinaesthetic information were not the sole information used
to guide the behavior of the animals. Altogether, these experiments
show that kinaesthetic information can be used to solve navigation
tasks. Nevertheless, they also revealed that some adaptations following
experimental manipulations could not entirely be explained by the
use of such information. On the other hand, the combination and/or
succession of the aforementioned taxis and praxis could also allow
the animals to catch up their behavioral sequence after a perturbation.
This strategy, called a route, will be described in the next section. Also,
complex mazes navigation might imply the use of an internal map
of the environment, an hypothesis that was developed years after the
aforementioned experimental studies (see § 1.3).

1.1.3 Taxon system

Remember the last time a tourist approached you to ask you for the
nearest location of a good restaurant. After a short period of reflection,
your answer certainly consisted in indicating a sequence of instructions
to be carried out in order to eat a delicious dinner: "continue to the
end of street A, then take left and walk 100 meters. Once you reach
the panel C the restaurant will be on your right". In this strategy, the
instructions are a list of stimulus-response-stimulus commands (e.g.:
street A (stimulus), take left and continue walking (response) until the
panel C (stimulus)) that can also be interpreted as a sequence of taxis
(guidance to a beacon) or praxis (motor sequence). The use of this type
of sequences of instructions is called a route-based navigation, also
referred to taxon system in O’Keefe and Nadel [1978]. These sequences
are coded in egocentric space (in reference to the animal’s body) and
are triggered by a particular stimulus. In this system, each cue will
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determine the next phase of the locomotion sequence. It differs from a
simple taxic strategy by its serial nature, and from a praxic strategy
by the independence of a given step to the previous ones6. Sequences
of actions can be constrained by a physical path or route up to the
next decision point where the movements should be adjusted. For
example, foraging ants can follow the pheromone trace let by previous
exploration by their congeners. Nevertheless, different olfactive paths
can cross, overlap or terminate and the ant will have to define its
sequence of actions according to another set of cues (e.g. visual cues)
[Harris et al. 2005; Collett et al. 2006]. Pigeons have also been shown
to follow physical routes or railways and use landmarks as turning
points during homing [Lipp et al. 2004]. The use of this strategy has
also been described in mammals like rodents or bats flying along
forest paths [Jones and Holderied 2007; Geva-Sagiv et al. 2015]. In
rodents, for example, such kind of navigation strategy can be used in
a maze with multiple choice points [Carr and Watson 1908; Honzik
1936].

A particular case in line with the taxon system can be called: "pi-
loting" [O’Keefe and Nadel 1978]. This strategy requires successive
tracking or conservation of a particular bearing in relation to one or
several landmarks on the way to the goal. This strategy allows the
location of the goal if it is not directly accessible, thanks to one or
several intermediary beacons. The successive beacons can be tracked
using different sensory modalities.

1.2 path integration

Another strategy, which is phylogenetically widespread and yet based
on a relatively more complex mechanism, is the path integration. This
process has been coined by Darwin [1873] in a letter to Nature were
he described the "dead reckoning" of a native siberian tribe passing
through hummocky ice. Despite ceaseless changes of direction they
managed to reach a particular place "with no guide in the heavens or on
the frozen sea". Hence, Darwin proposed that they could navigate rely-
ing on vision but also with proprioceptive information [Darwin 1873].
At the end of this letter Darwin questioned the fact that this ability
could be exclusive to men, but did not discussed an analogous process
used by animals7. In his response to Darwin, Murphy [1873] explained
that animal were indeed capable of similar performance. In this letter,
he also proposed that path integration could be computed from the

6 A praxis dependent of the previous one can be considered as a motor sequence in
itself, a bigger praxis composed of the current and the previous ones. Conversely, a
praxis "divided" in two motor sequences will be a route.

7 "This is effected chiefly, no doubt, by eyesight, but partly, perhaps, by the sense of muscular
movement, in the same manner as a man with his eyes blinded can proceed (and some men
much better than others) for a short distance in a nearly straight line, or turn at right angles,
or back again." [Murphy 1873]
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Figure 1.2: Depiction of an example of path integration. The animal can add the successive vec-
tors of its inbound path to the goal. S1−3 refer to the length (time elapsed multiplied
by speed) of each vector associated with a movement and ϕ1−3 to their correspond-
ing head direction. Once the goal is reached, the animal can compute a "homing
vector" to return at its starting position STOT .

addition of vectors representing the direction and the magnitude of
each movement8. This vector summation allows the computation of an
other vector giving the direction and distance to the starting point of
the journey, a homing vector9 (Figure 1.2). Thus path integration is the
ability to track one’s position in relation to a reference point, such as a
nest, solely relying on internal signal derived from locomotion [Bar-
low 1964; Gallistel 1990; Etienne and Jeffery 2004; Savelli and Knierim
2019]. One of the most illustrated case of path integration is "dead
reckoning": the ability to return directly to a starting or "homing point"
from any location in an environment, even in the dark or after a long
circuitous route (see § 1.3 for a more general case of path integrator).
Since then, this ability has been observed in many species ranging
from gerbils, hamsters, rats, mice of even birds and insects [Tolman
1948; Mittelstaedt and Mittelstaedt 1980; Mittelstaedt and Mittelstaedt
1982; Etienne 1987; Gil et al. 2018]. The original observation of this
ability by Darwin [1873] and Murphy [1873], did not scrupulously
demonstrated the creation and use of a "homing vector". Let’s take the
example of a small mammal leaving its nest at night to collect some
food to a feeding place. Once its goal is reached, the animal could use
multiple strategies in order to return to its granary. It could certainly
perform path integration, but could to an equal extent use external
cues (escaping the experimenter scope) or reverse the sequence of

8 "If a ball is freely suspended from the roof of a railway carriage, it will receive a shock sufficient
to move it, when the carriage is set in motion: and the magnitude and direction of the shock
thus given to the ball will depend on the magnitude and direction of the force with which the
carriage begins to move." [Murphy 1873].

9 "Further, it is possible to conceive the apparatus as so integrating its results as to enable
the distance and direction of the point where the journey began to the point it has reached"
[Murphy 1873] .
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actions that it did on its inbound route. Thus, the question of the
existence of a "true" dead reckoning was still open and the subject of
debates during many years.

It was only recently that, Mittelstaedt and Mittelstaedt [1980] and
Etienne [1987], demonstrated that (respectively) gerbils or hamsters
could deduce their homing vector from the integration of internal
cues such as vestibular signal and motor efferent copy. Mittelstaedt
and Mittelstaedt [1980] observed that a female gerbil in search of a
displaced pup could make a direct path to its nest once the pup was
found. The authors ruled out the use of external cues by performing
the task in the dark. More importantly, they demonstrated the use of
a homing vector by showing that a displacement of the animal, below
vestibular detection threshold, during the search phase led to an offset
in the return path by a similar amount (thus ruling out the use of a
sequence of stereotyped actions or the use of external non-visual cues).
In a similar manner, Etienne [1987] showed that golden hamsters used
path integration to return to their nest after a rotation of the arena
during the inbound route.

By repeatedly adding small movement vectors to an integrated
homing vector, path integration will become increasingly inaccurate
because of cumulative errors. Nevertheless, animals can compensate
this accumulation bias by resetting this path integrator using external
cues [Hardcastle et al. 2015; Keinath et al. 2018; Savelli and Knierim
2019].

1.3 map based navigation

Despite their simplicity and their effectiveness in many scenarios,
taxon behaviors described previously can not explain the use of a
covert variable in the environment. Hunter [1913] was one of the first
scholars who coined the notion of mental representation ("symbolic
process") of an external stimulus, when it was not directly accessible
to the animal senses but necessary for the completion of a task10. This
idea of an internal representation of external stimuli in animal was
then significantly developed by Tolman [1948]. In this seminal paper,
Tolman postulated that a map like representation of the external world
could be constructed in rats’ brains:

"We believe that in the course of learning something like a field
map of the environment gets established in the rat’s brain. [...]
The stimuli, which are allowed in, are not connected by just

10 "Over against this genetically simple learning, may be placed a more complex form of behavior
which involves a representative function. This ideational or representative process arises out
of a genetically prior sensorimotor level of behavior. [...] According to the law of parsimony,
the only conclusive evidence in favor of the existence of such a representative element is the
case where successful adaptations occur when that part of the sensorimotor process assumed
to be represented is known to be absent at the moment of response." [Hunter 1913, p.73]
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A B

Figure 1.3: A: Illustration of a map based navigation. A navigating animal can rely on its knowl-
edge about the allocentric relations between external landmarks to find its way in
an environment. (B): The animal can also use a map consisting in local views of
external landmarks in a given position that are then linked to a global coordinate
system, a ’path integrator’ (red superimposed grid). The integration of the direction
and the length of each movement of the animal will update the position of the ani-
mal in this preconfigured coordinate system. The allocentric position of the animal
is thus deduced from the transformation of egocentric movements.

simple one-to-one switches to the outgoing responses. Rather, the
incoming impulses are usually worked over and elaborated in the
central control room into a tentative, cognitive-like map of the
environment. And it is this tentative map, indicating routes and
paths and environmental relationships, which finally determines
what responses, if any, the animal will finally release." [Tolman
1948]

In this paper, Tolman suggested that the relation between the cog-
nitive map could have an indirect relation with the external world.
He proposed that this map could be learnt in a "latent" manner and
involve information not related to a goal. Contrarily, in the stimulus-
response theory only rewarded actions will be stored. This latent
knowledge,"tentative map", can potentially be useful later in case of
changes in the environment, to take a shortcut, avoid dead ends or ob-
stacles. Also, it is worth mentioning that Tolman did not described his
theory of the cognitive map solely in a spatial frame. In the discussion
of his paper he applied this perspective to social representation or
human behavior like: "regression", "fixation" and "displacement of ag-
gression onto outgroups". For example, he used this theory to explain
the behavior of a woman, described in an article of Time Magazine,
who regressed to a childish behavior after the loss of her husband:
"Time’s middle-aged woman was presented by too frustrating an emotional
situation at her husband’s death and she regressed, I would wager, to too
narrow adolescent and childhood maps ..." [Tolman 1948, p.207]. Tolman’s
definition of a cognitive map is thus close to the modern definition
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of the notion of "schema" in psychology11 introduced by Jean Piaget
[Piaget 1952].

Later, O’Keefe and Nadel [1978] developed this theory of a cognitive
map by proposing that the spatial properties of the external world
could be carried internally by a cognitive structure (Figure 1.3 - A).
This model is not necessarily isomorphic to a strict physical map of the
world but will contain enough information about the external world to
be able to make useful inference about it. This cognitive representation
is nevertheless analogous to a "map" in the sense that it provides a
simultaneous access to all the mapped relations in a reference frame
depending on external stimulus: "allocentric". Such structure allows
to deduce the relation of different sets of overlapping relations. In
other words, if the relations from A to B and from B to C are mapped,
then the relation from A to C can be deduced from the model even if
the path (A-C) has never been experienced [O’Keefe and Nadel 1978;
Poucet 1993] (but see: Simon [1996] and Jensen [2006]).

A decade after, Leonard and McNaughton [1990] developed an
other theory of navigation relying on "local views" of space (Figure
1.3 - B). Their initial motivation was that: "A location is nothing more
than a set or a constellation of sensory/perceptual experiences joined to others
by specific movements"[Leonard and McNaughton 1990, p. 366]. In
their model, position in an environment could be deduced from the
perceived set of cues or "local views" (that are not necessary visual
despite the use of the term "view"). These "local views" are then linked
during behavior to a general coordinate system: a preconfigured path
integrator. Consequently, the position and direction of the animal
can be updated solely on the basis of idiothetic information. The
integration of the angular and linear components of each movements
results in the displacement of a bump of activity in a preconfigured
coordinate system. Landmark cues are then used to define a relevant
reference frame and to correct potential drift of the path integrator. The
map in allocentric space is thus deduced from egocentric perceptions
[Leonard and McNaughton 1990; McNaughton et al. 1996].

The differences between these two theories can be attributed mainly
to their implementation. In the O’Keefe and Nadel [1978] model,
an allocentric map of the environment stores relationships among a
set of landmarks. Consequently it requires time to be formed in a
new environnement. Furthermore, as pointed out by McNaughton
et al. [1991], the storage of such kind of map would need to increase
supralinearly (n2) its storage capacity to cope for a higher number
of external cues (n). This will not be the case in the Leonard and
McNaughton [1990] model, were relations between landmarks are
associated to a preconfigured coordinate system. In this case, storage
requirements will increase only linearly with the number of landmarks.

11 Schema: An expertise-dependent representation of the structure of the world, identi-
fying the important parameters over which the world varies. [from: Redish 2016]
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Also, in the first case, the accuracy of the position estimate of the model
will be dependent on the number of cues in the environment whereas
in the second it depend on the preconfigured coordinate system.

In the frame of the Marr’s level of analysis [Marr 1982], these models
serve the same purpose (computational level). Nevertheless, they are
not mutually exclusive and can complement each other depending
on the environmental conditions favouring an externally or inter-
nally driven navigation strategy [Gothard et al. 1996a; Savelli and
Knierim 2019]. These two theories propose different implementation,
or algorithm in order to explain how an animal forms a map of its
environment. Nowadays, the current state of these two models is still
unclear and requires further investigations. However, one of the main
factor that contributed to the emergence and development of these
theories is the discovery of neural correlates of space: place cells, head
direction cells, grids cells and a variety of other spatially modulated
cells [O’Keefe and Dostrovsky 1971; Ranck 1984; Hafting et al. 2005]. I
will detail briefly these complementary neuronal correlates of space in
a following chapter ( § 3). But first, in the next chapter I will present
the anatomy of a set of structures crucial for spatial cognition, the
hippocampal formation.



2
N E U R O A N AT O M Y O F T H E H I P P O C A M PA L
F O R M AT I O N

"¡Como el entomólogo a caza
de mariposas de vistosos
matices, mi atención
perseguía, en el verjel de la
substancia gris, células de
formas delicadas y elegantes,
las misteriosas mariposas del
alma, cuyo batir de alas quién
sabe si esclarecerá algún día el
secreto de la vida mental!"

Ramon y Cajal [1917]

Tolman [1948] proposed the existence of a "cognitive map" in order
to navigate in a flexible and efficient way in a constantly changing
world. An important discovery which contributed to the development
of this theory was the discovery of spatially modulated cells in the
hippocampus and the adjacent cortical regions [O’Keefe and Dostro-
vsky 1971; Ranck 1973; Hafting et al. 2005]. A description of this space
modulated neuron will be developed in the next section § 3. First,
I will focus on an anatomical description of the hippocampal and
parahippocampal regions. In parallel, I will describe their connectivity
as it could be involved in the way spatial information flows and is
processed in the hippocampal formation.

2.1 anatomical definition of the hippocampal forma-
tion

The hippocampus is a brain structure belonging to the limbic sys-
tem located in the middle of the temporal lobe beneath the cerebral
cortex. This region is often referred to as an archicortex, a type of
cortex characterized by three or four layers, phylogenically older and
more primitive than the surrounding neocortex. The hippocampal
formation can be decomposed in the hippocampus (archicortex) and
the parahippocampal formation (neocortex) that differ in respect to
their general connectivity and their number of layers (Figure 2.1 -
A). Indeed, regions functionally homologue to the hippocampus can
be traced to the earliest vertebrates where the neocortex is absent
or extremely small: medial pallium in teleosts such as goldfish and
medial cortex in modern reptiles such as turtles and lizards [Murray
et al. 2018].

11
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The hippocampus is a bilateral medial temporal lobe structure
first described in human by Julius Caesar Arantius, a student of
Andreas Vesalius, in De Humano Foetu Liber in 1587 [Aranzi 1587;
Bir et al. 2015]. This pioneer anatomist and surgeon coined the term
hippocampus from the combination of the greek words for seahorse:
ἵππος (hippos, “horse”) and κάμπος (kampos, “sea monster”). This
term was chosen due to the similarity of the 3-dimensional shape
of the human hippocampus with this sea creature. In humans, the
hippocampus is located deeply in the brain as it lies within the medial
temporal lobe, in the floor of the inferior horn of the lateral ventricle. In
rodents however, the hippocampus has a banana-shape that occupies a
much larger fraction of the telencephalon inside its caudal pole (Figure
2.1 - A).

LEA
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A B

Figure 2.1: A Schema illustrating the location of the Hippocampus (gray, HC), and the parahip-
pocampal regions: perirhinal (PER), entorhinal (EC), and postrhinal (POR) cortices.
B Planar projection of parahippocampal regions. The dotted line depicts the rhinal
sulcus. Other abbreviations: C, caudal; D, dorsal; R, rostral; V, ventral. (Modified
from [Furtak et al. 2007])

In rodents, the superior portion, at the rostro-dorsal extremity, is
known as the "dorsal hippocampus" and is also called "the septal pole"
due to its proximity to the septum, a subcortical structure located at
the midline of the brain, between the lateral ventricles [Amaral1989].
The inferior portion is called the ventral hippocampus and has a
caudo-ventral localization so that, along this long axis, the hippocam-
pus has a C-shape (or a banana-shape)(Figure 2.1 - A). The long axis
of the hippocampus is generally designated as the septo-temporal axis
and the orthogonal axis is referred to as the transverse axis. Along
its transverse axis, the hippocampus proper can clearly be divided
into two major regions, a large-celled region and a smaller-celled re-
gion. Santiago Ramón y Cajal (1852-1934), a neuroanatomist famous
for his pioneer works describing the organization of the central ner-
vous system, respectively called these two regions regio inferior and
regio superior. However, the terminology of one of his disciples, Rafael
Lorente de Nó (1902-1990) known notably for the first description
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of the columnar organization of the cortex, has achieved more com-
mon usage. He divided the hippocampus proper into three fields
(CA1, CA2 and CA3). His CA3 and CA2 fields are equivalent to
the large-celled regio inferior of Ramon y Cajal, and his CA1 corre-
sponds to the regio superior [Ramon y Cajal 1909; Witter 2012]. Most
anatomists use the term "hippocampus proper" to designate the three
CA subregions (CA1, CA2 and CA3), and hippocampus to refer to the
hippocampus proper plus dentate gyrus [Amaral and Lavenex 2006].
The dentate gyrus and hippocampus proper forms two opposed "C"
that interlock. The parahippocampal region includes the Entorhinal
Cortex (EC), the Perirhinal Cortex (PER), the Postrhinal Cortex (POR)
and Pre- and Parasubiculum [Witter and Amaral 2004]. The location
of some parahippocampal regions in comparison to the hippocampus
is shown in Figure 2.1.

The hippocampus presents a remarkable organization along its
transverse axis. Along this axis, information flowing through the
hippocampus passes through three successive groups of neurons, from
granule cells in the dentate gyrus to CA3 and then CA1 pyramidal
cells (Figure 2.2). Dentate granule cells receive inputs from the adjacent
entorhinal cortex through fibers named collectively the perforant path,
then project their axons, the mossy fibers, on CA3 pyramidal cells.
CA3 pyramidal cells then contact CA1 via the Schaffer collaterals.
This simple circuit is often referred to as the "trisynaptic loop". The
output of this loop is made by CA1 pyramidal cells that project outside
of the hippocampus proper, to the subiculum and entorhinal cortex.
The description of this trisynaptic loop led to believe that the CA
subfields, particularly the CA1 and CA3 regions, corresponded to
successive processing stages in a major feed-forward loop through
the transverse axis of the hippocampus [Andersen et al. 1971]. In the
following section I will follow this flow of information to describe
successively the intrinsic hippocampal connectivity.

2.2 intrinsic connectivity of the hippocampus

2.2.1 Dentate Gyrus

The dentate gyrus is regarded as the "entry point" for information into
the hippocampus via the perforant path. It is organized in a super-
position of three Strata in the dorso-ventral axis: Stratum Moleculare
containing few neuronal cell bodies, Stratum Granulosum: composed
largely by neuronal cell bodies of dentate granule cells and the poly-
morphic layer [Amaral et al. 2007] (Figure 2.3). The polymorphic layer
is often referred to as hilus and was defined as CA4 by Lorente de Nó
[Lorente De Nó 1934]. Granule cells of the Stratum Granulosum have
a small diameter (8-12 µm) and form a fairly dense layer of cellular
bodies. The entire dendritic tree of granule cells is confined in the
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Figure 2.2: A Bottom: Illustration of the position of the hippocampus in a rat brain. The draw-
ing shows a preparation where the cortex overlying the hippocampus has been
removed. S and T indicate the septal/dorsal and the temporal/ventral pole respec-
tively. top: a zoom on a transverse slice (TRANS), cut perpendicularly to the longi-
tudinal axis, illustrate the major fields of the hippocampus and its intrinsic connec-
tivity. Abbreviations: DG, dentate gyrus; mf, mossy fibers; pp, perforant path; sc,
Schaffer collaterals (from Amaral1989) B Transversal slices of a rodent brain illus-
trating the change in the organization of the major hippocampal subfields along the
longitudinal axis of the hippocampus. The slices through the right and left hemi-
sphere were made at two different antero-posterior levels: left red, dorsal level (-1.82

from Bregma), right blue ventral level (-2.80 from Bregma) (Modified from [Franklin
and Paxinos 2013]).

molecular layer bordering the granular layer. Between the Stratum
Granulosum and the hilus lays the subgranular zone which is one of
the few stem-cell-containing niches in the adult mammalian brain.
Neural progenitors in this region have the ability to differentiate into
mature granule cells that will integrate the pre-existing adult network
[see Gonçalves et al. 2016, for review]. The axons of granule cells,
called mossy fibers, reach the hilus in which they divide into many
axon collaterals [Claiborne et al. 1986]. In the hilus, these collaterals
contact cellular bodies and dendrites of inhibitory interneurons and
mossy cells [Ribak and Peterson 1991].

Mossy cells of the hilus are excitatory cells covered with thorny
excrescences on both the cell body and proximal dendritic shafts. These
excrescences are large spine complexes that are contacted by very large
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Figure 2.3: Schema illustrating the different layers of the hippocampus in a transverse slice.
A: alveus, SO: Stratum Oriens, SP: Stratum Pyramidale , SR: Stratum Radiatum, SLM:
Stratum Lacunosum Moleculare, GL: Stratum Granulosum, ML: Stratum Moleculare, H:
Hilus, SL: Stratum Lucidum, pl: polymorphic layer

synaptic boutons from the mossy fibers (the so-called giant mossy
fiber boutons)[Amaral 1978]. Mossy cells project their axons widely
along the septo-temporal axis on the granule cells layer, suggesting
that these cells integrate information from a local set of granule cells
to redistribute them to more distant granule cells [Buckmaster et al.
1996; Scharfman and Myers 2013].

Granule cells project outside of the dentate gyrus onto CA3. The
main axon of the granule cells leaves the hilus and continues its
path towards the CA3 region in Stratum Lucidum. There, it contacts
several pyramidal cells via giant "en passant" boutons on the proximal
dendrites of the pyramidal cell and several interneurons via associated
filopodia [Freund and Buzsaki 1996; Acsády et al. 1998].

2.2.2 Hippocampus proper

The hippocampus proper follows a clear cytoarchitechnonic organiza-
tion defined by Ramon y Cajal from the observation of Golgi stained
hippocampal slices [Ramon y Cajal 1909]. The laminar stucture as seen
in Figure 2.3 is organized dorso-ventrally into five layers: the Alveus,
Stratum Oriens, Stratum Pyramidale , Stratum Radiatum and Stratum
Lacunosum Moleculare. Stratum Pyramidale contains most of the neu-
ronal cell bodies, mostly composed of excitatory pyramidal cells. The
other layers mostly contain fibers and the cell bodies of inhibitory in-
terneurons. An additional layer, Stratum Lucidum, is present above the
pyramidal layer of CA3 only. It receives the axonal projections of the
mossy fibers coming from the dentate gyrus. In the following section,
the dentate gyrus will serve as a reference point in order to describe
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different regions along the transverse axis of the hippocampus. For
example, the portion of CA1 adjacent to CA2, closer to the DG, will be
considered proximal, while the portion closer to the subiculum will
be called the distal portion.

2.2.2.1 CA3

The CA3 region is the second stage of the tri-synaptic loop. As de-
scribed previously, pyramidal cells of CA3 are targeted in their most
apical portion, Stratum Lucidum, by mossy fibers originating from
dentate gyrus. This Ammonic subfield can be subdivided in three
other subregions along its proximo-distal axis [Lorente De Nó 1934].
The most proximal subregion, CA3c penetrates the hilus. It is then
followed by CA3b and finally CA3a corresponding to the curved por-
tion adjacent to CA2. Between these three regions, pyramidal neurons
differ in their morphology but also connectivity [Lu et al. 2015]. Mossy
fiber inputs from the dentate gyrus taper off along this proximo-distal
axis [Ishizuka et al. 1995]. In addition to these inputs, CA3 pyramidal
cells are contacted at the level of their Strata Oriens and Radiatum by
collaterals originating from other CA3 pyramidal cells. Before going
out of CA3, 30 to 70% of CA3 synapses contact other CA3 pyramidal
cells [Li et al. 1994]. The recurrent projections of a single axon can
extend to ∼70% of the septo-temporal axis of the hippocampus [Sik
et al. 1993; Li et al. 1994; Le Duigou et al. 2014].

The strong recurrent circuitry of CA3 pyramidal cells can be com-
putationally seen as an auto-associative network [Marr 1971; Mc-
Naughton and Morris 1987; Rolls 2007]. Such networks have been
suggested to perform pattern completion, the ability to retrieve a
stored pattern of activity based on incomplete inputs. This mechanism
could allow to retrieve a particular memory with the help of partial or
degraded cues.

In 1892, a Hungarian anatomist, Károly Schaffer (1864–1939) de-
scribed projections of CA3 pyramidal cells to CA1 [Schaffer 1892;
Szirmai et al. 2012]. These Schaffer collaterals are organized topologi-
cally along the proximo-distal axis [Li et al. 1994]. Briefly, CA3a (close
to CA2) principally innervates proximal CA1 (close to CA2) while
CA3c (close to DG) contacts principally distant segment of CA1 close
to the subiculum (distal CA1). These collaterals are also organized
along the CA1 radial axis as CA3a neurons target predominantly the
basal dendrites, whereas neurons located close to the hilus (CA3c)
terminate predominantly on the apical dendrites of both CA1 and
CA3 cells [Li et al. 1994].

CA3 collaterals originate either from ipsilateral or contralateral
pyramidal cells. A population of inter-hemispheric fibers crosses
the midline via the hippocampal commissure and contacts the con-
tralateral hippocampus (CA3, CA2, CA1) [Amaral1989; Swanson and
Sawchenko 1981; Andersen et al. 2006].
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Finally, CA3 pyramidal cells projections are widely distributed
along the longitudinal axis so that a single CA3 cell distributes its
collaterals to much of the full septo-temporal extent of CA1 [Li et al.
1994; Andersen et al. 2006; Wittner et al. 2007]. The divergence of CA3

projections to CA1 could be used to distribute CA3 activity to a larger
pyramidal cells population and distribute it along different axes of the
hippocampus.

2.2.2.2 CA2
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Figure 2.4: Intrinsic connectivity of the hippocampal neurons in rodents. Dentate Gyrus (DG)
granule cells (blue), contact CA3 neurons (light green) in Stratum Lucidum and
weakly CA2 cells (medium green). Both CA3 and CA2 receive projections from
medial and lateral entorhinal cortex layer II (EC LII) neurons (grey) that target the
Stratum Lacunosum-Moleculare (SLM). In rodents, CA2 neurons receive projections
from CA3 neurons that target the Stratum Radiatum (SR). CA1 neurons (dark green)
are targeted by CA3 projections from Schaffer collaterals in Stratum Radiatum and
to a lesser extent by CA2 projections in the same layer. The main efferent projec-
tions of CA2 pyramidal target the basal dendrites (Stratum Oriens(SO)) of ‘deep’
calbindin-negative CA1 neurons. The density of reelin- and parvalbumin-positive
interneurons (pink) is several-fold higher in area CA2 Stratum Pyramidale than in
CA1 SP and CA3 SP (Modified from [Dudek et al. 2016])

CA2 is an Ammonic region that attracted attention only belatedly
compared to its neighbors. It is not considered as a part of the tri-
synaptic loop, but recent discoveries on its composition and connec-
tivity reinforce the idea that CA2 has a singular but underappreciated
role in the processing of the information flow transiting in the hip-
pocampus [Zhao et al. 2001; Lein et al. 2005; Jones and Mchugh 2011;
Dudek et al. 2016]. The cellular composition of CA2 is also distinct;
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in rats, it contains the highest concentration of different classes of in-
terneurons present in all three regions of the Corns Ammonis, including
parvalbumin, reelin, calbindin and calretinin expressing cells [Mercer
et al. 2007; Dudek et al. 2016].

When Rafael Lorente de Nó defined the different subfields of the
Cornus Ammonis, he described that the cell bodies of the CA2 region,
akin to those in CA3, were larger than the one found in CA1 [Lorente
De Nó 1934]. However, he noted that CA2 pyramidal cell dendrites
lack the specialized thorny excrescences associated with inputs from
mossy fibers from the DG, which are characteristic of CA3 pyramidal
neurons [Ishizuka et al. 1995]. Albeit the absence of these excrescences,
CA2 receives tapering inputs from mossy fibers in rats and mice1

[Kohara et al. 2014]. CA2 neurons also receive Schaffer collateral
inputs from CA3 neurons, much like the cells of area CA1 [Lorente
De Nó 1934; Chevaleyre and Piskorowski 2016; Dudek et al. 2016].

The axonal arborization of CA2 pyramidal cells is rather important
and divergent. Indeed, the axons of these cells send projections at the
intra-hippocampal level mainly on CA1 Stratum Oriens, but also on
Stratum Radiatum of the ipsi and contralateral CA2 and CA3. CA2

pyramidal cells contact different extra-hippocampal targets such as
the supramammillary nucleus, medial septum and diagonal bands of
Broca [Cui et al. 2013]. Recent evidence also suggest a physiological
and functional proximo-distal organization of CA2 [Lu et al. 2015;
Fernandez-Lamo et al. 2019].

2.2.2.3 CA1

The CA1 region is the last stage of the tri-synaptic circuit and receives
mostly CA3 axons via the Schaffer collaterals, though it is also con-
tacted by the entorhinal cortex (see Figure 2.6). The pyramidal cell
layer of CA1 is much more compact than in CA3, and the cells have a
more regular morphology [Ishizuka et al. 1995]. Cellular bodies are
thinner than in the CA3 region and mostly emit a single dendrite,
subsequently splitting into the Stratum Radiatum. These dendrites usu-
ally end in a fine arborization in the Stratum Lacunosum Moleculare
and commonly reach the hippocampal fissure. Basal dendrites grow
strongly in the Stratum Oriens and often reach the alveus. CA1 pyrami-
dal cells do not appear to be segregated in distinct layers at first sight,
but they are organized along a gradient of distinct morphological,
molecular and physiological features along the radial axis [Geiller
et al. 2017b; Soltesz and Losonczy 2018; Valero and Prida 2018]. This
gradient unfolds from the deep CA1 cells located more dorsally, close
to Stratum Oriens, to the superficial cells located beneath this deep
layer along the border of Stratum Radiatum. Like CA2 cells, pyramidal
CA1 neurons do not have thorny excrescences [Ishizuka et al. 1995].

1 The extent of the dentate gyrus projections to CA2 is species specific, see Dudek et al.
[2016] for review.
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CA1 projections mostly target the subiculum in a topological manner.
Briefly, proximal CA1 cells project towards the distal part of the subicu-
lum, while distal CA1 cells project onto the proximal part [Amaral
et al. 1991]. Also, CA1 cells receive a low input from the subiculum
[Commins et al. 2002; Sun et al. 2014]. Together with the subiculum,
CA1 is the most prominent output of the hippocampus to entorhinal
cortex and other neocortical areas [Freund and Buzsaki 1996].

Unlike CA3, CA1 cells do not have recurrent collaterals. Also, con-
trarily to CA3, CA1 neurons send very few commissural projections.
These major differences in intrinsic connectivity suggest a strong
functional dichotomy between these two ammonic regions.

2.2.3 Subiculum

The subiculum is composed of three principal layers. Its most super-
ficial layer, the molecular layer, is continuous with Strata Lacunosum-
Moleculare and radiatum of the adjacent hippocampal area CA1 field.
Its enlarged pyramidal cell layer contains the soma of principal neu-
rons. The polymorphic layer is located deeper (i.e., closer to the alveus)
than the pyramidal cell layer and is continuous with the Stratum Oriens
of the CA1 area [O’Mara et al. 2001; O’Mara 2005; Matsumoto et al.
2019]. Recent investigations revealed that the cytoarchitecture and
immunoreactivity of the subicular region could allow the division of
this region in proximal (closer to CA1 area) and distal (further from
CA1 area) subfields [Ishihara and Fukuda 2016].

The subiculum is in majority contacted by CA1 and the entorhinal
region [Amaral et al. 1991; O’Mara 2005; Matsumoto et al. 2019].
Reciprocally, proximal CA1 cells project to the distal subiculum close to
the parasubiculum [Amaral et al. 1991; O’Mara 2005]. The subiculum
also receives major inputs from the layer 3 of the medial and lateral
entorhinal cortices [Honda et al. 2012].

The subicular region sends numerous projections to various areas of
the hippocampal and parahippocampal formation: entorhinal, perirhi-
nal and postrhinal cortices [O’Mara 2005; Matsumoto et al. 2019].
Furthermore, recent evidences showed that the subiculum also sends
backward projections to the CA1 region [Commins et al. 2002; Sun
et al. 2014]. Moreover, the dorsal subiculum innervates adult-born
dentate granule cells [Deshpande et al. 2013; Matsumoto et al. 2019].

2.3 two parallel streams converging to the hippocam-
pus

The hippocampus receives most of its cortical inputs through the
entorhinal cortex via the perforant path. Entorhinal cortex also con-
stitutes the main output cortical structure of the hippocampus di-
rectly from CA1 or indirectly via the subiculum. In the following
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sections, I will describe how hippocampal-entorhinal connections are
anatomically organized along the longitudinal and transverse axis of
the hippocampus. One key aspect in this organization resides in the
anatomical dichotomy within the entorhinal cortex that can be divided
in lateral and medial parts. Numerous anatomical studies reported
a segregation of the cortical inputs to the medial and lateral areas of
the entorhinal cortex [Burwell and Amaral 1998; Furtak et al. 2007;
Kerr et al. 2007]. Medial Entorhinal Cortex (MEC) receives strong visuo-
spatial inputs while Lateral Entorhinal Cortex (LEC) is contacted by
non-spatial, contextual areas. This suggests that information transiting
through this area is segregated and processed in a parallel fashion to
then leads to functional diversity in the hippocampus [Brandon et al.
2014; Igarashi et al. 2014a; Knierim et al. 2014].

2.3.1 Entorhinal Cortex

The entorhinal cortex is the major input and output region of the hip-
pocampal formation [Knierim et al. 2014; Witter et al. 2017]. Its name
comes from the fact that it is partially enclosed in the rhinal sulcus. A
particular interest to this cortex has been initiated by Santiago Ramón
y Cajal when he observed its strong projections to the hippocampus
through the perforant path [Ramon y Cajal 1909]. The entorhinal cor-
tex can be divided, based on cyto-architectonic differences, into two
regions generally referred to as lateral and medial entorhinal cortex
or Brodmann’s areas 28a and 28b respectively [Brodmann 1909]. In
rodents, the difference between these two regions was first very strik-
ingly observed at the level of their projections on the dentate gyrus
as axons originating in the LEC terminate in the outer one-third of
the molecular layer and axons from the MEC terminate in the middle
one-third of the molecular layer [Hjorth-Simonsen and Jeune 1972;
Hjorth-Simonsen 1972]. The medial vs lateral entorhinal cortex di-
chotomy was later completed by studies demonstrating differences in
connectivity patterns and functional roles between these two regions.
I will first highlight the main differences in connectivity patterns be-
tween the medial and lateral entorhinal cortex before presenting the
organization of the projections between the entorhinal cortex and the
hippocampus.

2.3.2 Afferences and efferences of Entorhinal Cortex

MEC and LEC exhibit important differences regarding the brain struc-
tures with which they are anatomically connected. In this section, we
will focus on the main differences in inputs/outputs between LEC and
MEC independently of their distinct pattern of connectivity along the
longitudinal axis of the hippocampus [see: Kerr et al. 2007; Agster et al.
2016; Tomás Pereira et al. 2016, details on subregions connectivity].
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Figure 2.5: A Schematic representation of the gradient in connectivity between hippocampus
and entorhinal cortex in rodents. The dorsolateral band of the entorhinal cortex (EC)
(magenta) preferentially contacts the dorsal hippocampus. Increasingly more ven-
tral and medial bands of the EC (purple to blue) are connected to increasingly more
ventral levels of the hippocampus. B Planar projection of the entorhinal cortex de-
picted with a color gradient corresponding to the hippocampal gradient displayed
in A. Arrows show the topology of the major cortical projections to the entorhinal
cortex. The white line symbolize the border between medial and lateral entorhinal
cortex. (Modified from [Strange et al. 2014])

2.3.2.1 Afferences of the Entorhinal Cortex

Despite their close anatomical proximity, MEC and LEC, strikingly differ
based on their afferent connectivity with their cortical, subcortical or
parahippocampal partners [Kerr et al. 2007; Agster et al. 2016; Tomás
Pereira et al. 2016]. LEC receives stronger cortical projections than its
medial counterpart: one third versus one fifth of the total afferent
input [Kerr et al. 2007]. The main afferences to the LEC mostly come
from olfactory structures comprising the piriform cortex and the
olfactory bulb [Kerr et al. 2007; Chapuis et al. 2013; Agster et al. 2016].
The piriform cortex also accounts for the strongest cortical inputs to
the MEC. However, while the frontal and insular cortex contact more
heavily the LEC, the MEC is more strongly innervated by the temporal,
parietal and occipital cortices.

Subcortical structures provide one third of the total number of af-
ferences received by LEC or MEC [Kerr et al. 2007; Tomás Pereira et al.
2016]. In accordance with the strong projections from the piriform
cortex to the LEC, this region is also strongly innervated by the amyg-
dala or subcortical olfactory nuclei such as the endopiriform nucleus
[Tomás Pereira et al. 2016]. While these nuclei also project to the MEC,
subcortical inputs to the MEC are dominated by the dorsal thalamus,
particularly the lateral posterior nucleus, a region implicated in vi-
suospatial attention. The medial septum, a structure important for
the generation of the theta rhythm, also projects more strongly to
the MEC than to the LEC [Burwell and Agster 2008; Canto et al. 2008;
Gonzalez-Sulser et al. 2014].

The major afferences to the MEC come from the hippocampal for-
mation (hippocampus, pre- and parasubiculum, subiculum, post- and
perirhinal cortices) as such structures account for 50% of its total affer-
ent input (versus one third for the LEC) [Kerr et al. 2007; Tomás Pereira
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et al. 2016]. The two main hippocampal afferences to the LEC come
from the ventral hippocampus and the PER while the MEC is more
strongly innervated by the pre- and parasubiculum as well as by the
hippocampus proper. While the projections from the PER is heavier on
the LEC, the MEC receives projections equally from both the PER and
the POR [Naber et al. 1999; Witter et al. 2017; Nilssen et al. 2019].

2.3.2.2 Efferences of the Entorhinal Cortex

Both subdivisions of the entorhinal cortex project strongly to the hip-
pocampus proper. This close anatomical relationship will be described
in details in the following section. The efferent projections of LEC and
MEC into cortical areas are largely reciprocal with their afferent cortical
regions but this reciprocity is not well respected for subcortical struc-
tures [Kerr et al. 2007; Agster et al. 2016; Tomás Pereira et al. 2016].
Notably, LEC and MEC project strongly to the basal ganglia but are only
weakly contacted back by these structures. It is worth mentioning that
the basal ganglia represents more than 90% of the total subcortical
efferences from the grid cells area (dorsolateral pole of the MEC) [Kerr
et al. 2007]. Reciprocal connections are however present between the
olfactory nuclei/amygdala and LEC but also between the septal nuclei
and the MEC.

2.3.2.3 Intrinsic organization of the Entorhinal Cortex

MEC and LEC are composed of six layers [Moser et al. 2010]. Schemat-
ically, superficial layers II and III of the entorhinal cortex project to
the hippocampus, while the output from the hippocampus is sent
back to deep layers V and VI of the EC. The first layer (Layer I) is
a plexiform layer embedding few GABAergic interneurons. Layer II
is mostly composed of large multipolar cells called stellate cells in
MEC and fan cells in LEC. Layer II contains a second category of princi-
pal glutamatergic cells: pyramidal cells that are morphologically and
functionally distinct from stellate/fan cells. Additionally, stellate/fan
cells are reelin positive while pyramidal cells are calbindin positive.
In the MEC, pyramidal cells are grouped into small clusters (islands)
arranged in an hexagonal grid aligned to layer I axons [Kitamura
et al. 2014; Ray et al. 2014] but this striking arrangement is not present
in the LEC where pyramidal cells tend instead to be segregated into
sublayers [Witter et al. 2017]. Layer III is populated by pyramidal cells
with similar morphology and electrophysiological characteristics in
MEC and LEC. Layer IV is an other plexiform layer, containing very few
neuronal cell bodies and interneurons. It is nevertheless considered
as a transition between superficial I-III and deep V-VI layers. Layer V
contains superficially pyramidal cells (layer Va) while its deep part
(layer Vb) is composed of smaller neurons. In mice, layers Va and b
were recently identified based on the expression pattern of the tran-
scription factors Etv1 and Ctip2 respectively [Ramsden et al. 2015].
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The particularity of layer V is that it contacts superficial layers of the
EC with its apical dendrites. Layer VI has a heterogeneous neuronal
population whose density decreases in depth. Occasionally, its axon
collaterals contact the surface layers.

Intrinsic connections of the EC provides microcircuits where affer-
ences from the deep layers can influence the information incoming to
the surface layers, and vice versa, though these microcircuits are still
not well understood. These intrinsic projections are more important in
the medial than in the lateral part.

2.3.2.4 Projections of the Entorhinal Cortex to the hippocampus

Figure 2.6: Schematic representation of the main connections between rodent Entorhinal Cortex
and the hippocampal formation. The hippocampus is strongly interconnected with
the entorhinal cortex. The arrows indicate strong to moderate connections between
regions of the hippocampal (dentate gyrus, CA3, CA1, subiculum) and the medial
and lateral areas of the entorhinal cortex. MEC and LEC send projections to CA1

through two major pathways: direct (1) and indirect (2). In the direct pathway (1),
layer III neurons of MEC largely project to the proximal part of CA1 subfield (close
to CA2). Conversely, layer III cells of LEC contact the distal part of CA1 (close to
subiculum). However, in the indirect pathway (2), axons of layer II neurons of both
MEC and LEC converge on the same population of cells in the dentate gyrus and CA3.
This combined information in DG and CA3 is then transmitted to CA1 via mossy
fibers (3) and Schaffer collaterals (4). The output from CA1 is then brought to the
Entorhinal Cortex mostly through subiculum. Once in subiculum, information from
proximal CA1 is conveyed to MEC via distal subiculum, whereas distal CA1 sends
information to LEC via proximal subiculum (5 and 6). (Adapted from Igarashi et al.
[2014b])

The CA1 region is contacted by the EC by two major routes, the
direct and indirect pathways. In the direct pathway, layer III of the EC

projects directly on CA1 neurons. In the indirect pathway, layer II cells
from the EC synapse on the dentate gyrus and CA3, to then finish in
CA1 via the Schaffer collaterals. In the indirect pathway, reelin positive
cells from layer II (stellate cells in the MEC and fan cells in LEC) project
to the dentate gyrus and CA3. In layer II of the MEC, an additional
direct pathway has been described as calbindin positive pyramidal
cells project to CA1 as well as to the contralateral MEC [Varga et al.
2010; Kitamura et al. 2014; Witter et al. 2017].
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The indirect and direct pathways originating from the MEC and
LEC present some important anatomical differences regarding the
hippocampal subfields that they target. As noted above, the indirect
MEC and LEC pathways converge to the same population of neurons
in the dentate gyrus and CA3 at different level of the dendritic trees
[Witter and Amaral 2004] (Figure 2.6).

In the direct pathway however, MEC and LEC projections contact dis-
tinct population of neurons segregated along the proximo-distal axis
of CA1. MEC preferentially targets proximal CA1 (close to subiculum)
while LEC synapses on distal CA1 (close to CA2). Interestingly, this sep-
aration of entorhinal projection is mirrored for subicular projections
as MEC and LEC respectively target distal and proximal subiculum
(Figure 2.6).

In rodents, entorhinal projections to the hippocampal formation are
also anatomically organized along a dorsolateral to ventromedial axis
(see Figure 2.5 - A). In other words, the dorsolateral band of the en-
torhinal cortex is preferentially connected to the dorsal hippocampus.
Gradually, more ventral and medial bands of the EC are connected
to increasingly more ventral levels of the hippocampus [Dolorfo and
Amaral 1998; Witter et al. 2000].

Numerous evidences now support the hypothesis of functional
gradients along the proximo-distal [Henriksen et al. 2010; Burke et
al. 2011; Igarashi et al. 2014a], longitudinal [Kjelstrup et al. 2008;
Strien et al. 2009] or radial axis [Mizuseki et al. 2011; Geiller et al.
2017a,b; Soltesz and Losonczy 2018; Valero and Prida 2018] of the
hippocampus. Interestingly, these functional gradients are correlated
to differences in EC projections. A pure segregation of spatial and
non-spatial information stream is now attenuated because of multiple
convergences of these two streams in the hippocampal formation.
Also backpropagation of information from the hippocampus to the
deep layers of the entorhinal cortex could allow the integration of
spatial and contextual information. Nevertheless, the connectivity of
the entorhinal cortex strongly implies that it constitutes a cortical hub,
separating and pre-processing spatial and non-spatial information and
subsequently disseminating it to its hippocampal and cortical partners
[Brandon et al. 2014; Witter et al. 2017].
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"It is the response properties
of the last class of units which
has led us to postulate that the
rat hippocampus functions as
a spatial map. These 8 units
responded solely or
maximally when the rat was
situated in a particular part of
the testing platform facing in a
particular direction."

O’Keefe and Dostrovsky
[1971]

3.1 rate coding of space

3.1.1 Neuronal doctrine of space coding

The nervous system is constantly receiving sensory inputs from which
it extracts a multitude of features. These features are assembled from
primary sensory neurons to more integrative cortexes in order to form
representations of increasing complexity, specificity and invariance.
This idea of the neuron as a functional unit of the nervous system
originated from seminal works by Sherrington [1906] and Ramon y
Cajal [1909]. In this paper, Sherrington described for the first time
"receptive fields": the area of the body surface that could elicit a reflex
when stimulated. Decades later, and thanks to technical advances
allowing the recording of single nerve fibers, scientists discovered
that different neurons could specifically respond to distinct stimuli
[Hartline 1938]. The notion of receptive field was then applied to a neu-
ron as the specific feature of the sensory space activating it and thus
defining its function. This “neuron doctrine“ [Yuste 2015; Eichenbaum
2018], is not directly applicable to more integrative areas of the brain
like the hippocampus. However, early electrophysiological works on
hippocampal formation and its behavioral correlates acknowledged
the influence of previous works on visual and somatosensory systems
on their approach: "... the analog of a receptive field will be the behavioral
correlate of a neuron, ..."1 [Ranck 1973].

1 Interestingly, Ranck [1973] even used the term “microphrenology” when referring
to this approach that defines functional types of neurons based on their behavioral

25
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3.1.2 Place cells

In 1971, O’Keefe and Dostrovsky recorded the extracellular activity
of cells from the dorsal hippocampus of rats while they were freely
foraging in an arena [O’Keefe and Dostrovsky 1971]. They observed
that some cells were activated in a particular location in the environ-
ment and virtually silent elsewhere. This specificity of their firing
in relation to space endowed them the name of place cells (Figure
3.1 - A-B). The similarity of the receptive field of place cells and of
cells in sensory cortices is at first sight striking, but they importantly
differ for some crucial particularities. Early investigations of these
neurons showed that hippocampal place cells were not only activated
in relation to one sensory modality (sight, sound, touch,...), but by
a combination of external and internal cues. External cues represent
the characteristics of the environment and internal cues refers to the
information provided by the animal’s own movements. Later works
confirmed that the spatial firing of place cells was triggered by mul-
tiple sensory cues [Ranck 1973; O’Keefe and Conway 1978] and that
their activity changed depending on the set of cues available during
exploration [Muller and Kubie 1987; Bostock et al. 1991] 2. The re-
ceptive fields in sensory structures are thought to be "hardwired" so
that the same response will be observed for the same stimulus from
birth to death. Nevertheless, place cells are "softwired". Their activity
can change from one context to the other: "remap" [Muller and Kubie
1987; Latuske et al. 2018] in order to form orthogonal representations
of different environments [Leutgeb et al. 2005b] (Figure 3.1 - C). This
variability and level of integration of sensory information make place
cells incompatible with a strict definition of the “neuron doctrine“.
Nevertheless, this perspective influenced place cells works, certainly
until this day.

By design the term “place cell“ suggests that such cells (anatom-
ically, hippocampal pyramidal cells) signal only the position of
the head in the environment. A perfect place cell would discharge
if and only if the rat’s head were in a single place in the world.
Such a cell would discharge purely as a function of proximity to
the place, regardless of the rat’s activity (running, eating, groom-
ing, etc.) and regardless of any aspect of the spatial relationship
between the animal and the environment (e.g., running speed or
acceleration) other than head position. [Muller et al. 1994]

correlates : "For a neuron many synapses removed from sensory receptors or motor effecters,
the analog of receptive field will be the behavioral correlate of a neuron, i.e., the sensory
inputs and motor outputs of a rat which are associated with a given frequency or pattern of
firing of a single neuron. Let us call this search for the behavioral correlates of single neurons
“microphrenology.” [Ranck 1973]

2 An extensive review of the sensory cues influencing place cells coding will be detailed
in § 4.
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Figure 3.1: A: Schema illustrating the activity of different place cells while a rat forage in an
environment. The path of the animal is depicted with a grey line. A place field is
the region where a place cell fires in the environment. They are illustrated with
colored oval zones. B: Schema illustrating the position the hippocampus (orange),
in a rodent’s brain. C: Color coded firing rate maps of one hippocampal place cell
(yellow: low rate; purple: high rate). The same place cell is depicted in different
conditions. The place field of this cell changed its location following a modification
of the color (black or white) of a wall mounted cue card. (Adapted from [Bostock
et al. 1991])

This common interpretation of place cells coding suggests that they
directly code for a place in an environment (its place field) and that
their firing could be interpreted as a detector informing if the animal
is located at a particular place or not. This activity is classically studied
on time-averaged firing activity of the cell in relation to the position
of the animal. This average activity is then considered as the tuning
curve of the neuron for space and called a rate map [McNaughton et al.
1983].

In a given environment, each place cell fires at distinct positions so
that the simultaneous activity of a population of place cells can be used
to reliably infer the position of the animal [Wilson and McNaughton
1993; Brown et al. 1998]. Place cells are not topographically organized
[O’Keefe et al. 1998; Redish et al. 2001] [but see: Hampson et al. 1999]
in the sense that anatomically close place cells can either code for
distant or nearby regions of an environment [O’Keefe 1979; Redish et
al. 2001]. Despite this lack of topographical organization, the size of the
place field progressively increases from the dorsal to the ventral pole
of the hippocampus [Jung et al. 1994; Kjelstrup et al. 2008]. Similarly, a
difference in place field size can be observed along the proximo-distal
axis of CA1 [Henriksen et al. 2010](see § 4.4). These gradients of place
field size suggest that space is coded at different scales along the
longitudinal or transverse axis of the hippocampus. This difference in
scale could be linked to the distinct pattern of connectivity with the
medial and lateral entorhinal cortex along these axes (see § 2.3).
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The spatial firing of place cells is generated and shaped by a myriad
of external and internal factors that I will review in a later section of
this manuscript (§ 4). The role of place cells as a building block of a
neuronal spatial map is now corroborated by a large body of work
initiated by O’Keefe and Dostrovsky [1971]. Since then, place cells
activity have been shown to contribute to the animal’s spatial behavior
[Lenck-Santini et al. 2001; Girardeau et al. 2009; De Lavilleon et al. 2013;
Trouche et al. 2016]. Despite their strong spatial modulation, place
cells are influenced by various spatial and non-spatial factors (see § 4)
such that the "perfect place" portrayed above by Muller et al. [1994]
might not exist. Furthermore, the fact that "place-cell like" activity
has been found for numerous non-spatial variables [Pastalkova et al.
2008; Aronov et al. 2017; Radvansky and Dombeck 2018] and outside
of the hippocampus [Jankowski et al. 2015; Hok et al. 2018; Saleem
et al. 2018] casts some some doubts on a purely spatial function of
this region. Consequently, no consensus on the function and nature
of the coding supported by the hippocampus is currently commonly
accepted [Eichenbaum 2017].

3.1.3 Head direction cells

In January of 1984, Dr James Ranck Jr. implanted electrodes in a
group of rats attempting to record the activity of neurons in the
subiculum [Ranck 2005]. In reality, he later realized that his electrodes
deviated from their original goal to end up in a neighboring region,
the postsubiculum. The morning of the January 15th, he lowered
an electrode in one of his rat and encountered the striking activity
of an head direction cell [Ranck 2005; Dudchenko et al. 2019]. The
firing of this cell was modulated by the absolute direction in the
horizontal plane (yaw), independent of pitch, roll, and location of
the animal. Also, he noticed that the firing was extremely robust and
independent of the behaviors observed the afternoon of the recording3.
Head direction cells were then more carefully described and quantified
in recordings from rats dorsal presubiculum [Ranck 1984; Taube et
al. 1990a,b]. Since its discovery in rats, they have been reported in
other mammals like monkeys, mice or bats [Rolls et al. 1999; Yoder
and Taube 2009; Finkelstein et al. 2015] and even some invertebrates
[Seelig and Jayaraman 2015; Kim et al. 2017]. These cells are thought
to provide directional information akin to those of a compass. Head
direction cells fire in a particular direction no matter where the animal

3 Interestingly, James Rank later reported that this cell encountered serendipitously
was certainly not the "first" head direction cell recorded in his lab. When he talked
to his colleagues the day after, John Kubie remembered that someone uncovered a
similar cell before. "I had no recollection of the cell, but when we played the tape, lo and
behold, it was a head direction cell, unappreciated at the time. This cell was in stratum oriens
of CA1. If we had picked up on it, we would not have gotten anywhere (since such cells have
only rarely been found there since). I guess we were lucky to let it slip by. ". [Ranck 2005]
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Figure 3.2: Schematic illustration of a rodent foraging in a circular arena. A: While doing so, a
particular type of cells is activated when the animal is facing a specific direction in
the environment. The path of the animal is depicted with a black line becoming red
when the head direction cell is activated (top). The activity of this cell during the
whole recording session can be represented with a tuning curve as a function of the
direction faced by the animal (bottom). B: Diagram representing the connections
between the main areas containing head direction, angular head velocity, place and
grid cells. (part B is adapted from [Cullen and Taube 2017])

is located (Figure 3.2 - A ). Contrarily to a compass these cells do
not seem to be modulated by the earth magnetic field but rather by
landmark cues [Taube 2007]. Each HD cell is tuned to a different
direction, and a population of such cells uniformly represents all
directions [Taube et al. 1990a]. Their firing is thought to provide a
continuous representation of the animal’s heading angle.

Although head direction cells were initially uncovered in the pre-
subiculum, they have now been recorded in several other areas of
the limbic system as: the thalamus (the anterior dorsal [Taube 1995]
and the lateral dorsal [Mizumori and Williams 1993] thalamic nu-
clei) , entorhinal cortex [Sargolini et al. 2006; Giocomo et al. 2014],
retrosplenial cortex [Chen et al. 1994; Cho and Sharp 2001; Chen et
al. 2004] and lateral mammillary nuclei [Stackman and Taube 1998]
(Figure 3.2 - B ). The head direction signal is mostly generated by
two complementary pathways. The first relies on self-movement cues
integrated from brainstem areas to the anterodorsal thalamus, dorsal
presubiculum, and entorhinal cortex [Taube 2007](Figure 3.2 - B ). In
addition, visual landmarks information is integrated into this circuit
from the visual cortex directly projecting to the dorsal presubiculum
(and to a lesser extent, the retrosplenial cortex), which then exerts
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top-down control with projections to the lateral mammillary nuclei
[Yoder et al. 2011](Figure 3.2 - B ).

Theoretically, the generation of the head direction signal can be
explained by a "ring" attractor network [Skaggs et al. 1995; Redish
et al. 1996; Zhang 1996]. In this model, neurons are virtually arranged
in a circular fashion, sorted according to the value of their preferred
direction. The position of a neuron in the ring will impact the con-
nectivity of each neuron. While adjacent cells with close preferred
head direction excite each other, distant cells tend to inhibit each
other (indirectly through global feedback inhibition). This connectivity
pattern will lead to the emergence of an instantaneous activity of
the network reflecting the head direction of the animal. According
to this model, the relative difference of preferred direction between
pairs of cells is hardwired, and thus should not change between brain
state or behaviors. Interestingly, experimental studies have provided
evidence in favor of these hypothesis [Peyrache et al. 2015; Seelig and
Jayaraman 2015; Kim et al. 2017; Chaudhuri et al. 2019]. Nevertheless,
more "softwired" activity patterns of head direction cells have also
been reported [Knight et al. 2014; Jeffery et al. 2016; Jacob et al. 2017;
Kornienko et al. 2018] suggesting that fine mechanisms of head direc-
tion signal processing could subserves multiple functions [Taube 2007;
Cullen and Taube 2017; Peyrache et al. 2017].

3.1.4 Grid cells

In 2004 Fyhn et al. [2004] discovered that some neurons of the medial
entorhinal cortex exhibited a spatially modulated firing characterized
by multiple firing fields. In a follow up study Hafting et al. [2005],
described that the spatial firing of these neurons was organized in
a periodic triangular array tilling the entire surface of the available
space, thus endowing these cells the name of grid cells. After this
discovery in rats, grid cells were also recorded in mice [Fyhn et al.
2008], Egyptian fruit bats 4[Yartsev et al. 2011] and humans [Doeller
et al. 2010; Jacobs et al. 2013]. Since their discovery in the superficial
layers of the MEC, grid cells have also been recorded in presubiculum
[Boccara et al. 2010]. In superficial layers of MEC, grid cells are present
in both categories of principal cells (stellate and pyramidal cells)[Sun
et al. 2015] [but see; Tang et al. 2014]. In deeper layers of the MEC, as
well as in the presubiculum, grid cells co-localize with head direction
cells and "conjunctive" cells, which combine grid spatial firing with a
directional tuning [Sargolini et al. 2006](Figure 3.3 - D ).

The periodic firing of grid cells can be characterized by three main
characteristics: scale, orientation and offset (Figure 3.3 - A ). Grid cells
are organized in modules with increasing scale from dorsal to ventral
MEC [Barry et al. 2007; Mathis et al. 2012; Stensola et al. 2012](Figure

4 In Yartsev et al. [2011] bats were crawling for food pellets on a planar arena.
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Figure 3.3: A: Illustration of a rat foraging in a square arena. While the animal forages in this
arena (path in grey line), some cells of its entorhinal cortex are activated at multiple
locations that form a grid pattern. Grid cells can be characterized by three param-
eters. The scale is the spacing between field. Orientation is the angle of the grid
pattern. The phase measures the offset between a reference point and the grid pat-
tern. B: Grid cells are organized in modules with increasing scales from dorsal to
ventral MEC (Adapted from [Stensola et al. 2012]. C: If exposed to a new environ-
ment, grid cells remap in a coherent way (Adapted from [McNaughton et al. 2006])
D: Some cells from deep layers of the entorhinal cortex manifest a head direction
signal in addition to their grid pattern. In this experiment, when the cue card was
rotated by 90◦, both the grid map and the head direction vector rotated accordingly,
suggesting that both were anchored to the external cues. (Adapted from [Sargolini
et al. 2006]).

3.3 - B ). Within a module, neighboring grid cells will share the same
scale and orientation. Additionally, recent work using calcium imaging
during virtual navigation uncovered a topographical organization of
grid cells phases within modules as the anatomical distribution of
grid cells matched their spatial tuning phases [Gu et al. 2018].

Unlike hippocampal place cells, entorhinal grid cells remap in a
coherent way [Fyhn et al. 2007](Figure 3.3 - C ). The relation between
the firing of pairs of cells is conserved in novel environment and even
during sleep [Gardner et al. 2019; Trettel et al. 2019]. This suggests that
grid cells are embedded in a low dimensional continuous attractor
network [Burak and Fiete 2009; Yoon et al. 2013; Burak 2014] mostly
governed by recurrent connectivity between grid cells [Almog et al.
2019; Gardner et al. 2019]. However, principal cells (at least stellate
cells in layer II) do not interact directly with one another but indirectly
via inhibitory interneurons, so that stable grid firing patterns are likely
to emerge from an inhibitory recurrent network [Couey et al. 2013;



32 neurophysiological correlates of space

Pastoll et al. 2013]. The apparent rigidity of the grid pattern instigated
multiple theories of grid cells function. The first was that grid cells
could be used for self-location similarly to place cells [Fiete et al. 2008;
Mathis et al. 2012]. Also, they could provide a substrate for a metric of
space, a preconfigured path integrator used to link multiple locations
in an environment [McNaughton et al. 2006; Burak and Fiete 2009; Gil
et al. 2018] or to compute vector-based navigation [Kubie and Fenton
2012; Bush et al. 2015; Banino et al. 2018].

However, recent works have highlighted that the grid code was
not as rigid as previously thought. First, the grid pattern can change
over time. In a novel arena, the grid pattern is initially irregular
and expanded (increased scale) and several exposures are needed
for this pattern to regain a spatial selectivity and scale similar to
baseline sessions in a familiar environment [Barry et al. 2007; Keinath
et al. 2018]. Second, environmental cues, in particular boundaries, can
influence the regularity of the grid cell pattern [Krupic et al. 2015;
Stensola et al. 2015; Krupic et al. 2018; Hägglund et al. 2019]. Also,
grid cells appear to be highly sensitive to external cues as they are
strongly disrupted in the dark in mice and even each grid field can
have distinct properties and be influenced differentially by external
cues [Reifenstein et al. 2012; Chen et al. 2016; Pérez-Escobar et al. 2016;
Ismakov et al. 2017; Gerlei et al. 2019]. Recent works also showed a
sensitivity to non-metric cues [Marozzi et al. 2015], and an embedding
of object related [Høydal et al. 2019] or goal related activity in grid
firing [Boccara et al. 2019; Butler and Hardcastle 2019].

Thus, albeit their apparent regularity and the striking correspon-
dence of their firing with seminal models of spatial navigation [Mc-
Naughton et al. 1996], the role of grid cells is still unclear. Their
regularity is now being challenged by studies highlighting functional
differences in the population of grid cells, contextual sensitivity or
inhomogeneous spatial firing [Reifenstein et al. 2012; Pérez-Escobar
et al. 2016; Ismakov et al. 2017; Miao et al. 2017]. Recent works com-
fort their involvement in path integration [Parron and Save 2004; Gil
et al. 2018; Jacob et al. 2019] while other suggest that their role could
extend beyond pure spatial cognition to support navigation functions
in abstract or conceptual space [Constantinescu et al. 2016; Aronov
et al. 2017; Behrens et al. 2018; Bellmund et al. 2018].

3.2 phase coding of space

A fascinating rhythm animates the hippocampus as much as its litera-
ture since early electrophysiological recordings in this area [Green and
Arduini 1954; Vanderwolf 1969]. "Theta" rhythm is a slow oscillatory
activity around 8 Hz (more broadly 5 – 12 Hz) which dominates the
Local Field Potential (LFP)5during locomotion and during periods of
active engagement in the environment, such as rearing, exploring
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Figure 3.4: A-top: Depiction of a place cell increasing its firing rate at a specific location in
the environment: its place field (the intensity of the firing is represented from blue,
minimal firing, to yellow, maximal firing). A-bottom: While the rat crosses the place
field, the place cell fires at earlier theta phases as the animal progresses though
the place field. B-top: The activity of the place cell can be averaged for the whole
recording session into a rate map. Here the place cell fires significantly more than
noise, forms a place field, between 60 and 100 cm on the linear maze. bottom: The
theta-phase of each spike (in radian) plotted against the normalized progression
through the place field show a negative correlation between these two variables.
This phenomenon is called theta phase precession [Bourboulou et al. 2019].

objects, and preparation for movement [Green and Arduini 1954; Van-
derwolf 1969; Foster et al. 1989]. A large body of work uncovered its
crucial role in synchronizing and organizing information processing
in the hippocampus [Buzsáki 2002; Malhotra et al. 2012; Colgin 2013;
Lisman and Jensen 2013; Jaramillo and Kempter 2017]. One of the
most curious theta-related phenomenon was discovered by O’Keefe
and Recce [1993]. They observed that the firing of action potentials
of individual hippocampal neurons was correlated to the phase of
the ongoing theta oscillation. They noticed that the burst of activity
elicited when the rat entered a place field was out of synchrony with
the theta oscillation (contrarily to out of field spikes). As the rat tra-
verses the place field, the cell would fire progressively at earlier phases
of the theta cycle (Figure 3.4 - A-B ). O’Keefe and Recce named this ad-
vancement of spike phase relative to the progression through the place
field: "phase precession". This phenomenon is present in dorsal CA1

while animal foraged in linear tracks but also in open arenas [O’Keefe
and Recce 1993; Huxter et al. 2008] and in hippocampal interneurons
[Maurer et al. 2006; Ego-Stengel and Wilson 2007]. Furthermore, it is
not exclusive to the hippocampus and has been observed in several
areas of the hippocampal formation like the subiculum [Kim et al.
2012] and entorhinal cortex [Jeewajee et al. 2008; Mizuseki et al. 2009].
Perturbation experiments suggest that it could have an extrahippocam-

5 LFPs are intra cerebral recordings of extra cellular electrical activity up to 40 kHz
thanks to microelectrodes. It reflects the summed contributions of synaptic inputs,
membrane potentials, and synchronous spiking recorded from a very small neu-
ronal volume. Its generation is also influenced by the neuronal arrangement and
morphology. See Buzsáki et al. [2012] for a detailed review.
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pal origin [Zugaro et al. 2005]. It has also been described outside of
this formation in dorsal lateral geniculate nucleus [Hok et al. 2018],
prefrontal cortex [Jones and Wilson 2005]and striatum [Meer and
Redish 2011].

This correlate of the animal position inside a place field with theta
phase directly suggested the existence of a spatial phase code [O’Keefe
and Recce 1993]. Simultaneous use of rate and phase codes can lead to
a more accurate estimation of the current position of the animal [Brown
et al. 1998; Jensen and Lisman 2000; Reifenstein et al. 2012]. Taking
into account phase information allow to disambiguate entry and exit
through a place field, even if the animal is engaged in backward travel
movements [Cei et al. 2014; Drieu and Zugaro 2019]. This rate code is
often studied on time averaged data but can also be observed during
individual run through a place field [Schmidt et al. 2009]. At this single-
lap level, phase precession exhibited a large trial-to-trial variability but
was stronger than in pooled data. Most of this variability could not be
explained by behavioral factors and remains to be elucidated. However
these results suggest a robust phase code at each traversal of a place
field. One implication of this single-lap phase precession robustness
despite potential speed variation, is that the frequency of the cell’s
intrinsic oscillation should adapt to the time spent by the animal inside
the place field. Phase precession occurs over a limited range of the
theta rhythm (few theta cycles), but place fields can have different sizes
or the animal’s speed can change through successive passes through
the place field [Jung et al. 1994; Geisler et al. 2007; Schmidt et al. 2009].
A mechanism is necessary to conserve the rate of phase precession
despite changes in field’s size or speed. Experimental studies have
shown that such mechanism is given by a modification of the cellular
intrinsic oscillation frequency, such that at faster running speeds or
for smaller place fields, place cells oscillate at a higher frequency and
emit more spikes per cycle [Geisler et al. 2007; Diba and Buzsaki 2008].
Thus, phase precession allows a robust coding of place information
independently of rate or behavioral variation at the single lap level.
Nevertheless, its role supporting the coding of information inside or
outside the hippocampus is still unclear [Malhotra et al. 2012; Jaramillo
and Kempter 2017].



4
R E S O L U T I O N O F S PA C E C O D I N G

“Our brain is mapping the
world. Often that map is
distorted, but it’s a map with
constant immediate sensory
input.”

E. O. Wilson

We introduced in the previous chapters the notions that animals
could use an internal representation of their surrounding space in
order to navigate in their environment. This cognitive map can then be
used by the animal to locate itself but also to make inferences about its
environment: plan trajectories, shortcuts or find hidden goals [Tolman
1948; O’Keefe and Nadel 1978; Redish 2016]. In order to perform these
inferences, this "cognitive map" should reflect different components of
the external world like the multitude of borders or landmarks populat-
ing the environment. Nevertheless, the link between the internal and
external world does not need to be a one to one relation [Leonard and
McNaughton 1990]. Numerous investigations suggest that the brain
minimizes the metabolical resources used to encode a stimulus while
maximizing the amount of information encoded about it [Attneave
1954; Barlow 1961; Laughlin et al. 1998; Laughlin and Sejnowski 2003].
This efficient organization of relevant sensory information could al-
low an easier formation, maintenance and use of this internal model
[Barlow 1961; Simoncelli and Olshausen 2001; Simoncelli 2003; Mathis
et al. 2012; Młynarski and Hermundstad 2018].

For place cells, we could thus wonder if the number of activated
cells and the way they are coding for space could be modulated by
the amount and type of external cues present in the environment. For
example, will you represent the room you are currently in with the
same resolution than if it was empty? If this is the case, how your
internal representation of space will adapt to the introduction of a
new objects or furniture inside this room?

Defining spatial resolution is nevertheless a complex question no-
tably because of the different levels at which we can approach it. In
order to study the fidelity of an internal representation, an observer
could either focus his attention on its individual building blocks or on
the whole population of coding cells. To make an analogy, imagine a
conductor trying to find out why his ensemble does not play a piece
of music perfectly on a particular day. Discordance could emerge from
the fact that many musicians have not tuned their instruments or have
neglected their practice. However, even a "perfect" musical collective
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Figure 4.1: A Schema illustrating the activity of different place cells while a rat forages in an
linear environment. The path of the animal is depicted with a grey line. Different
place fields are illustrated with colored oval zones.B-C; Left: Lap per lap raster plot
of two place cells Right: time averaged mean tuning curve of the place cells. The
bold part of the tuning curve depict the location of the place field. The place cells in
B has more Spatial Information (Spatial Information (SI)), and a better Out of field
versus In field firing Ratio (Out/In) that the cell represented in C

could perform poorly because of the fact that they do not play in a
coherent way. Consequently, the resolution of space coding can be
defined at two complementary levels, considering cells individually
or collectively. In the next chapter I will first describe what are the
different ways to study the resolution at an individual cell level by
characterizing its spatial modulation. Next I will describe the sensory
or non-sensory factors influencing the spatial tuning of place cells.
And finally, I will conclude this chapter by developing why and how
population decoding can help us to study spatial resolution at the
population level.

4.1 accuracy of the coding at the single cell level

4.1.1 Classical metrics of tuning curve quality

In order to analyze the precision with which an environmental feature
(such as the animal position) is coded by neurons, scientists can focus
on the properties of time-averaged or trials-averaged spiking data.
In Figure 4.1, we can observe two place cells recorded in an animal
running in a linear corridor. These two cells exhibit a clear space
modulation of their firing, in both cases they exhibit a clear increase of
their firing rate at a specific location in the corridor. Nevertheless, we
can also observe that these cells are not equally tuned to space. The
cell in Figure 4.1 - B has a sharper tuning, with a higher peak firing
and a better signal to noise ratio than the cell depicted in C. In the
place cells literature, classical metrics of place cells firing quality are:
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• selectivity: the width range in sensory space where the cell fires
significantly more than the noise. For place cells, a change in
selectivity is related to a change in place field width.

• peak height: amplitude of the firing rate peak inside the place
field.

• signal to noise ratio: measured by dividing the mean firing rate
outside the place field by the firing inside the place field. This
measure informs how much the place field is dissociated from
noise.

Albeit informative, these metrics are heavily dependent on the
detection method of the place field1. Furthermore, we only focused
here on the most used metrics to place cells quality estimation. A
more detailed description of neuronal encoding of information in the
brain can be found in the following comprehensive review [Rolls and
Treves 2011]. We will nevertheless, in the next sections detail quality
measures that take into account the whole tuning of the cell in relation
to space (§ 4.1.2) and the reproducibility of the firing pattern between
the different presentation of the same stimuli (§ 4.1.3).

4.1.2 Information theory for place cells coding

A common information measure used to quantify the information
content of a place cells is the Spatial Information (SI; in bit/spike)
introduced by Skaggs et al. [1993, 1996]:

SIspike =
N

∑
i=1

(
FRi

FR
∗ OTi

OT
∗ log2

(
FRi

FR

))
(4.1)

where N is the number of spatial bins, FRi is the mean firing rate
determined in the ith spatial bin, FR is the mean firing rate, OTi is the
mean occupancy time determined in the ith spatial bin, OT is the total
occupancy time based on the mean occupancy time vector.

This measure reflects the amount of information conveyed by a spike
about the position of the animal in the maze [Shannon 1948]. This
metric is not dependent on the detection of the place field and includes
the whole firing rate of the cell as a function of space. Although very
valuable, this measure has some drawbacks. First it only considers
the time-averaged firing rate as a function of space (tuning curve).
Consequently, two cells with the same mean firing rate but a different
distribution of spike trains across laps (firing during all the laps
or half of them) will carry the same amount of spatial information.
Second, this metric is sensitive to background activity. A cell with

1 It exists no consensus on a standard way to detect place cells. This could led to
difference in quality reported by different laboratories.
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a clearly defined place field will be disadvantaged if it has a high
baseline activity. Thus, this index has to be used alongside other
quantification of the coding quality as seen in section 3.1. To overcome
these potential bias, Souza et al. [2018] adapted the original Spatial
Information measure to consider lap-per-lap variation of firing and
basal firing rate. This adaptation of the original Mutual Information by
Shannon [1948] is more consistently correlated with the capacity of
decoding the animal position, which directly relates to the amount of
spatial information conveyed by the cells [Quian Quiroga and Panzeri
2009].

4.1.3 Short term variability of place cells activity

Firing rate maps and consequently place fields, as discussed in the
sections above, are usually constructed by accumulating neuronal
activity over several minutes [McNaughton et al. 1983]. They give an
impression of a rigid space coding in a particular environment, each
pass through the same location giving the same population activity.
Even if the hippocampal spatial code can be stable across days [Muller
et al. 1987; Ziv et al. 2013; Rubin et al. 2015; Hayashi 2019] or weeks
[Thompson and Best 1990; Kinsky et al. 2018], it is in reality, highly
variable at a short time scale. These variations can be due to random
noise (introduced by one or multiple uncontrolled factors) or could
reflect more subtle temporal dynamics of place cells coding [Johnson
et al. 2009; Poucet et al. 2012; Poucet et al. 2015]. Though Muller et al.
[1987] already noticed that a place cell could be silent when passing
through it place field, the first study investigating the "excess variance"
of firing through place fields was done by Fenton and Muller [1998].
In this study, they compared the firing rate observed through each
individual pass inside the place field with a firing rate expected from
an inhomogeneous Poisson process. Remarkably, they observed that
in a random foraging task, place cells fired with more variability than
expected in their place field. For example, during two passes through
a place field with the same trajectory, a place cell could emit ten spikes
for the first and none for the second. This phenomenon called "overdis-
persion" was later interpreted as a phenomenon reflecting a switch
between different reference frames. In a follow up study Fenton et al.
[2010] trained rats in different behavioral tasks that could be solved
using one or several reference frames (distal / local cues and/or self-
motion). They showed that overdispersion was decreased when the
animal performed the task using only one reference frame (distal cues)
while it was increased when the animal performed the task using sev-
eral reference frames. Interestingly, by analyzing population activity
of place cells at each time point, they could identify different uncor-
related ensemble states (that could correspond to distinct reference
frames) alternatively switched on and off within a period of about one
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second [Lánský and Vaillant 2000; Lánský et al. 2001; Olypher et al.
2002; Fenton et al. 2010]. This study, as others, supports the hypoth-
esis that the hippocampus could maintain and dynamically switch
between multiple maps (sub-maps or reference frames) of the same
environment [Worley 1992; Harris et al. 2003; Harris 2005; Jackson and
Redish 2007; Kelemen and Fenton 2010; Kay et al. 2019]. This process
could alter the apparent spatial coding resolution if the existence of
multiple reference frames is not taken into account.

Analogous short term alternation of hippocampal coding has also
been described by Jezek et al. [2011] in a study investigating how an
animal switched between distinct maps of two environments after a
"teleportation" in a new arena. In this study, the animal was heavily
trained in two similar arenas (A and B) that were characterized by dif-
ferent visual cues (light patterns on the walls). In CA3, this behavioral
assay was able to generate two distinct, minimally overlapping (nearly
orthogonal) maps of both environments. The set of place cells active
in A was different than the one active in B2. During the test session
performed while the rat was foraging in arena A, the light patterns
were switched from the A to the B configuration in order to artificially
"teleport" the rat in arena B. After each teleportation, Jezek et al. ob-
served a “flickering” between the A and B spatial maps. These flickers
alternated between the A and B neuronal populations and were paced
by the theta rhythm. Recently, Posani et al. [2018] showed that the
position of the animal could be reconstructed at any time with an
accuracy comparable to fixed-context periods, even during flickering
periods. This was made possible thanks to the decoding of the spatial
context, at each time step, before applying the position decoder. In
other words, position decoding can be accurate even during flickering
if it is done in the right reference frame.

Besides this hypothesis explaining overdispersion as a switch be-
tween distinct reference frames or spatial maps, it has also been
proposed that single lap variability of place cells’ firing rate could
code for trial-related information through single lap rate remapping
[Allen et al. 2012]. In this study, the authors showed that task-related
information was represented via firing rate modulation of spatially sta-
ble place cells without modification of the location of their place field.
Altogether these studies highlight the fact that the place cells code is
highly dynamic on a short time scale so that it is important to take
into account the behaviorally relevant reference frames and/or task
specific information to avoid mistaking refined information processing
for random noise [Johnson et al. 2009].

2 Cells firing in both A and B conditions had uncorrelated spatial firing.
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4.1.4 Place cells activation and spatial resolution

Early reports of extracellular recordings in the hippocampus stated
that a large majority of CA1 neurons were place cells [O’Keefe and
Conway 1978]. Thompson and Best [1989] were the first to address
extensively the problematic of "silent cells" in the hippocampus. Silent
cells are normally not accessible through classical extracellular record-
ings because this technique can only record spiking cells with a suf-
ficient level of activity to be detected and dissociated from noise. In
this study, Thompson and Best notably used barbiturate anesthesia
(among other techniques) to maximize the activity of CA1 cells in
order to identify them. From their pool of spiking cells, they observed
that only two third were active during subsequent behavior. Recent
technological developments such as intracellular patch-clamp record-
ings or two-photon microscopy in navigating animals, allowed a better
estimation of the true percentage of silent cells as they are not biased
towards the recording of firing cells [Lee et al. 2006; Harvey et al.
2009; Lee et al. 2009; Dombeck et al. 2010; Villette et al. 2015]. Us-
ing intracellular recordings of neurons, it was even possible to study
the subthreshold activity of silent neurons in freely moving animals
[Chorev et al. 2009; Lee et al. 2009; Epsztein et al. 2011]. Through this
method, it has been shown that intrinsically more excitable pyramidal
cells (e.g.: having a lower spike threshold or increased burstiness; as-
sessed before exploration) would be more likely to form a place field
in a new environment than silent less excitable cells [Epsztein et al.
2011]. Recent works in the team further showed that during movement
or immobility, the membrane potential of CA1 hippocampal cells was
differently modulated in two populations of cells in mice foraging in
a familiar virtual linear track (see iv).

The increased excitability in a particular population of cells suggests
that only a portion of the neuronal ensemble is primed in a particular
moment. If the animal had to form two spatial maps in a time period
where the same population is primed, then the spatial maps might
overlap more than if it was formed at very different time points.
Interestingly, Cai et al. [2016] showed that this overlap was particularly
efficient to link distinct contextual memories that occurred close in
time. This was demonstrated by showing that fear conditioning in an
environment A could be transferred to a neutral environment B only
if the spatial maps of A and B were formed the same day but not if
they were formed one week apart. In CA3, Alme et al. [2014] recorded
the activity of the same population of place cells in eleven different
rooms. They showed that neuronal ensembles activated in the different
environments were minimally overlapping, possibly to maximize the
storing capacity of the network. Only a small proportion of cells were
active in many rooms while a majority fired only in one environment
and thus allowed the orthogonalization of the neuronal substrate
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active in each room [Alme et al. 2014]. At the sight of these studies, the
partial priming of a population of cells to code for new environments
could link different experiences close in time with highly active cells
while distinguishing them with cells only firing in one environment.

The fact that at each moment, the hippocampal network contains a
pool of neurons with a higher excitability could increase the proportion
of spatially modulated neurons in order to cope with a more complex
environment. We have observed such increase in the proportion of
spatially modulated cells in a virtual linear track enriched with local
visual cues in comparison to a linear track impoverished in visual
cues (see § ii ). This increase in place cells recruitment has also been
observed in rats exploring a new very large environment [Rich et al.
2014]. In this experiment, some cells that were originally silent in a
small environment became active when this environment was enlarged.
In the large environment, the distribution of field propensity3 followed
a gamma distribution. Briefly, a vast population of cells will have a low
activation level and form one or few place fields while a minority will
have a high number of place fields in the large environment [see also:
Buzsáki and Mizuseki 2014; Rich et al. 2014; Lee et al. 2019]. Recent
evidence also suggest that the intrinsic properties of hippocampal
neurons could be linked to their activation but also to their spatial
selectivity [Epsztein et al. 2011; Schmidt-Hieber and Nolan 2017].
Grosmark and Buzsáki [2016] described that a minority of neurons
with a high propensity also exhibited a high firing rate and a low
spatial selectivity in a new environment. These cells were called "rigid
cells" as they participated with a high probability in hippocampal
neuronal sequences during both preplay (during the sleep before
the new environment exposure) and replay (during the sleep after
the new environment) [Lee and Wilson 2002; Karlsson and Frank
2009; Dragoi 2013]. These rigid cells differed from "plastic cells" with
lower firing rate that acquired progressively a high spatial selectivity
during exploration and that were recruited more during neuronal
sequences after environmental exposure (replay)[also see Ven et al.
2016]. These two subgroups of cells could be the building blocks
of a nested coding by hippocampal CA1 neurons by coarse grained
rigid cells and finer grained plastic cells [Mizuseki and Buzsáki 2013;
Buzsáki and Mizuseki 2014].
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Figure 4.2: A: Schematic representation of the apparatus used in Terrazas et al. [2005]. Rats
were trained to press a lever in order to move a mobile platform around a circular
track and stop at a specific location to obtain a reward. B: Laps of driving were
interspersed with laps of walking (top). When the rat was driving the platform,
the place fields were approximately three times bigger than during walking laps
(top). C: Population vector correlation matrices highlighting the fact that during
walk population vectors became decorrelated more quickly as a function of space
than during driving. (Adapted from Terrazas et al. [2005] and McNaughton et al.
[2006])

4.2 how do sensory cues modify the precision of space

coding in the hippocampus

4.2.1 Self-generated cues

One of the simplest strategies to navigate in an environment is to rely
only on self-generated information, by integrating the length and the
angle of each animal’s movements. This process called, path integration
derived only from the computation of cues generated by an animal’s
own movements, also called idiothetic cues: proprioception, optic
flow, vestibular information and efference copy of motor commands
[McNaughton et al. 2006]. Navigating exclusively relying on idiothetic
cues is prone to cumulative errors that can be corrected by the use of
allothetic information [Gallistel 1990; Hardcastle et al. 2015; Jayakumar
et al. 2019]. Despite this, path integration could be very useful in a new
environment where the spatial relationships between external sensory
information have not yet been learnt. An early theory postulated
that the hippocampus was part of a preconfigured path integrator
network that could represent position using place cells linked by self-
motion information [McNaughton et al. 1996]. According to this path
integrator model, the size of the place fields, and by extension the scale
at which space is represented in dorsal hippocampus, was thought
to be controlled by self-generated sensory information. Experimental
investigations performed to test this theory first showed that idiothetic

3 Propensity: probability of a cell to form a place field in an environment. A cell
with a high propensity will be more active and tend to form multiple fields in an
environment.
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information appeared to be important for place cells activation. Indeed,
passive exploration of an environment with limb restriction has been
shown to dramatically reduce the number of active place cells in dorsal
hippocampus [Foster et al. 1989]. A later study conducted by Quirk
et al. [1990] has shown that in addition to being necessary, idiothetic
information was sufficient to form place fields in rats placed in total
darkness in circular arena. These fields were maintained at a similar
scale during subsequent illumination of the arena. Subsequently, a
deeper insight into place cell coding in the dark was brought by
Markus et al. [1994]. In this work they showed that place cells in the
dark had similar spatial scale but a decreased "selectivity"4 (signal
to noise ratio) and "reliability"5 (stability). This decrease in place
cells coding quality was conjointly observed for "theta cells" (likely
putative interneurons). Interestingly, in this study, rats with more
stable place fields also made fewer error (re-entry in the same arm
in a eight-arm radial maze), suggesting a link between place cells
quality and task performance. In Terrazas et al. [2005], the authors
demonstrated that a systematic alteration of self-motion information
affected the scale of dorsal CA1 place fields. In this study, rats were
trained to move forward in a circular track by pressing a lever to
activate a mobile platform in order to find a reward location. Laps of
assisted movement (driving the platform) were interspersed with laps
of walking. In comparison to the walking condition, the proportion of
place cells and their peak firing rates were reduced during the driving
condition. Strikingly, place fields were also approximately three times
larger than in the walking condition. The driving condition allowed
the reduction of ambulatory signals while preserving a normal optic
flow and vestibular input. Further reduction of vestibular signals
by rotating the entire environment around the animal sitting on the
stationary car reinforced the scale augmentation of the place fields.
This additional increase in scale was more modest than the change
of scale driven by the suppression of self-ambulatory signals. These
results have been corroborated by other studies using totally passive
navigation on mobile platforms or motorized robots [Gavrilov et al.
1996; Song et al. 2005]. Altogether, these studies suggest that self-
motion plays a crucial part in the definition of the scale at which space
is represented in the hippocampus.

4.2.2 Distal cues

Distal sensory cues are known to be used by rodents to guide naviga-
tion [Morris 1981; Morris 1984]. Numerous studies have also shown
that they could control the spatial configuration of place fields and the

4 Maximal firing rate/mean firing rate.
5 Mean Pearson correlation coefficient of standardized firing patterns between pairs of

trials.
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orientation of the hippocampal spatial map [Muller and Kubie 1987;
Bostock et al. 1991; Knierim and Rao 2003; Knierim and Hamilton
2011]. Distal cues are by definition far from the animal and located
outside of the explored environment. Their stability in relation to prox-
imal indices gives them an important ability to anchor and orient the
cognitive map. However, their impact on hippocampal spatial coding
on a quantitative and qualitative aspect is still unclear considering
their low sensory resolution6. Early works on the impact of distal cues
on place cells coding have mainly used comparison between light and
dark conditions [Markus et al. 1994; Lee et al. 2012]. Indeed, in these
behavioral assays, the landmarks cues available in the light condition
were distal7. As mentioned in the previous section, stability and spa-
tial information were significantly reduced when the distal cues were
removed. In Lee et al. [2012], they also showed that the effects of distal
visual cues on place cells stability and selectivity was blocked in Bax
knock-out mice in which dentate gyrus neural circuitry was selectively
disrupted. These results suggest that the Dentate Gyrus might be
important in order to align internally generated spatial representation
to distal cues.

One problem with the previously described approaches is that in the
dark, the animals are deprived of visual cues in general. This drastic
manipulation will affect distal visual cues outside of the apparatus
as much as more local visual cues such as the borders of the arena.
A recent study by Ravassard et al. [2013] used Virtual Reality (VR)
in rats to allow finer control of external cues that could carry spatial
information about the animal’s position in the environment. In their VR

system, only distal visual and some self-motion cues8 provided spatial
information to the animal. Their approach was to compare place cells
coding in two visually distinct real and VR 1D environments (linear
tracks) in order to identify the contributions of different types of cues
to CA1 place cells coding. While the percentage of place cells among
the active cells was very similar in VR and real environment (96%
in VR vs 99% in Real World (RW) ), VR was less efficient to mobilize
hippocampal neurons as in VR, only 20% of the CA1 cells were active
compared to 45% in the real environment. Their study also reported
a weaker spatial information content of place cells in VR against RW.
These results proposed that distal and self-motion cues available
in VR were sufficient for spatial selectivity but additional sensory
information, absent in VR, was important to fully mobilize place cells
population. In a follow up study Aghajan et al. [2015] studied the
spatial firing of dorsal CA1 cells during a 2D random foraging task in
virtual reality. In this work, they showed that distal visual cues alone
had a very poor ability to stabilize place cells. Despite this apparent

6 Distal cues are mostly apprehended through vision only and at some points of view.
7 Visual cues located at 2-3 meters from a 8-arm radial maze in Markus et al. [1994] or

two cue cards attached to the curtain that surrounded a circular arena in Lee et al.
[2012].
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lack of spatial selectivity, place cells in VR were activated during short
periods of approximately 2 seconds. These "motifs" exhibited similar
temporal structures between RW and VR (duration, firing rate, phase
precession), but their location was diffuse in VR, partially explaining
the spatial instability of cells firing. Interestingly, in this study a
partial improvement of place cells selectivity was triggered by the
introduction of proximal visual cues inside the arena. When the animal
was trained to locate the position of one or several proximal visual cues
(floating pillars) associated to a reward, place cells code was stabilized
at the reward location and between reward locations. Nevertheless, this
condition does not rule out the possibility that the change in spatial
coding could be caused by the use of a distinct navigational strategy
(beaconing, stereotyped or goal directed) or by a goal related activity
of the place cells. Parallel studies conducted by other groups showed
no or little quality differences between a RW and VR environment
[Chen et al. 2013; Aronov and Tank 2014]. The inconsistencies in VR

studies could be explained by particularities of the VR apparatus used
in each studies. The way the animal is fixed could deeply affect the
use of vestibular inputs. The animals are body-fixed in Ravassard
et al. [2013] and Aghajan et al. [2015] (rats) and head-fixed in Chen
et al. [2013] (mice), without the possibility to physically turn their
body in the VR apparatus. Conversely, in Aronov and Tank [2014],
the authors used a light body fixation enabling the animal to turn
physically and in the virtual environment. Likewise, the availability of
proximal visual information in the different apparatus could explain
the previously described discrepancies between VR and RW. Aronov
and Tank [2014] positioned complex visual shapes inside the 2D arena
and Chen et al. [2013] used discrete patterns on the sides of the walls.
But hitherto, no studies scrupulously compared the effect of distal
versus proximal cues on place cells activity in VR. Bourboulou et al.
[2019] showed that the introduction of proximal visual cues in virtual
reality could strongly activate CA1’s spatially modulated cells and
their coding quality. This study and the importance of proximal cues
on place cells coding will be detailed in the Results section (§ ii).

4.2.3 Proximal cues

4.2.3.1 Visuo-spatial cues

In addition to internal (idiothetic) and distant external information,
an animal can use cues in its immediate proximity to navigate in an
environment. Proximal cues encompass borders, textures of the floor,
intra-maze cues, self-generated odors beyond various others cues. In-
trinsically, these information are close to the navigating subject, they

8 In this study [Ravassard et al. 2013] the rat was body harnessed thus restricting its
body motion. Idiothetic cues available to the animal were proprioceptive and optic
flow.
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can be sensorially rich, experienced with multiple sensory modalities
and perspectives. However, their perceived orientation and size will
change in relation to a moving subject. At first sight, proximal cues
seem less suited than distal cues to orient the hippocampal represen-
tation [Knierim and Hamilton 2011; Yoder et al. 2011] but they could
be very efficient to disentangle nearby locations. In a seminal study,
Collett et al. evidenced that gerbils were able to locate a buried seed
in the sand in relation to intra-arena landmarks (e.g.: two cylinders) in
an otherwise impoverished environment [Collett et al. 1986]. Gerbils
were able to use one or several intra-maze cues in order to navigate to
their goal9. A decade later, Gothard et al. recorded place cells activity
while animals foraged in a cylindrical arena where the food location
was defined by two cylinders [Gothard et al. 1996b]. During succes-
sive exploration of the arena, these landmarks were moved inside the
apparatus while keeping their relative distance constant. Thanks to
this task, it was possible to dissociate the participation of distal and
proximal cues on place cells firing. The authors evidenced that place
cells could entirely or partially ("disjunctive cells") fire in a reference
frame defined by proximal landmarks. Numerous ensuing studies
even reported that the presence of objects could control place cells
firing in the hippocampus [Deshmukh and Knierim 2013; Geiller et al.
2017a; Fattahi et al. 2018]. As an example, Deshmukh and Knierim
[2013] described a category of cells that developed multiple place
fields with the same distance and bearing from objects inside the
arena: "landmark vector cells". Other studies reported that objects lo-
cated at the periphery, but not at the center, of a circular arena exerted
a strong influence on place cells map orientation [Cressant et al. 1997,
1999]. A follow up study showed that objects located at the periphery
of the arena had a stronger control over place cell firing than distal
cues [Renaudineau et al. 2007]. Aforementioned results highlight a
key role of proximal cues on the control of the hippocampal spatial
map.

Additional studies showed that local cues could also affect the
scale of the hippocampal space representation. Battaglia et al. [2004]
studied this question in a task where rats were trained to shuttle in a
linear track entirely enriched with or deprived of local sensory cues
(cue-rich and cue-poor condition, respectively), or in a linear track
divided in two cue-rich and cue-poor half (combined cue-rich/cue-
poor) (Figure 4.3 - A). Population vector of place cells active in the
cue-rich track decorrelated more quickly in comparison to the cue-
poor condition (Figure 4.3 - B), which indicated that the presence
of intra maze cues (cue rich condition) decreased the scale of the
spatial representation. Interestingly, this effect was not observed in
the combined track between the cue rich and the cue poor regions of
the same track (Figure 4.3 - C). The authors explained this absence of

9 See § 5.2 for a more detailed description of the study by Collett et al. [1986]
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Figure 4.3: Effect of local sensory cues on hippocampal spatial scale: A: Schema of the three
experimental conditions used in Battaglia et al. [2004] study. Animals foraged in
a combined cue-rich/cue-poor condition (top), a cue-rich (middle) or a cue-poor
linear track (bottom). B-C: The mean population vector correlation as a function
of the distance between the locations at which the two population vectors were
computed for the combined cue-rich/cue-poor condition (B, light blue: poor side,
light-red: rich side) and for the cue-rich (C , dark red) vs cue-poor (C, dark blue)
condition (Adapted from Battaglia et al. [2004])

effect by a possible "low statistical power" or more notably by the fact
that "the cues in [the combined condition] were relatively small compared
with those in [the cue-rich condition] and did not require large changes in
locomotor pattern". This absence of difference could thus be explained
by the modest saliency of intra maze cues but could also result from
the presence of other types of proximal cues as self-generated odors.
It is also worth noting that they did not observe any difference in
the number of detected place cells between the cue-rich and cue-poor
tracks. Proximal cues appeared to affect the scale but not the pool
of cells coding for space in this experiment. A complementary study
conducted by Burke et al. investigated the contribution of objects
on place cells coding in rats circumnavigating in a circular linear
track with several intra-maze objects [Burke et al. 2011]. This time, the
authors wanted to focus on the distal region of the dorsal hippocampus
known to receive extensive projections form the lateral entorhinal
cortex (see § 2.3 ). This cortical area has been shown to process object-
related information [Deshmukh and Knierim 2011; Van Cauter et al.
2013; Knierim et al. 2014; Burke and Barnes 2015]. Conversely to
the Battaglia et al. [2004] paper, they found that local cues increased
the number of place cells and their propensity to form a place field.
In addition, they observed a decrease of the place field size in the
presence of object. Nevertheless, this shift to smaller place fields was
concomitant with an increase in the number of place fields. Hence
these phenomena suggest a conservation of the hippocampal spatial
scale with or without objects: "Thus, there was a conservation of the
amount of space over which a given CA1 neuron fired. A possible consequence
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of this property is that it may serve to maintain a constant level of excitation
in the CA1 neuron population when behavioral conditions change" [Burke
et al. 2011].

Together, these studies demonstrate a strong influence of proximal
visuo-spatial cues on place cells coding scale. However, at a short
range visuo-spatial stimuli are likely to be intermingled with other
sensory cues. Further studies are needed to clearly identify the relative
participation of vision and other sensory modalities on hippocampal
spatial coding scale.

4.2.3.2 Local olfactory cues

Previously mentioned studies focused on visuo-spatial cues, but it
is known that other proximal sensory cues can complement visual
information or replace them in their absence [Lavenex and Schenk
1995]. For example, blind rats are able to form place fields comparable
in sighted rats [Save et al. 1998]. This is certainly possible thanks to
a compensation with tactile information and more frequent tactile
objects exploration. In a subsequent study, Save et al. [2000], compared
the impact of visual and/or olfactory cues on spatial firing of hip-
pocampal cells while rats randomly searched for scattered food in a
circular polarized arena. After an initial exploratory session in light
with a polarizing cue, the animal was confronted to three sessions
without the cue-card in light or dark conditions and with the arena
cleaned or not (cleaning condition): dark/cleaning, dark/no cleaning,
light/cleaning, and light/no cleaning. Most place fields expanded
and place cells were unstable in both light/cleaning and dark/clean-
ing condition in comparison to the dark and light condition without
removing olfactory cues (cleaning). Also, half of the cells in the dark/-
cleaned condition turned off following the experimental manipulation.
These results highlight the importance of self-generated olfactory cues
in presence or absence or visual information for the activation and
stabilization of hippocampal place cells. These results may seem sur-
prising taking into account that olfactory cues, due to their volatile
nature and the way they are perceived (through their intensity), can
be useful to determine the proximity of the odor source but less to
locate its direction [see: Jacobs 2012, for more details on the use of
olfaction for navigation]. Consequently, it is unclear how much spatial
information can be provided by self-generated olfactory cues. To ad-
dress this issue, Aikath et al. [2014] investigated the influence of these
self-generated olfactory cues in presence or absence of visual cues
and when both sets of cues were put in conflict (rotation of one set
of cues). This experimental protocol allowed the maintenance of local
olfactory cues between sessions, by re-using the same animal-specific
paperboard on the floor of the arena, with the same relation with
visual cues. The authors familiarized mice to the configuration of a
set of visual and/or self-generated olfactory cues, before a rotation
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of one or both type of cues. As expected, a rotation of the visual set
of cues led to an according rotation of place fields in animals trained
without self-generated olfactory cues. Remarkably, in presence of both
visual and olfactory cues, place cells followed essentially the rotation
of visual cues and ignored the counter-rotated olfactory information.
Accordingly, self-generated olfactory cues were not sufficient to an-
chor place fields on their own. These results suggest that visual cues
dominate self-generated olfactory cues for the control of place cells
orientation. Supplementary manipulation showed that the absence
of the self-generated olfactory cues during the exploration of a novel
environment strongly disrupted the stability of newly generated place
cells across successive sessions. Other spatial properties of place cells
(such as spatial information) were however largely similar in the novel
environment with and without olfactory cues. These results suggest
that in a novel environment, olfactory cues are incorporated in the
spatial representation and participate to its stabilization. With fur-
ther familiarization of the environment their importance, however,
decreased. A final experiment was done to study whether hippocam-
pal spatial maps could be expressed and formed only in the presence
of olfactory cues. In a featureless environment, these cues failed to
generate stable fields and to guide spatial maps rotation. Altogether,
these results suggest that olfactory cues alone do not provide spatially
discriminative signals to anchor place cells firing.

In a subsequent experiment, Zhang and Manahan-Vaughan [2015],
found contradictory results to the aforementioned one. In their study,
olfactory cues were shown to be very efficient to elicit stable and
selective place cells and to control place fields rotation. In their pro-
tocol, rats had first to forage in an empty circular arena in complete
darkness. Then, four different odors were placed underneath pinholes
organized in square in the arena’s floor. Coherently with Aikath et al.
[2014] observation, the introduction of odors in the arena stabilized
hippocampal spatial firing. In their case, however, odors only were
able to support the formation of a stable hippocampal map. A rotation
of the odor source rotated the map accordingly and a shuffling of the
odors led to place cells remapping. The discrepancies between these
two studies could be species dependent (rat: Zhang and Manahan-
Vaughan [2015] vs mouse: Aikath et al. [2014]), but could also depend
on the type and the amount of olfactory cues provided. In Aikath et al.
[2014] self-generated odors are likely to be less salient, potentially
mixed or disturbed by daily manipulation of the absorbent paper.
The constant addition of new odorant sources to the absorbent paper
could make them too numerous to be accurately spatially informative.
Zhang and Manahan-Vaughan [2015], on the contrary, used four dis-
tinct synthetic odors evenly spaced in the arena that could constitute
a more stable, anisotropic spatial framework.
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The formation of a cognitive map based solely on olfactory infor-
mation has recently been shown using a task where mice had to
shuttle in the dark while "navigating" in an odor space [Radvansky
and Dombeck 2018]. In this task, head-fixed mice were first trained
in a virtual linear track in presence of two monotonically increasing
odor gradients for the upward and downward directions10. After a
successful learning in presence of the odor gradient and visual in-
formation in the virtual corridor (e.g.: when the mouse licked at the
extremities of the corridor), the authors showed that the animal was
able to complete the task in the dark, relying exclusively on the two
odors gradients. With the help of two-photon calcium imaging, they
monitored the activity of hippocampal pyramidal cells and found a
proportion of place modulated neurons in the "odor space" (in the
dark). Nevertheless, this population only represented 10%±7% of their
recorded neurons 11 , a lower number than reported in VR studies with
visual information [Dombeck et al. 2010; Bourboulou et al. 2019]. Inter-
estingly, they showed that the number of cells with a significant place
modulation dropped drastically (88%) when the odor were made unin-
formative (flat odor concentration along the track). This result strongly
implies that, in the dark-odor condition, hippocampal representation
was largely odor-dependent.

The close link between the olfactory system and the hippocampus
in mammals has long been known; in fact, olfaction was once con-
sidered to be the main function of the hippocampus [Vanderwolf
1992, 2001]. From the aforementioned studies we can clearly conclude
that olfaction plays a crucial role for spatial context definition [Jeffery
and Anderson 2003]. We also saw that olfaction was incorporated in
the spatial representation in use to define and refine it [Save et al.
2000; Aikath et al. 2014; Zhang and Manahan-Vaughan 2015]. The
existence of a complementary or intertwined olfactory map is never-
theless uncertain. Animals appear to use olfactory sources in some
particularly controlled experiments [Zhang and Manahan-Vaughan
2015; Radvansky and Dombeck 2018]. It is likely that such level of
odorant control can only be achieved inside the walls of a laboratory.
In reality, olfactory cues are volatile and subject to turbulences created
by the behavior of the animal or external causes. Simple navigational
strategies are compatible with such conditions [Wallace et al. 2002;
Khan et al. 2012; Gire et al. 2016; Liu et al. 2019] but their involvement
in map formation is still unclear [Theories about olfactive navigation
are reviewed in the following extensive review Jacobs 2012]. However,
it would be of great interest to study the role of olfactory cues in long
distance navigation as in such condition, their volatility might be more
an advantage than a drawback in comparison to small scale navigation
as shown for birds [Papi 2001; Gagliardo 2013].

10 Visual information were first provided to guide the animal’s learning of the task
11 The total number of cells corresponded to the number of ROIs (regions of interest)

identified by the cell-identification algorithm.
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4.2.4 Borders

Physical boundaries of an environment, such as walls or corners,
provide strong sensory (visual, tactile,...) cues, while also defining the
geometry of an environment. This geometry can be very informative
in itself to generate space or directional information12. In a seminal
study, Cheng [1986] found that the arena geometry dominated over
local cues in guiding navigation to a reward location. Place fields
also maintain their positions relative to the edges of a raised holding
platform [O’Keefe 1979] while it was moved in the laboratory frame,
suggesting that a drop which impedes movement, the limits of a raised
platform, also constitutes a boundary. Nevertheless, in order to be
spatially relevant, non-physical border should be at fixed location in
relation to the environment. If it is not the case, as with the fuzzy-
boundaries used in Hayman et al. [2008], then the animal can not
use them as a spatial localizing cue13. Recording studies showed that
place cells were sensitive to the geometric features of an environment
as they scaled their place fields if the animal was exposed to an
identical larger one [Muller and Kubie 1987]. They also showed that
introduction of walls inside the arena bisected the firing of some place
fields14. The walls also caused a duplication or deletion of place fields
nearby them while letting distant fields intact. Later work by Rivard
et al. [2004], showed that a small proportion of CA1 place cells were
firing in relation to a barrier inside the arena independently of external
landmarks (and the context). It is of interest to note that the extend of
the barrier is of a crucial importance to affect place field location. For
instance, Cressant et al. [1997] showed that small objects placed inside
a cylindrical arena did not affect the location of firing fields when
they were separated, but did so when aligned to form an extended
barrier. Altogether these results show a deep influence of borders and
geometry of an environment in place cells firing.

4.2.5 Boundary vector cells model

In 1996, John O’Keefe and Neil Burgess showed how dorsal CA1 place
cells remodeled their place fields when a small square box was ex-
tended in one dimension into a rectangle, and then into a large square
arena [O’Keefe and Burgess 1996] (Figure 4.4-A). The place field of

12 A rectangle-shaped environment is an anisotropic geometric space, providing direc-
tional information inherent to its structure. In contrast, a circular arena will constitute
an isotropic space. However, a certain anisotropy can be artificially created by the
introduction other environmental features (objects [Cressant et al. 1997], polarizing
cues[Muller and Kubie 1987], slope of the floor [Jeffery et al. 2006]...) that will break
its structural symmetry.

13 In Hayman et al. [2008] the “fuzzy” barrier consisted in a imaginary "wall" that
triggered an aversive noise if it was crossed by the animal. The path of the animal
was reliably constrained within the thus defined limits.

14 A transparent barrier worked equally well
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A B C

Figure 4.4: A Example of place cells showing how the summation of separate gaussian tun-
ning curves locked to distinct walls in the environment can lead to the formation of
place fields. Stretching the environment into a HR (Horizontal Rectangle) leads to a
stretching of the place field in this direction and the emergence of two separate sub-
peaks. A change in the opposite direction into a VR (vertical rectangle) moderately
extends the place field in this direction. B BVC model of place field formation ex-
plaining the firing modification observed in A. The main characteristics (shape and
location) of the place field seen in A can be decomposed as a thresholded linear
sum of multiple gaussian wall-distance tuning curves. (Firing rate is color coded
from high firing rate: hot colors, to low firing rate: cold colors) C Schema of the
generalization proposed in Hartley et al. [2000]. Boundary Vector components can
be modeled by components tuned to the distance from a wall and an allocentric di-
rection to the animal. Top row shows broadly tuning components (left) leading to a
wide place field (right). Bottom row A sharpening of the angular and distance tun-
ing left can lead to smaller place fields (right). Adapted from O’Keefe and Burgess
[1996] and Hartley et al. [2000]

some of the recorded cells appeared to be anchored to one or two
walls. When an expansion in one direction was observed, the position
of this place field was still determined by its distance from the wall.
Another population of cells revealed a secondary place field along
the direction of the extended box. The modulation of the place fields
according to these geometrical deformations suggested that a place
field could result from the thresholded summation of one or several
putative wall-distance components (Figure 4.4-B). These components
are tuned to respond maximally when there is a wall at a particular
distance along a specific direction. Hartley et al. [2000] generalized
this description by proposing components tuned to the distance from
a wall and an allocentric direction to the animal. These theorized
boundary vector cells were later found in a number of brain regions
including the subiculum [Sharp 1999; Barry et al. 2006; Lever et al.
2009; Stewart et al. 2014], parasubiculum [Boccara et al. 2010], medial
entorhinal cortex Savelli et al. [2008] and Solstad et al. [2008] and
recently the rostral thalamus and anterior claustrum [Jankowski et al.
2015]. Most of the cells recorded in the aforementioned studies were
more numerous closer to the wall than further apart. According to this
model, a study by Barry et al. [2006] showed that the successive re-
moval of borders, profoundly affected the spatial representation. Place
fields became broader and less coherent as the number of borders in
the environment decreased. In the frame of the BVC model, scale of
the spatial representation could be globally modulated by a change in
either the angular or distance tuning of the boundary vectors (Figure
4.4-B). Global change could also be observed following a decrease in
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the threshold value of the summed components. Indeed a lower global
threshold could lead to a broadening of the place fields and even
trigger the generation of secondary place fields. Nevertheless, this
model could allow local variation of the spatial scale representation
by the introduction of components tuned to non-geometrical features
as distance and/or bearing to landmarks. These non-geometrical com-
ponents are usually not considered in BVC model [Hartley et al. 2000;
Barry et al. 2006; Grieves et al. 2018]. This vectorial activity in relation
to landmarks could explain why gerbils searched at different posi-
tions when one or several cues were separated in the Collett et al.
[1986] study. Furthermore, cells firing in a reference frame defined
by a landmark [Gothard et al. 1996b; Barry et al. 2006] or Landmark
Vector Cells have later been observed [Deshmukh and Knierim 2013;
Geiller et al. 2017a](also see §4.2.3). In parallel, local cues could indi-
rectly influence the variation of BVC tuning by locally modifying the
optical flow of the animal. The integration of visual flow estimates
has been shown to lead to realistic border cells firing [Raudies and
Hasselmo 2012]. Altogether, the previous results highlight a profound
impact of borders on the scale and the stability of space coding in the
hippocampal formation.

4.2.6 Scaling the hippocampal code to a bigger environment

We saw in the previous section that place cells could stretch in rela-
tion to the extension of an environment, from 61 to 122 cm, in one
or two directions [O’Keefe and Burgess 1996]. In this experiment, a
modification of the apparatus geometry also led to a change of scale.
Hence, the place fields expanded as a result of this change in the
size of the environment. The effects of an isotropic scaling of the
environment were first examined by Muller and Kubie [1987] either
in circular or squared arenas. Interestingly, they observed that place
fields were indeed broadened following the increase in size of the
arena but that this scaling was sub-linear. In other words, the ratio
of the scaling of the place fields was smaller than the environments’
one. Later works confirmed that changing the size of the recording
enclosure modified the size of hippocampal place fields [Maurer et al.
2005; Fenton et al. 2008]. Fenton et al. [2008] investigated the effect
of a non isotropic scaling, first by recording place cell activity in rats
foraging in a cylinder (68 cm diameter) inside a "monkey chamber" (a
bigger apparatus usually used for monkey recordings; 150 x 140 cm)
and then recording them in the full chamber without the cylinder. In
addition to the previously reported scaling of the place fields size they
also reported a multiplication of the number of place fields per cell
and a remapping15. CA1 place cells with a unique place field in the

15 This remapping was potentially caused by the non isotropic change in size and
geometry from the circular arena to the monkey chamber Fenton and Muller [1998]
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cylinder, formed multiple place fields in the six times larger chamber.
At first sight, we could hypothesize that this multiplication of place
fields could cause the spatial representation to become ambiguous, as
one place cell codes for multiple locations in the chamber. Neverthe-
less, a population vector-based decoding of simulated cylinder and
chamber place cells showed an equivalent small error in reconstructing
the animal position16. This suggests a homeostatic maintenance of
hippocampus activity according to the size of the environment17. A
follow up study by Park et al. [2011] uncovered that this multiplication
of the number of place fields following anisotropic scaling was not a
particularity of CA1 as this phenomenon was also observed in CA3

and DG18

This body of research proposes that the hippocampal spatial code
adapts to a scaling of the environment. More notably, it suggests that
this adjustment is not directly proportional to the increase in size of
the environment, neither for the increase in propensity nor for the
increase in place fields size. This observation raises the question of the
statistics that govern the scaling of the hippocampal spatial code in big
environments. In order to shed light on this question, Rich et al. [2014]
trained animals to forage in linear mazes of increasing size: from 3

to 48 meters. They uncovered that the probability of place cells to
form a place field (propensity) followed a gamma-Poisson distribution.
Briefly, a minority of cells expressed many fields while most of the
others had only few or none. Thus, the recruitment of place cells
scaled logarithmically with the track length. Also, as expected from
the gamma-Poisson distribution of the place cell propensity, fields
were allocated randomly and homogeneously over the environment.
They did not reported any clustering of the place fields in the large
environment ruling out the possibility of a chunking of a global map
into several smaller ones [Gupta et al. 2012; Alexander and Nitz 2017].

Altogether, these results suggest that the hippocampal spatial repre-
sentation adapts to an augmentation in size of the environment. The
multiplication of the number of place fields reinforces the hypothesis
of a population code of space in dorsal hippocampus. Several loca-
tions could be coded by the same neuron but disambiguated at the

16 Here Fenton and Muller used the decoding on simulated data certainly because of
a lack of simultaneously recorded cells. Briefly, they used the characteristics of the
whole population of place cell recorded in each condition to generate space modulated
spike trains from Inhomogeneous Poisson Process. Then, they used a population
vector decoding to deduce the position of the animal from the simultaneous activity
of the simulated cells [see also: Fenton and Muller 1998]

17 Such homeostatic processes of hippocampal activity have been proposed elsewhere to
compensate for the introduction of barrier, objects or in a new environment [Buzsáki
et al. 2002; Lever et al. 2009; Burke et al. 2011]

18 In the previous study by Fenton and Muller [1998] numerous components of the
apparatus were changing in addition to the scaling: the availability of distal cues
or stairs allowing 3D movement. Park et al. [2011] confirmed the previous results
in CA1 in less complex arenas while also characterizing the properties of spatially
modulated cells in CA3 and DG following the scaling.
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population level. But most of all, these results revealed an efficient
sub-linear mechanisms of place cells scaling (size and number of place
fields) or recruitment in large environments.

4.3 non sensory modulation of spatial resolution

4.3.1 Representation of goal

During navigation, animals need to represent their position in the
environment as well as the location of goals such as food, water or a
safe place [Poucet and Hok 2017]. Behavioral evidences of the impli-
cation of the hippocampus in goal localization has long been known
[Morris et al. 1982; Morris 1984; Sato et al. 2017]. Indeed, the first
studies investigating behavioral correlates of hippocampal cells re-
ported goal-related firing activity. Accordingly, these cells were called
“consummatory-approach” [Ranck 1973] or "goal approach" cells
[Eichenbaum et al. 1987]. More recent works revealed that this goal
representation could also be accompanied by an over-representation of
the goal characterized by an accumulation of place fields at the goal lo-
cation. The first study that showed such accumulation was performed
by Hollup et al. in rats swimming in an annular version of the water
maze. In a follow up study, the same team showed that this fields’
accumulation was following the goal if it was moved to a new location
[Fyhn et al. 2002]. These studies suggested that the hippocampal map
could be non-uniform by over-representing behaviorally meaningful
unmarked locations. Several other studies corroborated the fact that
CA1 place cells over-represented reward locations [Dupret et al. 2010;
Danielson et al. 2016; Mamad et al. 2017; Zaremba et al. 2017; Gauthier
and Tank 2018; Sato et al. 2018; Lee et al. 2019]. This local clustering
of place fields at the goal location was later shown to be linked to a
place preference behavior [Mamad et al. 2017] or to the memory of the
goal location [Zaremba et al. 2017]. Kobayashi et al. [2003] showed a
correlation between the performance of an animal to shuttle between
reward zones and an increased firing at the reward location. In this
study, some hippocampal neurons progressively changed their spatial
discharge during learning of a goal. These neurons fired robustly
at the reward location once efficient navigation between goals was
achieved [Kobayashi et al. 2003]. Altogether, these works demonstrate
a clear goal-related activity in the hippocampus in addition to its
position-specific activity. Nevertheless, in light of these results, it is
still unclear if the two spatial and goal codes coexist or if the goal
information is intertwined in a spatial canvas provided by place cells
[Eichenbaum 2017].

Two decades ago Burgess and O’Keefe [1996] hypothesized a ded-
icated population of cells coding for the goal location. In line with
this hypothesis, a recent work found that 1-5% of cells in the CA1
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and subiculum were context-invariant cells firing at the goal location
[Gauthier and Tank 2018]. Additionally, cells coding for a vector to the
goal location have been discovered in bats [Sarel et al. 2017]. These
works imply that two distinct populations of neurons could code for
goal or space in CA1. Nevertheless, additional experiments indicated
that goals are not uniquely coded by a dedicated population of hip-
pocampal cells. Indeed, Hok et al. [2007] described that place cells
could develop, in addition to their typical place field, a very peculiar
goal-related activity [Hok et al. 2007; Hok et al. 2013]. In this study,
rats had to enter an unmarked circular goal zone in a cylindrical arena
and stay there for two seconds to trigger the release of a food pellet at
a random location in the environment. Next, they had to leave the goal
zone to find and eat the pellet. Surprisingly, in this goal-directed task,
where the goal and the reward were dissociated, the authors did not
observe an over-representation of the goal (homogeneous repartition
of place fields) but place cells formed a secondary firing field at the
goal location. These results show that, in the Hok et al. [2007] task, the
same neuronal ensemble in the hippocampus provides a composite
coding of both goal and space. In line with this study, Lee et al. [2019],
found that goal fields were not specific to a particular population
of hippocampal cells. Additionally, they showed that the generation
of a place and goal field by a neuron were both a function of the
propensity19 of a cell (with a constant gain for the goal location; see
section 4.1.4). They proposed that the dedicated population of goal
cells observed in previous work [Gauthier and Tank 2018; Sato et al.
2018] could be explained by the small size of the environment they
used. This low proportion of cells exhibiting only a reward field (e.g.:
goal cells) is compatible with their model of gamma distribution of
neuron propensity and could happen by chance in a small environ-
ment. The authors do not however completely reject the existence of
a very small population of cells dedicated to goal coding that their
model could not detect. Another recent paper by Aghajan et al. [2015]
showed that hippocampal neurons with no spatial selectivity during a
random foraging task in virtual reality, became place selective after the
introduction of fixed cued goals in the arena. This work thus suggested
an effect of goal-directed behavior on place cells activity. Also Aoki
et al. [2019] found that in-field firing rate of place cells, irrespectively
to their relation to the goal location, was more pronounced when
rats were running toward the goal location. Despite this apparent mix
in goal and space coding, this goal-related activity was specifically
affected by medial septum inactivation while the spatial coding was
not.

Despite this body of work, it is worth noting that numerous studies
did not find over-representation of goal locations [Trullier et al. 1999;
Grieves et al. 2016; Duvelle et al. 2019]. These discrepancies could

19 See note 3 on page 42.
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be explainable by idiosyncrasies at the behavioral task. For example,
no over-representation of the goal location was found if the goal was
indicated by cues [Dupret et al. 2010] or if the reward was moved
[Speakman and O’Keefe 1990; Kobayashi et al. 2003]. In Fyhn et al.
[2002] study, the accumulation of place fields at the goal to a new
location vanished rapidly with experience. We could thus hypothesize
that this phenomenon is transiently present to learn new location of
a goal if a stable reference frame is used throughout the task. This
hypothesis does not seem likely as over-representation can be observed
after extensive training in some studies [Danielson et al. 2016; Mamad
et al. 2017; Lee et al. 2019]. Another possibility would be that in some
tasks and/or environments, the goal might be encoded in CA1 in a
very sparse way so that goal-related activities could not be directly
observable. This hypothesis might explain why goal-related coding
was not observed in CA3 [Dupret et al. 2010]. Finally, it is worth
noting that in the Gauthier and Tank [2018] paper that described a
specific population of goal cells in the hippocampus, they did not
rule out the possibility that these cells might be interneurons (and
not pyramidal cells) as they use Thy1-GCaMP3 mice that express the
fluorescent calcium indicator in all neurons (interneurons included).
This could go in line with a recent study by Turi et al. [2019] showing
the involvement of Vasoactive Intestinal Polypeptide (VIP) expressing
interneurons in dorsal CA1 to learn goal locations.

A last question about goal representation in the hippocampus con-
cerns the origins of such firing (whether or not it is made by a dedi-
cated population of hippocampal cells). Indeed, goal-related activities
have been described in prefrontal cortex [Hok et al. 2005; Hok et al.
2013] and more recently in medial entorhinal cortex [Boccara et al.
2019; Butler and Hardcastle 2019; Sargolini et al. 2019]. These re-
sults suggest that the coding of goal locations could be inherited or
conjointly supported by parahippocampal regions and/or prefrontal
cortex (maybe via the rhomboid/reuniens or the ventral hippocampus
that are anatomically connected to the prefrontal cortex).

4.3.2 Modulation of resolution by attention

As we saw in the previous sections, place cells activity is tightly linked
to idiothetic and allothetic sensory information. Such modulation of
place cells by various types of sensory cues in an environment implies
that in the same conditions (in an identical environment) place cells
should always keep the same pattern of activation. Nevertheless, de-
pending on the behavioral constraints of the task performed by the
animal in the environment, some cues might be more important than
others in order to achieve different purposes in the same environment.
Can this type of non-sensory, task-related factors, also influence hip-
pocampal space coding? This question was addressed in a seminal
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study where hippocampal neurons were recorded either during a
goal-directed task or during a random foraging task in the exact same
environment [Markus et al. 1995] [but see: Trullier et al. 1999]. Most of
the place cells remapped between the two different tasks suggesting
that place cells were not only controlled by sensory stimuli. In a later
study, Zinyuk et al. [2012] used a similar paradigm to study the effects
of the animal behavior on place cells activity. They trained rats in a
random foraging or a goal-directed task to obtain food pellets. They
used the similar place preference task that in the Hok et al. [2007]
study: navigator rats were trained to find an unmarked target area
kept at a fixed location in comparison to the room reference frame.
Their paradigm differed from Markus et al. [1995] study by the use of
a continuously rotating arena in a cue rich room [Rossier et al. 2000].
The day of the recording, rats were exposed alternatively to the stable
or rotated arena (stable-rotated-stable). In stable sessions, the quality
of place cells was similar in both tasks. However, during the rotated
condition, the spatial firing was strongly affected only during the
random foraging task. When placed in the rotating area, place fields
from the forager rats appeared as if they were not spatially modulated
any more : their firing did not follow the rotation of the arena and was
not anchored to the stable room frame. Conversely, in the navigators
group, a majority of place cells stayed stable and were more likely to
be preserved in the stationary frame that defined the goal. Altogether,
these results confirm that the hippocampus encodes environmental
information in a way that depends not only on the animal’s overt
behavior but also on the task that the animal is doing.

The aforementioned studies were conducted in rats and reported an
influence of the performed task on the control of place field location
but did not uncover any qualitative difference in place cells between
spatial and non-spatial tasks. On the contrary, Kentros et al. [2004]
showed that for mice, place cells coding quality strongly depended
on the behavioral task performed by the animal. In their study they
used four different tasks, with different behavioral demands, while
recording hippocampal neurons in C57B6 mice. First they used a "no
task" condition in which animals were placed in a circular arena and
could behave freely, without any task contingencies. The three other
conditions were 1) a random pellet chasing task 2) the exposition to
a novel environment and 3) a spatial task. In this spatial task, the
animal were placed five minutes in the arena before the occurrence of
an aversive stimulus (bright light and a car alarm). In order to stop
this aversive stimulus, the animal had to find an unmarked location
and stay there for few seconds. This led to a period of 2-3 minutes
when the animal could be safe. Surprisingly, the authors showed that
the stability and spatial information of place cells recorded in mice
performing the spatial task was higher than in the other conditions.
Also, the place fields stability in good performers was comparable to
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those observed in rats. Thus, this study highlighted a link between
place cell coding quality, the behavioral contingencies of a task, as well
as the behavioral performance of the animal. This peculiar stability
of spatial coding was potentially explained by an increased attention
to the spatial cues, specially in good performer mice. In the previous
experimental paradigm, the attention to a particular set of sensory
cues was "forced". Nevertheless, we could wonder if animals could
willingly redirect its attentional focus on a particular set of cues to
optimize its behavior. Such possibility would fit with the original
definition of an attentional process by James [1890]: "Everyone knows
what attention is. It is the taking possession by the mind in clear and vivid
form, of one out of what seem several simultaneously possible objects or trains
of thought ... It implies withdrawal from some things to deal effectively with
others ..." [James 1890; Rowland and Kentros 2008; Fenton et al. 2010].
Such online modulation of place cells coding has been uncovered by
Fenton et al. [2010]. In their study they particularly focused on place
cells firing variability on short time scales: overdispersion [Fenton
and Muller 1998; Fenton et al. 2010] (see: § 4.1.3). This phenomenon
is thought to reflect a switch between different reference frames on
a very short time scale [Olypher et al. 2002]. In their study they
thus wondered if a higher navigational demand, a higher need to pay
attention to a specific set of cues, could bias the hippocampal cells to be
in a single reference frame and consequently to reduce overdispersion.
Indeed, they observed that navigator rats, on a rotating arena, had
lower overdispersion than their foraging congeners. Surprisingly, they
also uncovered that overdispersion was lower during approach to a
goal than during departures. This suggests that attention can generally
increase the focus of the animal on external sensory cues and that it
directly impacts the short term variability of place cells firing.

In a follow up study, Muzzio et al. [2009b] addressed one of the
question opened by the aforementioned papers. In this serie of exper-
iments they asked if the stabilization of the place field map simply
depended on an increase in a general form of arousal or could require
attention to a particular set of visuo-spatial cues [Muzzio et al. 2009a,b].
To answer this question, they used two goal-directed tasks where the
animal had to pay attention to a set of visuo-spatial or olfactory cues to
find a reward. During the visuo-spatial task, the mice had to associate
a particular location in relation to visual cues, independently of odor
cues. In the olfactory version, mice had to associate a specific odor
with the food reward, independenty of spatial location. Importantly,
all sensory cues (olfactory and visuo-spatial) were identical in the
two versions of the task and rotation or reorganisation of the cues
were performed. If attention leads to an increased general state of
arousal, the stability of the representation should be similar in the
two conditions. Conversely, a selective modulation of attention could
cause a different level of stability in one of the conditions. They found
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that the hippocampal spatial representation was only stable in the
visuo-spatial group. They thus showed that attention could allow the
selection of a particular set of cues, relevant for the completion of the
task. This could also be explained by a change in the type of navigation
used to locate the goal. In the olfactory task, the animal could use a
beaconing strategy and thus only pay attention to the rewarded odor.
Altogether, the use of a constellation of visuo-spatial cues is correlated
with the maintenance of a stable hippocampal spatial coding. On the
other hand, the use of a simpler strategy that does not require the use
of the fixed visual cues leads to an unstable hippocampal map.

The definition of attention could also slightly derive from the initial
one proposed by [James 1890]. Attention is not only used to select
relevant information and to discard irrelevant ones for the task but it
can also be focused on a novel, salient stimulus that appears in the
environment. Monaco et al. [2014] developed a task leading to an in-
crease in the occurrence of attentive head-scanning behavior while rats
foraged in a closed loop track. The rats were first exposed to the famil-
iar track and then two types of manipulation were done to stimulate
the curiosity of the animal: either a double cue-rotation, by rotating, in
the opposition direction, the distal and proximal cues or a completely
new maze. These novel conditions triggered homogeneously, around
the track, a unique type of behavior: attentive head-scanning. This be-
havior is described as "lateral head-scanning movements" during pauses
that are thought to "reflect investigation of environmental features and
[...] represent an animal’s active management of information gathered during
exploration" [Monaco et al. 2014]. The authors found that in numerous
cases, attentive head-scannings led to the creation of a place field,
on the subsequent lap, at its location. This field was then stable for
the rest of the exploration. This demonstrated that attentive behavior
could trigger the abrupt formation of place fields, possibly to modify
or refine the pre-existing hippocampal representation. This result also
reinforces the hypothesis of a "dense" code in the hippocampus where
new information are incorporated by the creation of new place fields.

4.4 anatomical differences in spatial resolution

4.4.1 Transverse axis

As we saw in the previous sections, the hippocampal pyramidal cells
are influenced by a myriad of internal and external sensory informa-
tion. This information is first processed upstream of the hippocampus,
specially in cortical regions that send spatial and non-spatial inputs to
the place cells networks. These inputs originate in majority from the
entorhinal cortex which is itself functionally divided. The lateral part
of the entorhinal cortex is weakly modulated by space [Hargreaves
2005] but carry non spatial activity correlated to object identity, context
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or even temporal information [Deshmukh and Knierim 2011; Yoga-
narasimha et al. 2011; Van Cauter et al. 2013; Wilson et al. 2013; Tsao
et al. 2018]. Conversely, medial entorhinal cortex is thought to be a key
component to the neuronal representation of space [Hafting et al. 2005;
Moser et al. 2008]. This region contains a wide variety of specialized
cells such as grid, head direction, speed, border or conjunctive cells
[Hafting et al. 2005; Sargolini et al. 2006; Solstad et al. 2008; Kropff
et al. 2015; Diehl et al. 2017]. In CA1, the lateral and medial entorhinal
cortex projections terminate on different population of cells along the
proximo-distal axis. MEC inputs contact preferentially the proximal
part of CA1 (closer to CA2), while LEC axons terminate primarily
on the distal part of CA1 (close to the subiculum) [Witter et al. 2000;
Naber et al. 2001](see § 2). This distinct connectivity suggests a po-
tential difference in information processing along the proximo-distal
axis of CA1: proximal CA1 being more spatially modulated (MEC)
and distal CA1 preferentially influenced by non spatial information
(LEC). Could there be a difference in spatial tuning following this
gradient of connectivity from the entorhinal cortex? This question
was addressed by Henriksen et al. [2010] by recording hippocampal
neurons along the proximo-distal axis of the hippocampus while rats
foraged in big circular environments20. They showed that, indeed,
distal place cells, receiving LEC inputs, had more dispersed place
fields, with a lower information content and a higher propensity than
place cells in proximal CA1. This decline in spatial coding quality from
proximal to distal CA1 mirrors the decrease of spatial coherence in the
proximodistal axis of the adjacent subiculum [Sharp and Green 1994].
Additionally, proximal CA1 cells were more strongly phase locked
to the MEC theta LFP than distal CA1 cells suggesting a tight link
between space processing in these two regions.

Contrary to CA1, entorhinal inputs are not segregated in CA3.
Projections from LEC and MEC converge on the same cells but on
different dendritic segments [Witter and Amaral 2004; Leutgeb et al.
2005a]. Furthermore, the strong recurrent connections in CA3 could
prevent the creation of a functional gradient akin to CA1 [Marr 1971;
Witter and Amaral 2004; Igarashi et al. 2014a]. Nevertheless, Lu et al.
[2015] investigated if a gradient of spatial coding quality across the
CA2 to proximal CA3 (pCA3) could emerge from other factors than
the segregation of LEC-MEC projections (see § 2.3) [see also: Lee et
al. 2015]. Interestingly, they found several differences in place cells
coding quality along this axis. The proportion of active cells increased
along the CA3-CA2 axis, together with a broadening of place field
size. These gradients were also accompanied by a loss of spatial
information and stability from pCA3 to CA2. Altogether, these results
suggest the existence of a graded representation of spatial and non-

20 The authors specifically used a big environment to increase the likelihood of having
multiple place fields per cell and thus have an indication of the propensity of the cells
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spatial information along the CA2-pCA3 axis despite the convergence
of LEC and MEC inputs. This gradient could nevertheless originate
from differences in the degree of collateral projections, a dampening
of DG inputs or cells intrinsic differences (e.g.: gene expression) along
this proximo-distal axis [Ishizuka et al. 1995; Igarashi et al. 2014a; Lu
et al. 2015].

4.4.2 Radial axis

The pyramidal layer of CA1 is composed of two superposed layers of
cells: the deep layer which is more dorsal (near Stratum Oriens) and the
superficial layer that is more ventral (near Stratum Radiatum). These
two layers are named according to the position of their respective
basal and apical dendrites [Lorente De Nó 1934]. The study of the
physiological and functional properties of deep and superficial cells
was strongly facilitated notably by the development of silicon probes
and optical imaging that allow simultaneous recordings at different
depths (silicon probes) or a precise targeting and identification of
these layers (calcium imaging). Indeed, both technical requirements
were impossible using the classical electrophysiological recording with
tetrodes [Geiller et al. 2017b; Mallory and Giocomo 2018].

Mizuseki et al. [2011] were the first to show a functional gradient
along the radial axis of the hippocampal pyramidal layer thanks to sili-
con probes recordings in rats performing various behavioral tasks. The
fixed spacing between the recording sites of the silicon probe allowed
the electrophysiological discrimination of deep and superficial layers.
To do so, the site with the highest spike amplitude was first identified
as the "location" of the neuronal cell body. Then the middle of the
pyramidal layer was deduced from the site with the largest ripple
power [Ylinen et al. 1995]. The combination of these two measures
determined if a cell was above or under the midline of the pyrami-
dal layer. Interestingly, they found that these two subpopulations of
cells had different physiological properties. Notably, deep cells had
higher firing rate, bursts frequency and probability to form a place
field than their superficial counterparts. Nevertheless, no differences
between the stability, place field size, slope of the phase precession
or spatial coherence were observed between the two subpopulations.
In a follow up experiment, Danielson et al. [2016] performed the first
optical simultaneous recordings of deep and superficial CA1 cells.
They achieved this by coupling their two-photon imaging system with
a piezoelectric crystal allowing them to switch the depth of the field
of view quasi instantaneously. Thanks to this strategy, they confirmed
previous results showing that deep cells were more active and had
longer Ca2+ transients (likely bursting activity). Also, the deep layer
had a higher fraction of place cells with better spatial information in
comparison to the superficial layer. Curiously, deep place cells fired
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more variably around their place fields ("tuning specificity") but had
place fields of comparable size with superficial cells. Altogether, these
results suggest that space is coded more strongly in deep than in
superficial cells. A later study highlighted that these differences in
firing properties entailed distinct potential functions. Geiller et al.
[2017a] used silicon probe recordings in head-fixed mice running on
a treadmill. The belt of the treadmill was punctually enriched with
multiple visuo-tactile cues. Deep cells had their firing fields tightly
correlated with the location of landmarks. Meanwhile, superficial cells
exhibited mostly a single field less tied to the landmarks, and thus
more inclined to code for the global context of the task. Altogether,
these results demonstrated a strong radial diversity of CA1 pyramidal
cell physiology and function. Deep cells provide a more flexible map
influenced by landmarks while superficial cells support a more stable
and context-dependent map of the environment.

4.4.3 Longitudinal axis

The dominant view about longitudinal axis is that it functionally
divides the hippocampus. This viewpoint states that the dorsal hip-
pocampus is implicated in memory and spatial navigation while the
ventral hippocampus mediates anxiety-related behaviors [Strange et
al. 2014]. In spite of this dichotomy, numerous studies showed that
the place cells maps involve the entire hippocampus and that envi-
ronments are represented in a topographically graded continuum of
spatial scales [Young et al. 1994; Kjelstrup et al. 2008]. Place cells from
the dorsal portion of the hippocampus have sparse and small place
fields [O’Keefe and Conway 1978] whereas more ventral place cells
recording reveal wider and more overlapping place fields [Young et al.
1994; Maurer et al. 2005; Kjelstrup et al. 2008; Royer et al. 2010]21.
This gradient of place fields size suggests that the scale of the spatial
representation increases along the longitudinal axis [Royer et al. 2010].
Furthermore, this multiscale coding of space could also represent a
computational advantage to reconcile accuracy and generalization in
the same population of neurons. In dorsal hippocampus, population
vector activity decorrelate rapidly, within tens of centimeters [Battaglia
et al. 2004; Maurer et al. 2005]. Thus, the similarity (high correlation)
between different population vectors can only be identified within this
range. A nested code with larger spatial scale will allow to extend this
proximity relation without losing the accuracy conferred by the fine
scale.

21 On the contrary, one study did not reported differences in place fields size in ventral
or dorsal hippocampus [Poucet et al. 1994]. Only a non significant tendency was
reported as place fields in ventral hippocampus tended to be wider than in dorsal
hippocampus. This is likely explained by the too short spacing between dorsal and
ventral hippocampus electrodes. See the Discussion of Maurer et al. [2005] for further
details and explanations.
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Larger ventral place fields could also reflect a representation of
additional non-spatial information by the ventral hippocampus [Royer
et al. 2010; Keinath et al. 2014]. This region receives strong inputs
from brain areas implicated in emotion and anxiety [Strange et al.
2014]. Royer et al. [2010] provided evidence that ventral place cells
incorporated more non-spatial information than dorsal place cells. For
example, ventral place cells exhibited different firing patterns in open
versus closed arm, or between inbound versus outbound trajectories
in a radial maze.

In conclusion, numerous studies have shown that spatial infor-
mation is coded at different scales along the longitudinal axis of
the hippocampus and that this difference is likely explained by the
anatomical and functional diversity of incoming projections to the
hippocampus. The combination of these different scales could sub-
serve several functions. It could allow the integration of spatial and
non spatial information for downstream areas or a refinement of a
spatial canvas with non spatial information. Until now, this variety of
anatomical scale of space coding brings a plethora of questions that
needs further investigations in the future.

4.5 space coding at the population level

One of the principal limitation of feature detector theory is that place
cells do not consistently code for the same place if some cues are
changed in the environment [Muller and Kubie 1987; Bostock et al.
1991]. Place cells can also change their activity depending on the task
performed in the arena [Markus et al. 1995; Gothard et al. 1996b]. Thus
a place cell can not directly code for a place. One possibility could
be that it codes for a place in a "context" signaled by the pattern of
activity of its co-active pairs. This hypothesis stating that an ensemble
of neurons could jointly represent a concept or an event was coined
by Hebb [1949]. In this perspective, an individual neuron does not
work alone, it is a part of a neuronal assembly, and thus can not
account for a percept or an ability on its own. Much more knowledge
about the animal behavior can be extracted using decoding based
on population activity than single cells analyses [Quian Quiroga and
Panzeri 2009; Eichenbaum 2018]. Ambiguous information at the single-
cell level like multiple or wider place fields could be advantageous
when considering the whole population of active cells. In the next
section, I will describe the principal methods of population decoding
before demonstrating how and why they are very useful tools to study
spatial coding resolution.
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4.5.1 Decoding population activity

In 1986 Georgopoulos et al. [1986] were the first to provide evidence
that an ensemble of cells could coherently represent the direction of
an arm movement in a monkey. They developed a decoding algorithm
based on population vector activity22, to deduce the current arm move-
ment of the monkey from the weighted firing rate of each activated
neuron in the motor cortex. Even if motor neurons were broadly tuned
to one direction of movement, fine movement was accurately coded
at the population level. Few years later, Georgopoulos et al. [1989]
demonstrated that it was even possible to decode the movement in-
tention (and not only the current movement) of the monkey with a
variation of the task used in their original work. In the following study,
the monkey was trained to reach a target selected on each trial from
one of eight potential directions around a circle [Georgopoulos et al.
1989]. On a subset of probe trials, a bright target indicated that the
rewarded direction would be rotated 90◦ from the signaled direction.
The authors analyzed the correspondence between observed spiking
activity in the motor cortex immediately before reaching and the di-
rection of the subsequent reach by computing tuning curves of the
cells during the unrotated trials. They observed that, preceding the ini-
tiation of the movement in the rotated probe-trials, spiking activity in
the ensemble of motor neurons activated, reflected a "mental rotation",
such that the orientation represented by this population rotated 90◦.
This apparent noise in the activity of the motor neurons preceding
the movement were actually reflecting the intention of the monkey for
a future movement. Although elegant, these experiments required a
long and complex training of the primate. Hippocampal multi-units
recordings allow the simultaneous recording of hundreds of cells. The
strong neurophysiological correlates of space observed in this region
makes it a very suitable candidate to decode covert variable from neu-
ronal population activity. In 1993, Wilson and McNaughton showed
that population rate vectors of hippocampal cells were a robust predic-
tor of spatial location of the animal [Wilson and McNaughton 1993].
In this study, the authors were able to record dozens of cells simulta-
neously (73 to 148) thanks to twelve bundles of tetrodes implanted
in the dorsal hippocampus of freely moving rats. Using similarity of
population vectors calculated over a brief interval of time with the
mean population vector calculated over the whole exploration episode,
they were able to find that the instantaneous activity of the ensemble
of cells could precisely predict the animal position. Although efficient,
this algorithm only achieved high accuracy with relatively long times
bins (above 1 second) and a high number of cells (several dozens).

22 Population vector: The neuronal population vector is the outcome of a computation
by which weighted neural activities of individual elements in a population yield an
estimate of the population’s functional operation.[Mahan and Georgopoulos 2014]



66 resolution of space coding

Later approaches improved hippocampal space decoding using a
Bayesian statistical paradigm. This method can be decomposed in two
distinct stages. Firstly, the encoding stage use the biological signal to
construct probability of neural spiking in relation to one or several
variable of interest. Subsequently, the decoding stage uses Bayes’s rule
to estimate the most probable value of the variable given the spiking
activity [Brown et al. 1998; Zhang et al. 1998; Meer et al. 2017]. Applied
to position decoding in the hippocampus, this method provides several
advantages compared to previous decoding algorithms. Primarily,
it increases the accuracy of the decoding compared to previously
mentioned methods [Zhang et al. 1998] during smaller integration
time. As well, it allows to integrate a continuity constraint in the
decoding and to take into account other variables during the decoding
(e.g.: speed or theta phase,...).

These population approaches allow to take into account the greatest
informativity of a population as a whole [Quian Quiroga and Panzeri
2009]. A broad tuning or single trial instability of a place cell firing
can be compensated by other cells in the population. To illustrate this
point, Keinath et al. [2014] studied the spatial signal of cells in the
ventral portion of the hippocampus. According to previous results,
the population of place cells in ventral hippocampus embedded non-
spatial information [Strange et al. 2014] and ventral place fields were
more broadly tuned in relation to space [Young et al. 1994; Maurer
et al. 2005; Kjelstrup et al. 2008; Royer et al. 2010]. Interestingly, they
asked if this coarse tuning of space in ventral hippocampus leads
to a bad decoding of positional information at the population level.
Against the commonly thought notion that a broad tuning meant
a bad position decoding, they found that the population activity of
ventral place cells provided a reliable decoding of space. Even if spatial
information of single ventral place cells did not reach the dorsal place
cells values, a comparable reconstruction of the position of the animal
was computed from population of equal size from both regions. This
accurate representation of space in ventral hippocampus could explain
why either dorsal or ventral hippocampal lesions have been shown to
affect navigation in large or small scale complex arena [Contreras et al.
2018].

These results highlight that a broad tuning do not directly mean
that a variable is badly represented. On the contrary, a broad tuning
could support a multidimensional coding of different variables and
be advantageous for efficient [Zhang and Sejnowski 1999; Rigotti et al.
2013; Insanally et al. 2019] or more robust coding when stimuli change
quickly [Finkelstein et al. 2018]. The population analyses should thus
go hand in hand with individual cells analyses. Nevertheless, a dis-
advantage of population decoding is that it makes some assumptions
regarding the variable to decode, the cells that carry the information
and the way the variable is represented by the neuronal population.
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4.5.2 Limitation of population decoding

While studying the hippocampal formation, it is natural to focus our
attention on active coding cells (with spiking activity correlated to one
aspect of the environment or the animal’s behavior). In 1973, Ranck
wrote that "It may not be possible to find a behavioral correlate of a neuron,
for its firing may signal something not directly related to overt behavior, such
as drive state, or some idea the rat has, or the blood level of some substance.".
Indeed, when no clear correlate to a neuron activity is found, it is
common to conclude that this neuron serves no function in the current
behavior of the animal. Nevertheless, advances in recording technics
and analysis showed that non-clearly categorized cells could carry
information about the current animal’s behavior. Harris et al. [2003]
showed that hippocampal cells could form "assemblies" of cooperating
cells during a spatial behavior. Interestingly, these assemblies included
either place and non-place cells (even if non-place cells proportion was
really small 2%). In a recent study, other authors corroborated this
idea by investigating how the collective behavior of hippocampal cells
could give rise to place-modulated activity [Meshulam et al. 2017].
In this paper, the authors fitted a statistical model only reproducing
the mean and the peer-correlation activity of all cells in the dorsal
hippocampus of mice foraging in a virtual linear track. They found
that this model could accurately predict the activity of each neuron
from the state of all other place or non-place modulated neurons in
the network. This result reinforces the idea that information about
the animal behavior is collectively carried by the whole state of the
neuronal state independently of the cell "classification".

In addition to the type of cells considered during decoding, a de-
coder often assumes that a certain kind of information will be encoded
in a particular way. Most of the decoding approaches focus on rate
coding of neurons and do not consider the temporal code of place
cells [O’Keefe and Recce 1993] [but see: Brown et al. 1998] . These two
types of code are intermingled but not in direct relation [Huxter et al.
2003; Middleton and McHugh 2016]. For example, some place fields,
defined according to their firing rate, can hide several "temporal"
fields [Maurer et al. 2006]. Theta rhythm is instrumental in structuring
information in the hippocampus [Colgin 2013] and the position of the
animal can be extracted from it alone [Agarwal et al. 2014].

A broad review of population encoding and decoding is beyond the
scope of this introduction. In this section, I nevertheless highlighted
the advantages and some of the major drawbacks of a population
decoding approach. Nowadays, population decoding is widely used
and regularly improved to open new perspectives to decipher informa-
tion carried by neuronal ensembles [Meshulam et al. 2017; Maboudi
et al. 2018; Stringer et al. 2019a; Tampuu et al. 2019]. To summarize, a
better understanding of what and how information is encoded in the
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brain will strongly benefit from the combined used of single cell and
population analyses.



5
O B J E C T S P E R C E P T I O N F O R N AV I G AT I O N

" The self thus becomes aware
of itself, at least in its practical
action, and discovers itself as
a cause among other causes
and as an object subject to the
same laws as other objects. "

Piaget [1955]

We saw in previous chapters that the internal representation of space
provided by place cells could be influenced notably by a myriad of
external stimuli. In "real world", these stimuli are often 3-dimensional
objects populating the space surrounding us. In the following chapter,
I will intent to give a definition of an objet in the context of spatial
navigation, before explaining how they can be used to navigate. Last,
I will present the current knowledge about their neuronal correlates
across different brain regions.

5.1 what is an object and do rodents perceive them?

An object can be defined as any stimulus within an environment that
an animal can explore directly and interact with [Burke and Barnes
2015]. It is generally smaller or of comparable size than the subject and
is distinct from boundaries of the environment [Scaplen et al. 2014;
Burke and Barnes 2015]. For rodents, spatial cognition was largely
dominated in the 50’s and 60’s by behaviorist approaches using op-
erant chambers and mazes where objects were not useful and thus
considered as not suitable for these animals. One of the first use of
3D objects to study animal cognition was performed in a delayed non-
matching to sample task. Different variations of this task exist but their
general principle is the following. First the animal has to memorize
one (or a set of identical objects) during a sample phase. After a delay,
the animal is faced with two objects: one familiar (identical to the test
phase) and a new one. During this test phase, the goal of the animal
is to recognize the new object (non-matching) in order to obtain a
reward [Aggleton et al. 1986; Rothblat and Hayes 1987; Burke and
Barnes 2015]. Nevertheless, this type of discrimination task has been
shown to be solvable with non-configural solution1. In other words,

1 A configural process rely on the combination of different types of information (height,
width,odor,...) , possibly from different modalities, in order to process a complex
stimulus
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we expect that in this task the animal is combining several dimensions
of the object (height, width, color, shape,...) in order to discriminate
the new and familiar objects. But some experimental evidences have
shown that rats, in some cases simplify the discrimination, only con-
sidering one dimension (for example luminance in Minini and Jeffery
[2006]). Therefore this type of task does not seem appropriate to ascer-
tain the recognition of an object in rodents [see: Jeffery 2007, for an
other example and discusion on this subject]. A later developed task,
used the spontaneous tendency of rodents to explore preferentially
a stimulus that is novel in order to test their ability to perceive and
distinguish 3D objects [Ennaceur and Meliani 1992]. This task con-
sisted in exposing first the animal to an object during a familiarization
phase of few minutes (sample phase). After a delay, ranging from few
minutes to a day, the animal was exposed to the same object than in
the sample phase (familiar object) and another novel object. Naturally,
the animal was spending more time investigating the new than the
familiar object in the test phase. Note however that, in this behavioral
paradigm, if the animal does not show this preference for the novel
object, this deficit can reflect either a recognition failure (a false recog-
nition of the novel object as familiar) or a habituation deficit (e.g. :
the animal has forgotten the familiar object). A clear characterization
of the exploration time during the sample phase as well as a look at
the raw exploration time are very important to discriminate between
these two possibilities. For example, if the animal does not show a
clear familiarization during the sample phase (by exploring the object
less and less), then a deficit during the test phase is likely to reflect
primarily a habituation deficit. In this task, the exploration is defined
as the presence of the animal in an extremely restricted circle around
the object, thus providing a multisensory examination composed of a
combination of tactile, visual and olfactory information.

We could now expand the previously proposed definition of an ob-
ject as an entity of comparable size than the subject, to something with
which the animal can interact through multiple senses. Consequently,
can an object explored with one sensory modality be recognized using
another one (a phenomenon called cross-modal recognition)? After
an initial development of this question in monkeys [see for review
Burke and Barnes 2015], a cross modal object recognition task has
been developed in rats [Winters and Reid 2010; Gaynor et al. 2018].
This task used a variation of the spontaneous object recognition previ-
ously described. However, in the sample phase, animals were allowed
to explore two identical objects in the dark, thus eliminating visual
information while preserving tactile and olfactory ones. Then, the test
phase was conducted with light, but conversely to the sample phase,
the objects were protected behind a Plexiglas screen so that the animal
could only use visual information to experience them. In this task,
Winters and Reid [2010] showed that rats explored more the novel
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object in the test phase, even if the familiar object was previously in-
spected with a different sensory modality. Rodent can thus extrapolate
the knowledge acquired on an object solely from tactile information
to vision.

Collectively, these sets of experiments demonstrate that rodents can
perceive and distinguish 3D objects in their surrounding. In the next
sections, I will focus on their role in spatial navigation.

5.2 are objects used for navigation ?

In a seminal paper Collett et al. [1986] studied how gerbils (Meriones
unguiculatus) used objects in order to locate and reach a food reward
(sunflower seed) buried in the ground. The position of this seed was
defined in relation to an array of cylinders placed in an impoverished
arena: "light-tight, black painted room illuminated by a single light bulb
hung from the ceiling" [Collett et al. 1986]. Once the animal learned
to locate the seed in relation to one or several objects, the authors
elegantly designed a series of test conditions in order to identify the
way the animal was using the objects to locate the reward. First, the
simplest test they performed was to train the animals to find a seed at
a constant direction and distance from a cylinder inside the arena. The
fact that gerbils searched at a single location and not in a circle around
the landmark showed that the animal could use additional external
cues (different from the cylinder) to compute the correct direction. In
a second time, the authors wanted to test the hypothesis that gerbils
were storing the angle and the distance from the object to the goal.
Indeed, a similar search pattern could be obtained if gerbils, akin
to bees, learned instead to associate the location of the seed with a
specific visual snapshot at this location (characterized specially by how
large the object is at this location)[Collett et al. 2006]. Consequently,
Collett et al. varied the size of the cylinder during the test phase. If
gerbils used a similar strategy than bees, they should search further
from the landmark if the cylinder was bigger and closer if it was
smaller. Following this manipulation, the search area of the animal
became broader, but remained approximately at the same spot. This
demonstrated that gerbils were not using a retinal snapshot of the
landmark in order to locate the seed but used a vector deduced from
external sensory cues.

Then, Collett et al. asked if the gerbil could find the goal location
using either the entire array of objects or each landmark individu-
ally. In order to answer this question, the authors trained animals to
find a goal location between two identical cylinders (Figure 5.1 A-B).
Once the animals learned the task, one of the cylinder was removed
(Figure 5.1 C). In this condition the gerbils "behaved as though they
had identified the solitary, remaining landmark as first one and then another
of the elements of the array". In other words, the search pattern of the
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A B

C D

Figure 5.1: A: Task description, the animals had to search for a sunflower seed (triangle) po-
sitioned in relation to two identical white cylinders (70 cm high and 11 cm in di-
ameter; Black circles). The cumulative search pattern of four animal is displayed
with orange squares. The size of the squares reflect the time spent at this location.
The depicted calibration bar measures 100cm B-D: Search pattern of gerbils after
the training (B), the removal of one landmark (C) or after doubling the distance
between the cylinders (D) (Modified from [Collett et al. 1986])

animal was distributed between two zones where the goal should
be in relation to each individual cylinder. In a following experiment,
the authors doubled the distance between the landmarks (Figure 5.1
D). Interestingly, the same search behavior was observed. The gerbils
investigated alternatively the place defined by one or other landmark
and did not computed an averaged goal position. Altogether these
results demonstrate that rodents use landmarks during navigation in
order to construct individual vectors (bearing and distance) from each
individual landmarks2.

In order to assess how this type of vector-based navigation using
individual landmarks is represented in the brain, Gothard et al. [1996b]
recorded hippocampal place cells in an experimental design inspired
by Collett et al. [1986]. In this task, rats were released from a starting
box to search for a reward positioned in relation to two different white
cylinders before reaching an end box for additional rewards. From

2 In the last manipulation described, the fact that gerbils only searched on one side of
the landmark array suggested that they combined the information of the landmark
array with an orienting cue.
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trial to trial, experimenters moved the position of the start / end
boxes and the location of the two cylinders. The relative position of
the goal in comparison to the cylinders was however maintained to
indicate coherently the goal location in this frame. Indeed, analysis of
the rats’ trajectories indicated that they were able to use the cylinders
as spatial cues and not only as beacons as their search focused first at
the appropriate goal location. This approach allowed them to uncover
cells exhibiting a spatial tuning in the reference frame defined by the
landmarks (either cylinders or start/end boxes) as these cells were
bound to these landmarks independently of their location in the arena.
The firing of other place cells was however anchored to the global fixed
room reference frame. This paper is one of the first report of place
cells firing in a reference frame defined by an array of objects, with
place fields located at the same position relative to intra-maze objects.
Nevertheless, a confound with a potential goal related activity remains
unclear. Since then, other correlates of landmark-related activity have
been described, I will detail them in a later section (§ 5.4).

5.3 from objects to landmarks

Given that our surrounding world contains a multitude of objects,
the question of what bestows them their property of navigational
landmarks is of utmost importance [Chan et al. 2012]. If you walk in
a park you just discovered, you will certainly use unique or easily
distinctive objects to guide you, as a fountain or a playground instead
of the multitude of resembling bushes and trees [Stankiewicz and
Kalia 2007; Bruns and Chamberlain 2019]. For example, humans have
been shown to use object landmarks (statues in a virtual environment)
easily to locate a goal in a large-scale virtual maze. The statues were
unique in the environment and thus were very informative about
one’s location. Interestingly, participants had a more difficult time
using "abstract art" statues for navigation [Ruddle et al. 1997]. These
results suggest that the difficulty in distinguishing each abstract statue
was explained by the lower informativity of this type of cue. For large
scale navigation in cities, building landmarks with strong perceptual
features (e.g.: unique, size and shape) are better remembered after
performing a navigation task [Evans et al. 1982; Miller and Carlson
2011; Bruns and Chamberlain 2019]. However, it is worth noting that
the saliency is not necessarily driven by inherent properties of a
specific feature as even the most mundane object could be used as a
landmark because of contextual particularities (e.g.: a water well in the
desert). Last, saliency can also depend on the current cognitive state of
the navigator that will determine the way it directs its attention in the
environment (this state depends on motivation as well as on subject’s
purposes)[Caduff and Timpf 2008].
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In the next sessions, I will briefly illustrate these points by focusing
on the critical components of an object that are relevant for its use as
a landmark during navigation.

5.3.1 Landmark stability

The stability of an object in its environment can influence their use as
a landmark. O’Keefe and Nadel [1978] already raised this matter in
their book: "the mapping system is sensitive to constant variability in the
environment; such variability makes it difficult, if not impossible, to build
a useful map." [O’Keefe and Nadel 1978, p.95]. An object needs to
be perceived at a stable location to provide meaningful and reliable
spatial information. In order to investigate this question, Biegler and
Morris [1994], trained rats to find food in a large arena (10.89m2)
oriented by a white curtain on one side and containing two distinct
landmarks (objects). Forty centimeters at the south or north of each
object was positioned a feeder containing a reward that was accessible
in only one of the two feeders. The same object was always associated
with the rewarded feeder. Experimenters then varied, across trials,
the position of the landmarks in the arena for one group of rodents.
Importantly, the feeder and the landmark always kept a fixed relation
despite the manipulation. In the stable condition, animals learned
to seek the food reward at the appropriate location. On the other
hand, the performance of animals trained in the variable condition
were impaired. Thus Biegler and Morris [1994] showed that geometric
stability was necessary for a landmark to be used to find a goal
location.

In a follow up study they showed that if the goal was always
at a fixed distance and direction to a single, isolated object in the
environment, then the rats in the variable condition could eventually
learn the task [Biegler and Morris 1996]. Taken together, these results
revealed that in order to be used to find a goal, an object had to
maintain stable relations with at least one other landmark or the
geometric feature of the environment. Note however that only the first
aspect is not hippocampus-dependent as rats with lesions of the dorsal
hippocampus were able to learn the location of a platform that was
always at the same distance and direction to a landmark independent
of its position it the pool [Pearce et al. 1998]. Burgess et al. [2004] later
highlighted similar effects of landmark stability in humans. Further
evidence of the importance of landmark stability has been brought
by experiments showing that the propensity of a salient landmark to
control place fields position was lost when the animal experienced
that its relative position in comparison to the landmarks is changing
(by moving the animal and/or the landmarks) [Jeffery 1998; Jeffery
and O’Keefe 1999; Lenck-Santini et al. 2002]. In this case, rats are likely
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to trust less visual cues and to rely more on idiothetic information
[Knierim et al. 1995].

5.3.2 Landmark position

The position of an object inside an arena is an important criteria as it
can drastically impact its use for navigation and for place cells control.
For example, Biegler and Morris [1996] showed that four objects
clustered at the center of the environment were more difficult to use in
order to locate a food source than if they were spread apart. Similarly,
Cressant et al. [1997] observed that centrally positioned objects did
not exert a strong control on hippocampal place cells. A rotation of
these clustered objects only affected 2 of 52 place fields. Conversely, if
the objects were positioned against the walls of the circular arena, they
could take control over the angular position of firing fields [Cressant
et al. 1997, 1999; Renaudineau et al. 2007]. Nevertheless, being at the
periphery of the environment might not be sufficient to systematically
control the orientation of space representation. An illustration of this
idea was given by Zugaro et al. [2001] in a study investigating how
objects could control thalamic head direction cells. First, in accordance
with Cressant et al. [1997], they showed that objects situated at the
periphery of a circular arena exerted a strong control on thalamic head
direction cells.

Another set of results was however surprising, as the peripheral
objects lost their control on head-direction cells if the cylindrical
wall was removed to reveal the larger square made of the curtains
surrounding the enclosure (1.5m away of the platform). These results
suggested that objects were used as orientation landmark only when
they were background and not foreground cues.

Considering the results of both Cressant et al. [1997] and Zugaro
et al. [2001], animals seemed to select orienting landmark with the
lowest optic flow and/or that are more visually stable (more distal)
and thus with a low parallax effect3.

In human subjects, a fMRI study by Janzen and Van Turennout
[2004] found that objects located at decision points strongly activated
the para-hippocampal gyrus during a recognition task following the
exploration of a virtual museum (Figure 5.2). In this study, healthy
adults were passively moved through a virtual museum with objects
placed at intersections (e.g.: decision points) or at simple corridor turns
(non-decision points). Half of these objects were toys and the other half
were from other semantic categories (non-toys). These two types of ob-
jects were disposed in a random manner at decision and non-decision
points. The participants were instructed to pay a particular attention to
objects that were toys, to be able to guide children in this virtual mu-

3 Parallax effect: the apparent displacement or apparent modification of an object due
to a change in the position of the observer.
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Figure 5.2: left Schematic of an aerial view of the virtual museum used in Janzen and Van
Turennout [2004]. Red circles indicate the location of an object at a decision points,
conversely gray circles depict objects at non-decision points. right: View of a deci-
sion point (top) and non-decision point(bottom) (Adapted from [Janzen and Van
Turennout 2004; Chan et al. 2012])

seum later. This paradigm enabled to discriminate the brains regions
activated by objects relevant for navigation (at decision points) or by
simply paying attention to one set of objects (toys). Event-related fMRI
was then performed during an old (present in the virtual museum) vs
new (absent in the museum) object recognition task. Reaction times
were faster for toys compared to non-toys highlighting a clear effect of
attention. This effect however strongly interacted with the navigational
value of these objects as the reaction times for toys located at decision
points were higher than for toys located at non decision points. Fi-
nally, analyses of fMRI data showed that the parahippocampal region
(right and left side) was the only brain region that was significantly
more activated at decision points. This effect was independent from
attentional demand notably as it was present for both the toys and
the non-toys, even if they were not explicitly recognized during the
test. Taken together, these results highlighted an important role of the
parahippocampal region in processing objects as landmarks to guide
navigation. Further studies by this team confirmed that recognition
performances were better for landmark objects versus objects placed at
non-decision points and interestingly they also showed that this effect
was lost in patients with Alzheimer Disease [Janzen and Weststeijn
2007; Kessels et al. 2011]. More recent work by an independent group
reproduced such effects in real large scale environment [Schinazi and
Epstein 2010]. Briefly, after a 3.8km walk in the university of Pennsyl-
vania, participants manifested a better recall of buildings located at
decision points than at non-decision points.

Overall, these studies provide strong evidence that an object is not
used as a reference point solely because of its intrinsic attributes. Other
factors are important to determine whether or not it will be used as a
landmark, specially its position in the environment.
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Landmark wall Landmark floor

Object floor

Figure 5.3: A: Behavioral apparatus used in the Scaplen et al. [2014] study depicted with the
wall cue. The floor cues are projected on a plexiglass floor using a projector. The
maze was surrounded by white curtains thus masking extra-maze cues. A speaker
was playing a 70db white noise and was positioned close to the food dispenser
and the camera above the apparatus. B: Depiction of the different apparatus condi-
tions: top-left: Landmark wall condition, top-right: Landmark floor condition and
bottom: object floor condition. (Adapted from [Scaplen et al. 2014])

5.3.3 Dimensionality

Virtual reality in rodents is now widely used to study spatial cognition
as already mentioned. In this set up, virtual objects are presented in
two dimensions raising the question about the way they are perceived
and used for navigation.

Early studies on visual discrimination in rodents suggest that they
are able to discriminate 2D shapes [Burke and Barnes 2015; Ahn and
Lee 2017] [but see: Minini and Jeffery 2006]. Nevertheless, it is still
unclear if such shapes will be considered akin to an object in the
context of navigation. Scaplen et al. [2014] studied this question using
an elegant experimental paradigm. In their task they recorded the
activity of hippocampal place cells while rats foraged in a squared
arena devoid of physical objects. Instead, they used an ingenious
design to project shadows of various shape on the walls or floor of the
apparatus. Their goal was to study the influence of small, "object-like"
and big "landmark-like" shadows on place cells firing (Figure 5.3 - A).
The three conditions they used was: a large vertical cue on one wall, a
large floor cue at a corner and a smaller complex floor cue close to a
corner (Figure 5.3 - B ). A rotation of each type of cues had different
impact on the orientation of the place cells map. Rotation of large
cues, independently of their position on the wall or the floor, caused
concordant rotation of the place fields. Conversely, the rotation of the
small object cues led either to local remapping of the place fields (local
change in firing rate) or to no change at all. These results indicate that
large shadows located at the periphery were more likely to anchor
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place cells than local "object-like" shadow. One possibility to explain
this difference is that "object-like" shadows were not sufficiently salient
and thus likely to be neglected or considered as a contextual cue. In a
later study, Scaplen et al. [2017] showed that a mucimol inactivation
of the lateral entorhinal cortex increased the effects of visual cues
in their paradigm with some differences between the large shadow
and the smaller "object" shadow. First, the inactivation increased the
proportion of place cells that rotate coherently with the large shadow
without affecting spatial coding quality. In the small object shadow
condition however, place cells exhibited an increased spatial selectivity
under muscimol but no effect of the inactivation was observed after
the rotation of this type of cue. These results comfort the hypothesis
that these two types of cues could be involved in different spatial
information processing and highlight a role of lateral entorhinal cortex
in processing visual cues for space representation.

The object cues used in the previously described studies were shad-
ows on the floor that were not necessary in the behavioral paradigm.
Recent studies using virtual (see: § ii) and augmented reality [Grosso
et al. 2017] suggest that 3D objects influence the hippocampal coding
of space. Grosso et al. [2017] developed an augmented reality setup
similar to the one used previously by Scaplen et al. [2014, 2017] but
with a more sophisticated projection procedure. In their augmented
reality task, they tracked in real time the position of the animal in a
rectangular area and adjusted the projection of the object to give the
impression of 3D (the view of the object was modified according to
the view of the animal). This type of objects triggered spontaneous
naturalistic exploration comparable to physical 3D objects. Rats in-
vestigated newly introduced virtual objects and often adjusted their
trajectories to avoid them. This observation suggests that virtual 3D
objects, perceived solely using vision are sufficient to drive behaviors
similar to physical objects. Further recordings in this paradigm or in
virtual reality will be needed to investigate the impact of visual objects
on hippocampal spatial coding.

Taken together, these results suggest that the factors that determine
the use of an object as a navigational landmark are not strictly intrinsic
but involve also extrinsic factors like position or motivation of the
subject [Caduff and Timpf 2008]. Subjective impact on saliency of
an object is a fascinating question. It is still unclear how a mundane
object can reach saliency if it has a particular interest for the navigating
subject. For example, a random house, lost in the middle of similar
houses can be used as a landmark if it belongs to a close friend or if
you have already visited this place [Sanguinett-Scheck2019; Caduff
and Timpf 2008].
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5.4 neuronal correlates of objects for navigation

5.4.1 Object coding in perirhinal cortex

The perirhinal cortex is a parahippocampal region receiving diverse
cortical inputs from olfactory, auditory, somatosensory and visual
associative cortices [Burwell and Amaral 1998; Furtak et al. 2007],
thus making it a suitably positioned area in objects processing that
are polymodal in nature. Early investigations of PER neuronal firing
correlates have indeed shown that PER neurons exhibited an increase
firing rate in response to the presentation of isolated objects in awake
and anesthetized rats [Zhu and Brown 1995; Zhu et al. 1995]. This
response was not modulated by object identity and only very few
neurons exhibited discriminative firing rates in response to distinct
objects (3 out of 86 in Zhu and Brown [1995]). However, these two
studies showed that PER might be essential to detect the novelty of
objects as neuronal activity in this region decreased in response to
repeated presentation of the same object. Is the perirhinal cortex only
important for novelty detection of objects or does it have a more
elaborated function in processing object information in the context of
navigation?

Recent investigations of PER neurons activity during navigational
tasks in presence of objects brought elements of answer in favor of
the last hypothesis. Two different groups showed that PER neurons
increased their activity at the locations of objects when rats were
running back and forth in a circular track or if they randomly foraged
in a square arena (in both cases the environment contained several
objects located at the periphery of the track or scattered inside the
arena) [Burke et al. 2012; Deshmukh et al. 2012]. In the circular track ,
more than a third of PER neurons exhibited "object fields", stable across
successive sessions, either for familiar or newly introduced objects
(Figure 5.4 - A). Importantly, spatial selectivity of PER neurons was
low in the absence of objects, and increased only at objects’ locations
in their presence suggesting that PER process non-spatial information
rather than spatial information per se. Additionally, in the Burke et
al. [2012] study, the authors also showed that this effect was not
modulated by the familiarity/novelty of the objects. Contrarily to what
was observed in a perceptual task (passive presentation of objects in
Zhu et al. [1995]), they did not observed a "repetition suppression"
effect on firing rates in response to repeated exposure to objects4.
Finally, when objects were manipulated (familiar object replaced by
new object at the same location in Burke et al. [2012], the introduction
of a new object at a new location or misplacement of a familiar object

4 The absence of "repetition suppression" was observed even when the authors controlled
for the recognition of the novel versus familiar stimulus: (e.g. the animal spend more
time exploring new objects)
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in Deshmukh et al. [2012]), analyses brought poor evidence of activity
locked to a specific object at a single cells level, suggesting that PER is
important for object recognition but not discrimination5.

Recent works proposed that novelty coding might not have been
detected in these previous studies because the attention load on the
objects was too low, or because novelty could be subtly coded in
PER via other neurophysiological correlates. Indeed, Ahn et al. [2019]
provided evidence that repetition suppression occurred robustly in
an object discrimination task. In this task the animal had to learn to
associate two objects (both familiar or both new) to distinct actions
in an operant box (push the lever or nose poke). In this task, half of
the neurons in the PER showed a repetition effect (either a suppression
or augmentation) and this effect was more common for single object
(one specific object out of the four objects used in the task) than
for a groups of objects (new or novel). Interestingly they observed
that spikes remaining during repetition suppression were the ones
phase-locked to the gamma rhythm peak in PER during the whole task.
Indeed, the gamma phase variability decreased with familiarity and
the eliminated spikes where the ones located outside of the gamma
peak ("pruning" effect). Interestingly, they also showed similar effects
for hippocampal neurons, but in this brain structure, object-related
firing was phase-locked to the theta rhythm. Consequently, these
results showed that novelty coding can be robust in a goal-oriented
task necessitating objects discrimination. In this type of task, novelty
was represented by a very striking temporal code where noisy spikes
(out of phase) are pruned from the object neuronal correlates [Ahn
et al. 2019]. It would be interesting to know whether such pruning is
functionally relevant for the task performance.

This body of work reveals an undeniable object-related activity in
PER even if the functions of such coding is still unclear. It is important,
however, to understand how non-spatial information is processed
before it is distributed to downstream regions of the hippocampal
formation and in particular to the entorhinal cortex.

5.4.2 Object coding in the entorhinal cortex

Object-related activity was also observed in the Entorhinal Cortex, in
both the LEC and more recently the MEC. The LEC is more strongly
connected with the PER than the MEC, suggesting that this structure
might contain similar object-related activities. Following [Zhu et al.
1995] observation of LEC neurons responding to passive presentation
of objects, Deshmukh and Knierim [2011] investigated these neuronal
correlates during a foraging task in a square arena containing dis-

5 The implication of PER in object discrimination is still a mater of debates, but recent
work showed that the PER could carry an activity allowing the discrimination of object
at the population level [Ahn and Lee 2017]
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tinct objects. They reported a population of LEC cells exhibiting an
"object field" not necessarily at the object location but also at a dis-
tance from it (Figure 5.4 - B). Interestingly, the object-related spatial
selectivity of LEC neurons vanished in an empty arena. This effect
was also reported in an environment enriched with distal cues as no
obvious neuronal LEC correlates could be observed [Hargreaves 2005;
Yoganarasimha et al. 2011]. Curiously, in the Deshmukh and Knierim
[2011] study, despite persistent object fields in successive sessions of
the task, some neurons did not always fired at the same object. Fur-
thermore, Deshmukh and Knierim [2011], reported the observation
of two LEC neurons which fired at a consistent location even after
the object was misplaced. Tsao et al. [2013], later investigated these
rare "object trace" cells and uncovered that such neurons were able to
maintain an activity trace of the remembered object for at least 17 days
(Figure 5.4 - B). Similar observations of object trace activities have also
been reported in hippocampus and anterior cingulate cortex [Weible
et al. 2012; Deshmukh and Knierim 2013].

This remanent trace in absence of object strongly suggests that
this activity in not linked to the object per se but to the object-place
relation, to the location that the object had occupied. This hypothesis
that the location of objects is represented in the para-hippocampal
region is supported by human functional magnetic resonance imaging
studies. Kanwisher and Epstein [1998] showed that para-hippocampal
region, measured by functional magnetic resonance imaging, was
more activated when viewing photographs of a furnished room versus
an array of the same furniture on a blank page. This work has led
to the idea that human para-hippocampal cortex was involved in the
processing of spatial layout within scenes [Epstein 2005, 2008; Epstein
et al. 2017]. Recently, Wang et al. [2018] observed that some LEC cells
exhibited an egocentric tuning to the nearest boundary6. In addition
to this response to boundaries, some neurons showed an egocentric
tuning to 3D objects presents in the arena. LEC could thus allow the
convergence of allocentric and egocentric position of the navigating
subject in a landmark based reference frame.

The medial entorhinal cortex is known for its stronger spatial mod-
ulation due to the presence of grid, head direction, speed, border
or conjunctive cells [Fyhn et al. 2004; Hafting et al. 2005; Sargolini
et al. 2006; Kropff et al. 2015; Diehl et al. 2017]. Surprisingly, recent
recordings of MEC in freely moving mice uncovered the presence of
object-vector cells among this multitude of spatially modulated cells
[Høydal et al. 2019]. This small proportion of cells fired when the mice
was at a given distance and direction of an object present in the arena.
Interestingly, these cells were not specific to the object identity and
location but fired with a similar relation to any discrete object in the

6 Similar observations of egocentric tuning to borders have also been made in restro-
spenial cortex by Alexander et al. [2019]
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Figure 5.4: Single unity activity associated with the presence of objects. A: Schematic represen-
tation of the firing pattern of a Perirhinal Cortex neuron recorded while a rat runs
in a circular maze. In an empty track, a proportion of PER neurons show a dispersed
low intensity firing all around the maze. (left). If objects are introduced in the track,
previously non-selective cells will fire coherently for successive sessions near objects
(right). B: Unlike PER neurons, some LEC principal cells fire at a particular distance
and orientation in relation to local objects (left). In absence of object LEC neurons are
weakly spatially modulated. LEC neurons also form objects fields at the location of
object and in certain instance maintain an "object-trace" activity, sometimes for sev-
eral days, after the object is removed from the arena (middle-right). C: Schematic
example of hippocampal object-related activity. In an open arena containing objects,
CA1 cells will exhibit landmark vector activity (right). In parallel, CA3 fields will
be more likely to manifest object related activity near the location of the objects.
D: Schematic of object related neuronal activity in MEC. After the introduction of
intra-maze objects, object vector cells will be tuned equally to discrete objects in the
arena irrespectively to their position in the arena. (Adapted from [Burke and Barnes
2015])

maze. Additionally, this object-vector coding was preserved across
environments (different rooms) and was weakly overlapping with
grid-like or border-like firing patterns. The fact that these cells were
firing irrespectively to the object identity but that they maintained
their relative alignment across environment suggest that they could
provide a low dimensional allocentric scaffold coding for the location
of objects.

5.4.3 Object coding in the hippocampus

Both lateral and medial entorhinal cortex project to the hippocampus.
Although the most striking behavioral correlate in the hippocampus
is space, numerous studies reported firing activity in relation to the
current or remembered location of an object in principal cells of
CA1 and CA3 [O’Keefe and Nadel 1978; Gothard et al. 1996b; Lenck-
Santini et al. 2005; Manns and Eichenbaum 2009; Burke et al. 2011;
Deshmukh and Knierim 2013; Geiller et al. 2017b; Omer et al. 2018].
An early report of hippocampal recording described "misplace unit"
characterized as "complex place units fir[ing] maximally during myostatial
sniffing elicited in a place, either by the absence of an expected object or by
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the presence of an unexpected one." [O’Keefe and Nadel 1978, p. 202]7.
Later, Gothard et al. [1996b], recorded place cells firing in a reference
frame defined by an array of cylinders. Despite a coherent activity
in relation to these objects, the activation of these cells could still be
tainted by the reward that the animal had to seek, also defined in
relation to the array of objects. A complementary study by Deshmukh
and Knierim [2013], recorded in the hippocampus, a small proportion
of landmark-vector cells firing when the rat was located at the same
distance and orientation from multiple landmarks 8 (Figure 5.4 - C ).
These units revealed a fascinating multitude of behaviors. Some fired
at the same orientation and distance from several objects, while other
neurons first fired in relation to one landmark and then developed a
secondary field matching the preexistent landmark vector in relation
to a second landmark. Also, the authors reported "object trace" cells
in both CA1 and CA3 that fired where an object was previously as
described in LEC or cingulate cortex (see § 5.4.2) [Deshmukh and
Knierim 2011; Weible et al. 2012; Tsao et al. 2013]. In a parallel study,
Burke et al. [2011] recorded the activity of neurons located in the
distal part of CA1, an area known to receive direct input from LEC.
They showed that, in a circular linear track, the presence of objects
increased the number of place fields and reduced the size of the
place fields, such that the probability of activation of a place cell was
homogenous along the whole track 9. The linearity of the maze and
the close proximity between adjacent objects did not allow to uncover
undoubted landmark-vector cells. Nevertheless, the changes in spatial
coding following the introduction of objects suggest the incorporation
of non-spatial information in the hippocampus (as also seen in Manns
and Eichenbaum [2009]).

Now, one of the question emerging at the view of this body of
work is whether these object-responsive cells constitute a particular
class of neurons. To investigate this question Geiller et al. [2017a]
recorded the activity of dorsal hippocampal neurons while a mouse
was running on a treadmill enriched with visuo-tactile landmarks
at multiple locations on the belt. They provided evidence that cells
located in the deep section of the pyramidal layer were more strongly
tied to landmarks than their superficial counterparts. Deep CA1 cells
fired at several locations, in accordance with the position of landmarks,
and thus likely represented the position of the landmark. Among their
landmark cells, 19% encoded landmark identity as they were firing
preferentially at a specific type of landmark. Conversely, superficial
cells appeared more contextual, as they had in majority a single field

7 Misplace units were in reality first reported in O’Keefe [1976]
8 It is worth precising that a landmark-vector cell with a unique field can not be

distinguished from a classical place cell. A landmark cell need to fire in relation to
several objects (multiple fields) or to follow the displacement of the landmark

9 see § 4.2.3 for a more detailed description of this study
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and responded more slowly to landmarks manipulation [Geiller et al.
2017a; Fattahi et al. 2018].

Hitherto, we described static objects but our world is also made of
moving objects. As cited in the epigraph of this chapter, Jean Piaget
highlighted the fact that, in a way, individuals are "object subject to the
same laws as other objects"[Piaget 1955]. Wondering if the hippocampus
carried signals related to the position of other congeners, Omer et al.
[2018] recorded neurons in the hippocampus of flying bats observing
a moving congener. The authors successfully found that some cells
were activated in relation to others, and named them "social cells". As
a control they also performed the same recordings but replaced the
moving bat by an object. Surprisingly, Omer et al. [2018] some cells
were also correlated to the activity of a moving object. The population
of "social" and "moving object" neurons were distinct but overlapping,
thus ruling out a purely segregated information processing for objects
and others. At the sight of this result a comparison between a static and
mobile landmark would need further investigation to be reconciled
with previous results in the literature [Biegler and Morris 1994; Biegler
and Morris 1996; Jeffery 1998; Jeffery and O’Keefe 1999; Lenck-Santini
et al. 2002].

Three-dimensional objects are a widespread correlate of neuronal
activity from early visual sensory cortex to parahippocampal and
hippocampal areas [Burke and Barnes 2015; Zoccolan 2015; Connor
and Knierim 2017]. This is undoubtedly the case because of the ubiq-
uity of objects in many aspects of an animal’s sensory experience and
memory. This variety of aspects comes at a cost of complexity. Many
fine aspects of object information processing and memory are yet to
uncover.
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P R E A M B L E

Animals move in their natural habitat in order to find food, congeners
or to avoid dangers like predators or unsuitable environmental condi-
tions. In oder to reach their goal during navigation animals can use
a plethora of strategies. One of the most efficient method to navigate
flexibly and dynamically (e.g.: find shortcuts or avoid obstacles) is
to construct and use an internal representation of space, a cognitive
map [Tolman 1948; O’Keefe and Nadel 1978]. The hippocampus is
known to be important for the elaboration of this map. It contains a
peculiar type of cells: the place cells, which are active in specific parts
of the environment, their place fields, and virtually silent elsewhere.
The scale at which these cells code for space can vary across different
axis of the hippocampus. For example, place fields increase in size
dorso-ventrally along the longitudinal hippocampal axis [Poucet et al.
1994; Young et al. 1994; Kjelstrup et al. 2008]. Similar gradients can be
observed along the transverse and radial axes [Henriksen et al. 2010;
Lu et al. 2015; Geiller et al. 2017a]. However, whether and how place
cells’ spatial coding resolution can adapt to local features of the same
environment remains unclear [Battaglia et al. 2004; Burke et al. 2011].

In this thesis work, we explored the possibility of an adaptation of
the hippocampal spatial coding resolution in a single environment by
recording the activity of hippocampal neurons in the dorsal hippocam-
pal area CA1 of mice navigating a virtual linear track. We used several
types of visual information, unevenly distributed in the environment,
to investigate the relative contribution of 3D visual objects, patterns
on the walls or a combination of both. We observed that virtual objects
improved spatial coding resolution in their vicinity. Place fields were
more numerous, smaller, with better spatial information and stability.
A population decoding analysis confirmed these results at the single
cells level by showing a better decoding accuracy close to the objects.
These effects were observable almost instantly after the online addition
or removal of objects during the recording sessions. Thereafter, we
tested the effect of patterns on the wall on the quality of the hippocam-
pal spatial coding. Indeed, we uncovered that it led to an enhancement
of spatial coding resolution, but to a lesser extent than objects. Vi-
sual objects also strengthened temporal coding resolution through
improved theta phase precession. We propose that the hippocampal
place cells representation can have a heterogenous resolution, which
could be used to improve coding or inference notably in large-scale
environments.
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Abstract The ability to flexibly navigate an environment relies on a hippocampal-dependent

cognitive map. External space can be internally mapped at different spatial resolutions. However,

whether hippocampal spatial coding resolution can rapidly adapt to local features of an

environment remains unclear. To explore this possibility, we recorded the firing of hippocampal

neurons in mice navigating virtual reality environments, embedding or not local visual cues (virtual

3D objects) in specific locations. Virtual objects enhanced spatial coding resolution in their vicinity

with a higher proportion of place cells, smaller place fields, increased spatial selectivity and

stability. This effect was highly dynamic upon objects manipulations. Objects also improved

temporal coding resolution through improved theta phase precession and theta timescale spike

coordination. We propose that the fast adaptation of hippocampal spatial coding resolution to

local features of an environment could be relevant for large-scale navigation.

DOI: https://doi.org/10.7554/eLife.44487.001

Introduction
Animals can flexibly navigate their environment. In mammals such as rodents and humans, this ability

is thought to rely on an internal cognitive map (Tolman, 1948; O’Keefe and Nadel, 1978;

Epstein et al., 2017). When animals move in their environment, hippocampal place cells fire in spe-

cific locations (their place fields) and this spatial tuning is believed to provide a neuronal substrate to

the cognitive map. To be useful for navigation, such internal representation should be properly ori-

ented and positioned in reference to the external world (Knierim and Hamilton, 2011). A dynamic

control of hippocampal spatial coding resolution between different regions of the same environment

could be important for spatial navigation (Geva-Sagiv et al., 2015). Wild animals, including rodents,

often travel kilometers away from their home through empty space to specific food locations (Tay-

lor, 1978). Mapping all traveled space at similar spatial resolution would require a huge neuronal

and computational investment. Alternatively, mapping different parts of the same environment at

different spatial resolutions could be advantageous.

In rodents, hippocampal place cell coding can vary both qualitatively and quantitatively. Qualita-

tively, place cells can code more or less accurately for space depending on several behavioral/exper-

imental manipulations such as passive vs active movements (Terrazas et al., 2005) or light vs dark

conditions (Lee et al., 2012). A better accuracy is generally associated with decreased place field

size, increased spatial and temporal place field stability upon repeated visits of the same location

and low out-of-field firing rate. Quantitatively, the number of spatially selective cells and place fields’

density can increase globally in the presence of objects (Burke et al., 2011) and locally near

rewarded locations (O’Keefe and Conway, 1978; Hollup et al., 2001; Dupret et al., 2010;

Danielson et al., 2016; Gauthier and Tank, 2018; Sato et al., 2018), salient sensory cues
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(Wiener et al., 1989; Hetherington and Shapiro, 1997; Sato et al., 2018) or connecting parts in

multi-compartment environments (Spiers et al., 2015). Whether these overrepresentations corre-

spond to position coding at higher spatial resolution (i.e. the resolution of the ‘where’ information)

or the coding of nonspatial information associated with these particular locations (also referred to as

‘what’ information) is, however, difficult to disentangle. If they would represent increased spatial res-

olution, then place fields should not only be more numerous but they should also more accurately

code for space in terms of spatial selectivity, spatial information content and stability. Furthermore,

in the context of navigation, spatial coding resolution should be rapidly adjustable within different

parts of the same environment or upon specific experimental manipulations. Finally, improved spatial

coding resolution should extend to the temporal coding domain.

The factors controlling spatial coding resolution are still poorly understood. While distal visual

cues play an important role in map orientation and environmental boundaries in map anchoring

(O’Keefe and Burgess, 1996; Knierim and Rao, 2003; Knierim and Hamilton, 2011), local sensory

cues, with a high sensory resolution, could be instrumental in setting spatial coding resolution

(Hartley et al., 2000; Strösslin et al., 2005; Barry et al., 2006; Sheynikhovich et al., 2009; Geva-

Sagiv et al., 2015). Here, we took advantage of virtual reality (Hölscher et al., 2005; Harvey et al.,

2009; Youngstrom and Strowbridge, 2012; Ravassard et al., 2013; Aronov and Tank, 2014;

Cohen et al., 2017; Thurley and Ayaz, 2017; Gauthier and Tank, 2018) to specifically control and

quickly manipulate local sensory cues and test their impact on hippocampal spatial coding resolu-

tion. We recorded a large number of hippocampal cells in area CA1 to be able to use decoding

strategies to decipher the functional impact of the changes observed. Our results are consistent with

a rapid adaptation of hippocampal spatial coding resolution to local features of the environment.

We propose that this mechanism could be important for large-scale navigation.

Results

Effects of local visual cues on spatial coding resolution
To investigate the effect of local visual cues on hippocampal coding resolution, head-fixed mice

were trained to run on a wheel and to shuttle back and forth on a 2 m-long virtual linear track to col-

lect liquid rewards at its extremities (Figure 1A). The lateral walls of the virtual track displayed dis-

tinct visual patterns to provide directional information. To investigate the contribution of local cues

to hippocampal spatial representation, mice were trained either in the presence or absence of 3D

visual cues (hereafter called virtual objects; Objects Track, OT: n = 3 mice; No Objects Track, ØT:

n = 3 mice), which were virtually positioned on the floor of the track between the animal trajectory

and the walls (Figure 1B). The running wheel forced the animals to run in a unidirectional manner so

that they repetitively ran along the virtual objects without the possibility to orient toward them or

explore them with any sensory modality but vision. Animals received a reward (sucrose in water 5%)

each time they reached one of the extremities of the linear track. After licking, the mice were ‘tele-

ported’ in the same position but facing the opposite direction of the track (Figure 1C), allowing

them to run back and forth in the same environment. Once animals reached a stable and proficient

behavior (at least one reward/min during a 60-min-long session), we recorded spiking activity in the

pyramidal cell layer of the CA1 hippocampal region using either 4-shanks or 8-shanks silicon probes

(Figure 1A, Figure 1—figure supplement 1) in the right and/or left hemispheres over the course of

2–3 days. A total of 1021 neurons were recorded in the CA1 pyramidal cell layer in OT and ØT

(Supplementary file 1). Mice trained in ØT performed the task with similar proficiency than mice

trained in OT, as shown by similar rate of reward collections (ØT: 1.86 ± 0.31 rewards/minute, n = 9

sessions in three mice; OT: 1.44 ± 0.12 rewards/minute, n = 8 sessions in three mice; Z = 0.52,

p=0.59, two-tailed Wilcoxon rank sum (WRS) test; all values expressed as mean ±SEM) and average

running speed (ØT: 14.1 ± 2.12 cm/s, n = 9 recording sessions in three mice; OT: 15.3 ± 1.28 cm/s,

n = 8 recording sessions in three mice; t15 = �0.47, p=0.64, two-tailed unpaired t-test).

We first assessed possible effects of local visual cues on overall hippocampal excitability by com-

paring the percentage of track-active putative pyramidal cells among all recorded cells in ØT and

OT. The percentage of track active cells was comparable between the track without and with virtual

objects (ØT: 66.4 ± 5.8%, n = 7 sessions in three mice; OT: 54.6 ± 4.8%, n = 8 sessions in three mice;

t13 = 1.58, p=0.14, two-tailed unpaired t-test; Figure 1D). We next started to assess spatial coding
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Figure 1. Effects of local visual cues on spatial coding resolution . (A) Schema of the virtual reality set up. The mouse is head-fixed and located on a

wheel surrounded by LCD screens where a virtual environment is displayed. (B) Top and first person views of virtual linear tracks used. Left: track

without objects (ØT) and right: track with virtual 3D objects (OT). (C) Top: Animal’s position in the virtual track as a function of time. Green lines indicate

times when animal was in a reward zone location. These locations were not considered for further analysis. Solid and dotted black lines indicate back

and forth trials respectively. Top view of animal in the maze is depicted on the right. Arrows indicate teleportation in the same position but facing

opposite direction after reward consumption. Bottom: Animal’s speed as a function of time. (D,E) Box plots of the percentage of active cells (D) and

place cells (E) in the maze without (blue) and with (orange) objects (same color code throughout the figures). (F) Spike raster plots (top) and color-

coded firing rate map (middle) for successive trials in one direction (arrow) as a function of the position in the maze. Bottom: corresponding mean firing

rate by positions. Dots indicate positions of the detected place field (see Materials and methods). (G–K) Box plots of the place field width (G), the place

field dispersion (H), the stability index (I), the out/in field firing rate (J) and the spatial information (K). For box plots in this and subsequent figures, box

extends from the first (Q1) to the third quartile (Q3) with the band inside showing the median and the extremities of the whiskers include values greater

than Q1-1.5*(Q3-Q1) and smaller than Q3 +1.5*(Q3-Q1).

DOI: https://doi.org/10.7554/eLife.44487.002

Figure 1 continued on next page
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resolution by comparing the proportion of place cells among active cells in the presence and

absence of local visual cues. While only 19% of track active cells had at least one place field (place

cells) in the empty track (n = 48 place cells), 71% of track active cells were place cells when virtual

objects were present (n = 193 place cells; t13 = �7.3, p<10�5, two-tailed unpaired t-test; Figure 1E).

In ØT, place fields were relatively sparse in the middle of the track with a large proportion of them

aligned either to the beginning or to the end of the track (End-Track fields: 53.1 ± 9.95%, n = 7 ses-

sions in three mice; Figure 2A). In the maze with objects, however, the majority of fields were

located in the central part of the track (On-Track fields: 79 ± 3.52%; n = 8 sessions in three mice;

Z = 2.84, p=0.0045, two-tailed WRS test; Figure 2A). These results indicate that local visual cues can

strongly increase the proportion of place cells among active cells notably to code the central part of

the maze. Another factor influencing spatial resolution is place field size. There was a small, non-sig-

nificant, tendency for place field width (calculated on complete fields) to be lower in the track with

objects (ØT: 51.5 ± 3.33 cm, n = 15 place fields; OT: 48.7 ± 1.29 cm, n = 157 place fields; Z = 0.93,

p=0.35, two-tailed WRS test; Figure 1G), in agreement with a higher spatial coding resolution. The

size of place fields based on single-trial detection was also not significantly different between the

two conditions (ØT: 34.4 ± 1.2 cm, n = 15 place fields; OT: 34.2 ± 0.47 cm, n = 156 place fields;

Z = 0.51, p=0.61, two-tailed WRS test). On the other hand, the spatial dispersion of single-trial

detected place fields was significantly reduced in the presence of 3D objects (ØT: 11.9 ± 0.90 cm,

n = 48 place cells; OT: 9.70 ± 0.44 cm, n = 193 place cells; Z = 2.56, p=0.01, two-tailed WRS test;

Figure 1H). To further assess inter-trial place field stability, independently from place field detection,

we calculated a stability index (based on spatial correlations between all pairs of firing rate vectors,

see Materials and methods section). This stability index was significantly lower in the track without

objects (ØT: 0.12 ± 0.01, n = 48 place cells; OT: 0.28 ± 0.01, n = 193 place cells; Z = �6.64,

p<10�10, two-tailed WRS test; Figure 1I). Altogether, these results demonstrate that local visual

cues can improve inter-trial spatial and temporal stability.

An increase in spatial coding resolution would also be associated with higher spatial selectivity

and information content. Spatial selectivity was assessed by comparing the in-field versus out-of-field

firing rates (i.e. signal-to-noise ratio) for place fields recorded in OT and ØT. In the track without

objects, place cells increased their firing rate inside the place field (7.44 ± 0.75 Hz, n = 48 place cells)

but also discharged at high rate outside the field (5.23 ± 0.62 Hz; Figure 1F and J; ratio:

0.65 ± 0.02). In comparison, place cells recorded in the track with objects had comparable firing

rates inside the place field (6.80 ± 0.43 Hz, n = 193 place cells; Z = 1.5, p=0.13, two-tailed WRS test)

but fired significantly less outside the field (3.79 ± 0.34 Hz; ratio: 0.46 ± 0.01; Figure 1F and J;

Z = 5.48, p<10�7, two-tailed WRS test). Accordingly, spatial information (in bit/spike), a measure

independent of place fields’ detection (Skaggs et al., 1993) was very low in the track without

objects (0.06 ± 0.01 bit/spike, n = 48 place cells) and significantly higher in the presence of objects

(0.25 ± 0.02 bit/spike, n = 193 place cells; Z = �5.67, p<10�7, two-tailed WRS test; Figure 1K). Simi-

lar results were obtained with a different method to estimate spatial information content based on

the original mutual information metric with a normalization to correct possible bias due to differen-

ces in basal firing rates between conditions (Souza et al., 2018) (ØT: 1.67 ± 0.21, n = 48 place cells;

OT: 5.62 ± 0.29, n = 193 place cells; Z = �7.57, p<10�13, two-tailed WRS test). The effects of objects

on spatial coding resolution were also observed when comparisons were performed across record-

ing sessions (Figure 1—figure supplement 2 and Supplementary file 2).

Altogether these results indicate that local visual cues can strongly enhance the proportion of

place cells among active cells but also place cell’s coding accuracy in agreement with an improved

spatial coding resolution.

Figure 1 continued

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1.

DOI: https://doi.org/10.7554/eLife.44487.005

Figure supplement 1. Histology and spike sorting.

DOI: https://doi.org/10.7554/eLife.44487.003

Figure supplement 2. Effects of local visual cues on spatial coding resolution across different recording sessions.

DOI: https://doi.org/10.7554/eLife.44487.004
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Figure 2. Virtual 3D objects improve spatial coding resolution locally. (A) Color-coded mean firing rate maps of all

place fields recorded in the maze without objects (left) or with objects (right). The color codes for the intensity of

the bin’s mean firing rate normalized on the maximal mean firing rate (peak rate) in the recording session. The

place cells are ordered according to the position of their peak rate in the track (reward zones excluded). Bottom:

The tracks were divided into Objects Zones (OZ, in red on the x-axis) around the objects and No Object Zones

(ØZ, in grey on the x-axis) deprived of objects. Red dotted lines depict the boundaries of the OZ in the track with

objects. (B) Percentage of On-Track place fields at each spatial bin (10 cm) in the maze with (orange line) and

without objects (blue line). (C) Mean local stability index (solid lines)±SEM (shaded bands) for place cells with On-

Track fields at each spatial bin in the track with (orange) or without (blue) objects. (D–F) Box plots depicting the

mean percentage of place fields per spatial bin (D), the place field width (E) and the local stability index (F) in OZ

and ØZ in the maze with objects. Figure 2—source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.44487.006

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.44487.008

Figure supplement 1. Virtual 3D objects improve spatial coding resolution locally across different recording

sessions.

DOI: https://doi.org/10.7554/eLife.44487.007
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Virtual 3D objects improve spatial coding resolution locally
We then wondered whether spatial resolution could be adjusted locally, within the same environ-

ment. To address this question, we focused our analysis on On-Track fields recorded in the OT. We

first noticed that the distribution of these fields was non-uniform (p=0.017, test of non-uniformity).

To quantify more precisely this effect, we divided the linear track in Objects Zones (OZ) and No

Objects Zones (ØZ), depending if a given track zone contained an object or not, respectively

(Figure 2A, right). The density of place fields was significantly higher in OZ (OZ: 7.31 ± 1.09%/10

cm, n = 12 spatial bins of 10 cm, six in each direction; ØZ: 3.28 ± 0.65%/10 cm, n = 20 spatial bins of

10 cm, 10 in each direction; t30 = �3.38, p=0.002, two-tailed unpaired t-test; Figure 2B and D). Fur-

thermore, in the maze with objects, place fields were significantly smaller in OZ (42.3 ± 1.43 cm,

n = 77 fields) compared to ØZ (54.8 ± 1.89 cm, n = 80 fields; Z = 4.60, p<10�5, two-tailed WRS test;

Figure 2E). Accordingly, place field dispersion was also significantly reduced in OZ (8.33 ± 0.50 cm,

n = 130 fields) compared to ØZ (11.8 ± 0.71 cm, n = 90 fields; Z = 3.90, p<10�4, two-tailed WRS

test). A local stability index (see Materials and methods section) was significantly increased in OZ

(0.52 ± 0.02, n = 60 bins of 2 cm, 30 in each direction) compared to ØZ (0.39 ± 0.01, n = 100 bins of

2 cm, 50 in each direction; Z = �5.21, p<10�6, two-tailed WRS test; Figure 2C and F). Spatial infor-

mation was also significantly higher in OZ (0.32 ± 0.03 bit/spike, n = 130 fields) compared to ØZ

(0.20 ± 0.03 bit/spike, n = 90 fields; Z = �2.16, p=0.03, two-tailed WRS test). Finally, we found no

significant difference in the out-of-field versus in-field firing ratio between fields located in OZ or ØZ

(OZ: 0.46 ± 0.02, n = 130 fields; ØZ: 0.49 ± 0.02, n = 90 fields; Z = 1.03, p=0.30, two-tailed unpaired

t test). The local effects of objects on spatial coding resolution were also observed when compari-

sons were performed across recording sessions (Figure 2—figure supplement 1).

These results indicate that 3D objects can locally improve spatial coding resolution through a

local increase in place field number, a local reduction in place field size, a higher local stability and

spatial information content while their effect on the out-of-field versus in-field firing ratio is more

global.

We next wondered whether similar local effects on spatial coding resolution could be observed in

ØT. In this track, place fields were also non-uniformly distributed (p=0; test of non-uniformity) with a

higher density of fields at the ends of the track (i.e. End-Track fields; Figure 2A). However, we found

no significant difference between End-Track and On-Track fields in terms of out-of-field versus in-

field firing ratio (End-Track: 0.65 ± 0.02, n = 32 fields; On-Track: 0.62 ± 0.03, n = 31 fields; Z = 0.21,

p=0.83, two-tailed WRS test) and stability (End-Track: 0.17 ± 0.01, n = 32 fields; On-Track:

0.15 ± 0.02, n = 31 fields; t61 = 1.14, p=0.26, two-tailed unpaired t-test). Spatial information was low

for both types of fields but paradoxically lower for End-Track fields (End-Track: 0.04 ± 0.01 bit/spike,

n = 32 fields; On-Track: 0.1 ± 0.02 bit/spike, n = 31 fields; Z = �2.66, p=0.008, two-tailed WRS test).

We conclude that overrepresentation of the ends of the ØT is not associated with increased spatial

coding accuracy and is unlikely to represent increased spatial coding resolution at these locations.

Effect of local visual cues on spatial coding resolution at the population
level
The results so far suggest that hippocampal spatial coding resolution can be locally adjusted. To

assess this at the population level, we next performed position-decoding analysis (Brown et al.,

1998; Zhang et al., 1998) (Figure 3A). We used the spike trains from all pyramidal cells recorded

(i.e. both the spatially modulated and nonspatially modulated cells) and compared decoded posi-

tions with actual positions of the animal in the virtual linear tracks. Overall, the effect of objects on

hippocampal spatial coding was obvious because the decoding error across trials was nearly two-

fold larger in the track without objects compared to the track with objects (ØT: 46.3 ± 0.73 cm,

n = 180 trials; OT: 27.1 ± 0.94 cm, n = 249 trials; Z = 13.6, p<10�36, two-tailed WRS test; Figure 3A

and B). Accordingly, the decoding accuracy (van der Meer et al., 2010) was three fold lower in the

empty track compared to the track with objects (ØT: 0.017 ± 3.8�10�4, n = 180 trials; OT:

0.048 ± 1.49�10�3, n = 249 trials; chance level 0.01; Z = �15.68, p<10�54, two-tailed WRS test;

Figure 3A and C). In both cases, downsampling was performed to equalize the number of cells used

for decoding between the two conditions (20 active cells). The effects of objects on population cod-

ing accuracy were also observed when comparisons were performed across recording sessions (Fig-

ure 3—figure supplement 1).
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Figure 3. Effect of visual cues on spatial coding resolution at the population level. (A) Left: Color-coded distribution of the animal position’s

probability in the virtual track (the reward zones are excluded) computed using a Bayesian decoder (see Materials and methods) at each time window

(500 ms) illustrated during four trials in the maze without (top) and with (bottom) objects. Spike trains of active cells were used to compute the animal

position’s probability. For visualization purpose, position probability is normalized by its maximum at each time bin. The real position is indicated with a

solid grey line. Right: Confusion matrix between the real (x-axis) and the decoded position (y-axis) for all recording sessions performed on the track

without objects (top) or with objects (bottom). (B) Box plots depicting the Bayesian decoding error (BD error) in the maze with and without objects. The

BD error was significantly higher in the maze deprived of objects. (C) Box plots depicting the Bayesian decoding accuracy (BD accuracy) in the maze

with and without objects. The BD accuracy was significantly higher in the maze with objects. (D) Mean BD accuracy (solid lines)±SEM (shaded bands) as

a function of a subset of active cells in the maze with and without objects. (E) Mean BD accuracy (solid lines)±SEM (shaded bands) at each position in

the maze with and without objects. The track was divided in two zones: Objects Zone (OZ, in red on the x axis) around the objects and No Object Zone

(ØZ, in grey on the x axis) deprived of objects. Note that the decoding accuracy was specifically improved in OZ in comparison to ØZ in the maze with

objects.

DOI: https://doi.org/10.7554/eLife.44487.009

The following source data and figure supplements are available for figure 3:

Source data 1. Source data for Figure 3.

DOI: https://doi.org/10.7554/eLife.44487.012

Figure supplement 1. Virtual 3D objects improve hippocampal population coding accuracy across different recording sessions Box plots of the

Bayesian decoding error.

Figure 3 continued on next page
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These effects were independent of the decoding method used because similar results were

observed using a Firing Rate Vector (FRV) method (Figure 3—figure supplement 2; Wilson and

McNaughton, 1993; Middleton and McHugh, 2016). Correlation values were lower in the empty

track (ØT: 0.63 ± 0.008, n = 180 trials; OT: 0.74 ± 6.69�10�3, n = 249 trials; Z = �10.27, p<10�24,

two-tailed WRS test) and decoding errors were higher (ØT: 49.12 ± 0.68 cm, n = 180 trials; OT:

31.31 ± 1.09 cm, n = 249 trials; Z = 11.21, p<10�29, two-tailed WRS test). Because Bayesian decod-

ing was performed using a drop cell approach, we could measure decoding accuracy for different

sample sizes of active cells (van der Meer et al., 2010) (Figure 3D). Decoding accuracy was posi-

tively correlated with sample size in the track with objects but not in the track without objects

(Figure 3D). Importantly, decoding accuracy was better in OT even if the sample size of active cells

used was three time lower than in ØT (to compensate for the three time lower proportion of place

cells in this condition; ØT n = 15 vs OT n = 5, Z = �2.26, p=0.02, two-tailed WRS test; ØT n = 30 vs

OT n = 10, Z = �2.85, p=0.004, two-tailed WRS test; ØT n = 45 vs OT n = 15, Z = �2.55, p=0.01,

two-tailed WRS test). To see if objects could locally increase spatial decoding accuracy, we com-

pared decoding accuracy between OZ and ØZ. While decoding accuracy was uniformly low in the

track without objects (OZ: 0.02 ± 1.48�10�3, n = 30 spatial bins of 2 cm; ØZ: 0.02 ± 8.98�10�4,

n = 50 spatial bins of 2 cm; Z = �1.64, p=0.1, two-tailed WRS test; Figure 3E), it was increased in

every part of the track with objects but significantly more in OZ compared to ØZ (OZ: 0.06 ± 0.003,

n = 30 spatial bins of 2 cm; ØZ: 0.04 ± 2.3�10�3, n = 50 spatial bins of 2 cm; Z = �5.21, p<10�6,

two-tailed WRS test; Figure 3E). We concluded that local visual cues can globally and locally

improve spatial coding accuracy at the population level.

Fast dynamics of spatial coding resolution tuning upon objects
manipulation
Place cells usually appear instantaneously upon exploration of a new environment in area CA1

(Wilson and McNaughton, 1993; Epsztein et al., 2011). To see if similar dynamics could be

observed for the effects of virtual objects on spatial resolution, we manipulated objects online while

recording the same ensemble of cells in area CA1. For mice trained in an empty track, we instan-

taneously added the three objects (which were thus new to the mice) after 20 back and forth trials.

Conversely, for mice trained in the track with objects we instantaneously removed the three objects.

Objects manipulation had no effect on the proportion of active cells (Figure 4B) but a strong impact

on the proportion of place cells (Figure 4A and C). For mice trained in an empty track, adding

objects instantaneously increased the proportion of place cells (from 21.6 ± 5.3% to 75.0 ± 4.1%;

n = 5 sessions in three mice; t4 = �35.8, p<10�5, two-tailed paired t-test; Figure 4A and C). Thus, a

large proportion of cells initially silent or active but nonspatially modulated in the familiar empty

track became spatially modulated (40.3%). Most of these cells had on-track fields (81.3%;

Figure 4H). A majority of cells initially spatially modulated remained place cells (75.7%), while the

others became nonspatially modulated or silent. Adding objects also increased place cells’ stability

(Z = �4.68, p<10�5, two-tailed WRS test; Figure 4E) and spatial information (Z = �3.20, p=0.0014,

two-tailed WRS test; Figure 4G). Local stability was significantly higher in OZ when objects were

added (OZ: 0.56 ± 0.02, n = 60 bins of 2 cm, 30 in each direction; ØZ: 0.25 ± 0.02, n = 100 bins of 2

cm, 50 in each direction; Z = �8.57, p<10�16, two-tailed WRS test; Figure 4I) but not before

(Z = 1.25, p=0.21, two-tailed WRS test). Place fields’ spatial dispersion and out/in field firing ratio

were decreased (Z = 3.55, p=0.0004 and Z = 1.87, p=0.06, respectively, two-tailed WRS test;

Figure 4D and F).

On the other hand, removing objects decreased the proportion of place cells (from 71.1 ± 5.54%

to 34.9 ± 10.9%, n = 8 sessions in three mice; t5 = 5.54, p=0.001, two-tailed paired t-test; Figure 4A

and C). The spatial information and stability were decreased by this manipulation (Z = 2.27, p=0.02

and Z = 4.51, p<10�5, respectively, two-tailed WRS test; Figure 4E and G), while place field out/in

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.44487.010

Figure supplement 2. Firing Rate vector decoding in familiar conditions.

DOI: https://doi.org/10.7554/eLife.44487.011
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Figure 4. Fast dynamics of spatial coding resolution tuning upon objects manipulation. (A) Mosaic plots representing the cells classified as place cells

(darker orange and blue) or non-coding cells (i.e. silent or active non-coding, lighter orange and blue) in the familiar and the new mazes. (B–G) Box

plots comparing familiar (empty box) and new mazes (filled box) conditions. Two pairs of box plots are illustrated; Left: comparison between the

familiar maze without objects (blue, ØTfam) and the new maze with objects (orange, OTnew). Right: comparison between the familiar maze with objects

(orange, OTfam) and the new maze without objects (blue, ØTnew). A gradient color arrow shows the way of the transition. Plots show the percentage of

active cells (B), the percentage of place cells (C), the Out/In field firing rate (D), the spatial information (SI; E) and the stability index (G). (H) Color-coded

mean firing rate maps of place fields recorded in the familiar and new mazes. The color codes for the intensity of the firing rate normalized by the peak

rate. The place fields are ordered according to the position of their peak rate in each track (the reward zones are excluded). The tracks were divided

into Objects Zones (OZ, in red on the x-axis) around the objects and No Object Zones (ØZ, in grey on the x-axis) deprived of objects. Red dotted lines

depict the boundaries of the OZ in the track with objects. (I) Mean local stability index (solid orange or blue lines)±SEM (blue or orange shaded areas)

at each spatial bin in the familiar and new mazes (top: from ØTfam to OTnew; bottom: from OTfam to ØTnew). (J) Map similarity (see Materials and

methods) for 10 trials before and 10 trials after the experimental manipulation (indicated by 0) for ØTfam to OTnew (top) and for OTfam to ØTnew
condition (bottom).

DOI: https://doi.org/10.7554/eLife.44487.013

The following source data and figure supplements are available for figure 4:

Source data 1. Source data for Figure 4.

DOI: https://doi.org/10.7554/eLife.44487.016

Figure 4 continued on next page
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field firing ratio and dispersion were increased (Z = �2.01, p=0.04 and Z = �3.06, p=0.002, respec-

tively, two-tailed WRS test; Figure 4D and F). After object removal, local stability was not signifi-

cantly higher in OZ (OZ: 0.24 ± 0.02, n = 60 bins of 2 cm, 30 in each direction) compared to ØZ

(0.24 ± 0.02, n = 100 bins of 2 cm, 50 in each direction; Z = 0.19, p=0.85, two-tailed WRS test;

Figure 4I). Importantly, these effects were already observed during the first recording sessions fol-

lowing objects manipulation (Figure 4—figure supplement 1). Furthermore, objects manipulations

were associated with significant changes of spatial coding resolution at the population level (Fig-

ure 4—figure supplement 2). We conclude that the effects of local visual cues on place cells’ coding

observed between familiar tracks can be reproduced with instantaneous objects manipulation.

We next investigated the dynamic of these changes by first calculating the correlation of the firing

rate maps of each back and forth trial with the corresponding average firing rate map in the condi-

tion with objects (the most stable condition) for 10 trials before (t-1 to t-10) and 10 trials after (t + 1

to t + 10) the manipulation (Figure 4J) then comparing the correlation values before and after the

manipulation. When objects were added in the empty track, map similarity was significantly higher

for the second trial in the new condition (t-1 vs t + 2, n = 598 and n = 608 pyramidal cells, respec-

tively; n = 5 sessions in three mice; Z = 7.18, p<10�9; Kruskall-Wallis one-way test with post-hoc Bon-

ferroni correction) and then stayed higher from this second trial on (t + 2 vs t + 3, n = 608 and

n = 612 pyramidal cells, respectively; n = 5 sessions in three mice; Z = 1.10, p=1, Kruskall-Wallis

one-way test with post-hoc Bonferroni correction). Conversely, when objects were removed from the

familiar track with objects, map similarity dropped already for the first trial in the new condition (t-1

vs t + 1, n = 744 and n = 743 pyramidal cells, respectively; n = 8 sessions in three mice; Z = 8.80,

p<10�15, Kruskall-Wallis one-way test with post-hoc Bonferroni correction) and stayed lower from

this first trial on (t + 1 vs t + 2, n = 743 and n = 720 pyramidal cells, respectively; Z = 0.17, p=1, Krus-

kall-Wallis one-way test with post-hoc Bonferroni correction). Thus, the hippocampus can rapidly

adapt its spatial coding resolution to local visual cues available in the environment.

Low proportion of object-responsive cells in OT
Newly activated place cells in OT could correspond to object responsive (OR) cells, which have been

recorded in the hippocampus of freely moving rats (Deshmukh and Knierim, 2013). These cells

tend to discharge systematically near several objects present in the environment. To test this hypoth-

esis, we specifically looked for OR cells in our recordings. For this analysis, we took advantage of the

fact that our animals were passing near the same objects in both back and forth trials. Indeed, OR

cells should systematically discharge near several objects (if they do not code for objects identity) or

the same object (if they in addition code for objects identity) in both back and forth trials. We

defined object zones for each individual object (IOZ). Place cells were classified as OR cells if they

were bidirectional (firing in both back and forth trials) and had at least one place field in a IOZ corre-

sponding to the same object for both back and forth trials or several place fields in several IOZs cor-

responding to the same objects in both back and forth trials. In the track without objects no OR cell

was detected. In the track with objects, OR cells represented only 2.07% of all place cells. We con-

clude that the vast majority of newly activated place cells in the presence of objects does not corre-

spond to OR cells.

Effects of 2D wall patterns on hippocampal spatial coding resolution
We next wondered whether the effect of objects on hippocampal spatial coding resolution could be

recapitulated by having more 2D local visual cues in different positions along the track. We thus

assessed hippocampal spatial coding in another environment devoid of the original 3D objects but

enriched with different wall patterns along the track (Pattern No Objects track or PØT; Figure 5A).

The percentage of active cells was not affected by the presence of different patterns along the track

Figure 4 continued

Figure supplement 1. Spatial coding resolution adaptation upon objects manipulations is already visible during the first session in the new condition

Box plots comparing familiar (empty boxes, all recording sessions) and new (filled boxes, first recording session) conditions upon objects manipulation.

DOI: https://doi.org/10.7554/eLife.44487.014

Figure supplement 2. Virtual 3D objects modulation of hippocampal population coding accuracy upon objects manipulation.

DOI: https://doi.org/10.7554/eLife.44487.015
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(OT, 54.64 ± 4.79%, n = 8 sessions in three mice; PØT, 53.63 ± 3.45%, n = 6 sessions in two mice;

p=1, one-way Anova test with post-hoc Bonferroni correction; Figure 5C). The percentage of place

cells among active cells tended to be greater than in ØT (ØT, 18.71 ± 4.33%, n = 7 sessions in three

mice; PØT, 42.16 ± 10.58%, n = 5 sessions in two mice; p=0.093, one-way Anova test with post-hoc

Bonferroni correction). Also, the percentage of place cells in PØT was significantly lower than in OT

(OT, 71.11 ± 5.54%, n = 8 sessions in three mice; p=0.024, one-way Anova test with post-hoc Bonfer-

roni correction; Figure 5B–D). Interestingly, place fields were uniformly distributed along the track

enriched with patterns (n = 16 spatial bins of 10 cm; p=0.23, test for non-uniformity; Figure 5B).

This suggests that local 2D visual cues are sufficient to set place fields’ position. Place field width

was significantly decreased in PØT compared to ØT (ØT, 51.46 ± 3.34 cm, n = 15 place fields; PØT,

41.51 ± 1.17 cm, n = 138 place fields; Z = 2.62, p=0.026, Kruskall-Wallis one-way test with post-hoc
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Figure 5. Effects of 2D wall patterns on hippocampal spatial coding resolution. (A) Schema (top) and picture (bottom) representing the original maze

with objects (orange, left) and a maze with patterns on the walls but no objects (PØT; ligth blue, right). (B) Color-coded mean firing rate maps for all

place fields recorded in the original maze with objects (orange, left) and on the PØT maze (light blue, right). The color codes for the intensity of the

firing rate normalized by the peak rate. The place fields are ordered according to the position of their peak rate in each track (the reward zones are

excluded). The tracks were divided into Objects Zones (OZ, in red on the x-axis) around the objects and No Object Zones (ØZ, in grey on the x-axis)

deprived of objects. Red dotted lines depicts the boundaries of the OZ. (C–H) Box plots representing in the original (orange) and pattern no object

(light blue) mazes the percentage of active cells (C), the percentage of place cells (D), the place field dispersion (E), the stability index (F), the out/in

field rate (G) and the spatial information (SI; H). (I) Mean local stability index (solid orange or light blue lines)±SEM (orange or light blue shaded bands)

at each position’s bin in the original (orange) and pattern no object (light blue) mazes. (J) Mean BD accuracy (solid lines)±SEM (shaded bands) at each

spatial bin in the original maze with objects (orange) or in the pattern no object maze (light blue).

DOI: https://doi.org/10.7554/eLife.44487.017

The following source data is available for figure 5:

Source data 1. Source data for Figure 5.

DOI: https://doi.org/10.7554/eLife.44487.018
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Bonferroni correction). Accordingly, place field dispersion was significantly reduced compared to ØT

to a level comparable to OT (ØT, 5.95 ± 0.45 cm, n = 48 place cells; PØT, 4.57 ± 0.21 cm, n = 157

place cells; Z = 2.88, p=0.011, Kruskall-Wallis one-way test with post-hoc Bonferroni correction;

Figure 5E). Inter-trial firing stability, while significantly higher in PØT compared to ØT (ØT,

0.12 ± 0.01, n = 48 place cells; PØT, 0.19 ± 0.01, n = 157 place cells; Z = 3.72, p=0.0005, Kruskall-

Wallis one-way test with post-hoc Bonferroni correction), was significantly lower than in OT (OT,

0.28 ± 0.01, n = 193 place cells; Z = 5.02, p<10�4, Kruskall-Wallis one-way test with post-hoc Bonfer-

roni correction; Figure 5F). We conclude that local 2D visual cues can improve place fields stability

to a certain extend without, however, reaching the level of stability observed in the presence of 3D

virtual objects.

We next assessed spatial selectivity and information content in PØT. The ratio of place cells’ out-

of-field versus in-field firing was lower in PØT compared to ØT (ØT, 0.65 ± 0.02, n = 48 place cells;

PØT, 0.53 ± 0.02 cm, n = 157 place cells; Z = 3.38, p=0.002, Kruskall-Wallis one-way test with post-

hoc Bonferroni correction) but still significantly higher than in OT (OT, 0.46 ± 0.01, n = 193 place

cells; Z = 3.02, p=0.007, Kruskall-Wallis one-way test with post-hoc Bonferroni correction;

Figure 5G). Accordingly, spatial information content was higher in PØT compared to ØT (ØT,

0.056 ± 0.01, n = 48 place cells; PØT, 0.16 ± 0.02, n = 157 place cells; Z = 4.09, p=0.0001, Kruskall-

Wallis one-way test with post-hoc Bonferroni correction) but still significantly lower than in OT (OT,

0.25 ± 0.02, n = 193 place cells; Z = 2.73, p=0.018, Kruskall-Wallis one-way test with post-hoc Bon-

ferroni correction; Figure 5H).

Altogether these results indicate that local 2D visual cues can enhance the proportion of place

cells among active cells and place cells’ coding accuracy but to a lower extend compared to 3D vir-

tual objects.

Finally, local stability in OZ was significantly higher in OT compared to PØT (OT-OZ: 0.52 ± 0.02;

PØT-OZ: 0.39 ± 0.016, n = 30 spatial bins of 2 cm for both; Z = 4.85, p<10�5 two-tailed WRS test;

Figure 5I). Accordingly, the same effect could be observed for the decoding accuracy (OT-OZ:

0.07 ± 0.02; PØT-OZ: 0.03 ± 0.01, n = 30 spatial bins of 2 cm for both; Z = �5.83, p<10�8 two-tailed

WRS test; Figure 5J) in agreement with a strong influence of 3D objects on spatial coding

resolution.

Spatial coding resolution in a visually enriched environment
We next wondered whether the hippocampal mapping resolution was maximal in the presence of

objects or whether it could be increased by further visually enriching the environment. We thus ana-

lyzed hippocampal place cells’ coding in another environment containing the original 3D objects but

enriched in visual cues such as different wall patterns in different positions along the track and high

3D columns outside the track (EOT, n = three mice; Figure 6A). The percentage of active cells was

not increased by visually enriching the environment (OT, n = 5 sessions in two mice; EOT, n = 5 ses-

sions in three mice; Z = �0.1, p=1, two-tailed WRS test; Figure 6C) nor was the percentage of place

cells (OT, n = 5 sessions in two mice; EOT, n = 5 sessions in three mice; t8 = �1.38, p=0.20, two-

tailed unpaired t-test; Figure 6B–D). However, place fields were uniformly distributed along the

track in the visually rich environment (n = 16 spatial bins of 10 cm; p=0.23, test for non-uniformity),

thus not clustered around objects as in the visually poor environment (Figure 6B). This suggests that

local visual cues are important to set place fields’ position (Renaudineau et al., 2007). However, all

other attributes of place fields were not significantly different between the two environments (OT,

n = 103 place cells; EOT, n = 132 place cells; out/in field firing ratio: Z = 0.57, p=0.57; Spatial info:

Z = 0.42, p=0.67; Dispersion: Z = �1.88, p=0.06; Stability: Z = �0.06, p=0.95; two-tailed WRS test

for all; Figure 6E–H). When looking at local stability of firing rates, we still observed a significant

effect of objects in the visually enriched environment in OZ versus ØZ (OZ, n = 60 spatial bins of 2

cm; ØZ: n = 100 spatial bins of 2 cm; Z = �2.46, p=0.014, two-tailed WRS test; Figure 6I). Interest-

ingly, positions near objects were also decoded with a better accuracy using a Bayesian decoder

than positions further away in the visually enriched environment (OZ: 0.07 ± 0.004, n = 30 spatial

bins of 2 cm; ØZ: 0.057 ± 0.003, n = 50 spatial bins of 2 cm; Z = �4.49, p=0.004, two-tailed WRS

test; Figure 6J).

Altogether these results suggest that in the presence of local visual cues, hippocampal spatial

coding is not further improved by visually enriching the environment. However, place fields locations

are influenced by additional visual cues along the track. Interestingly, despite a homogeneous
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distribution of place field locations, 3D objects could still locally influence hippocampal population

decoding accuracy.

Effects of local cues on hippocampal temporal coding resolution
The results so far suggest that local visual cues can increase spatial coding resolution when consider-

ing the spatial firing rate code. Place cells, however, do not only increase their firing rate inside the

place field but also tend to fire at progressively earlier phases of the theta oscillation as an animal

moves through the place field (O’Keefe and Recce, 1993). This phenomenon, called theta phase

precession, is thought to further increase spatial coding resolution because different locations within

the place field that are difficult to distinguish based on firing rate alone can be accurately separated
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Figure 6. Spatial coding resolution in a visually enriched environment . (A) Schema (top) and picture (bottom) representing the original maze with

objects (left) and a visually enriched maze with objects (right). (B) Color-coded mean firing rate maps for all place fields recorded in the original maze

with objects (orange, left) and on the visually rich maze with objects (yellow, right). The color codes for the intensity of the firing rate normalized by the

peak rate. The place fields are ordered according to the position of their peak rate in each track (the reward zones are excluded). The tracks were

divided into Objects Zones (OZ, in red on the x-axis) around the objects and No Object Zones (ØZ, in grey on the x-axis) deprived of objects. Red

dotted lines depicts the boundaries of the OZ. (C–H) Box plots representing in the original (orange) and pattern no object (light blue) mazes the

percentage of active cells (C), the percentage of place cells (D), the place field dispersion (E), the stability index (F), the out/in field rate (G) and the

spatial information (SI; H). (I) Mean local stability index (solid orange or yellow lines)±SEM (orange or yellow shaded bands) at each position’s bin in the

original (orange) and visually rich (yellow) mazes. (J) Mean BD accuracy (solid lines)±SEM (shaded bands) at each spatial bin in the original maze with

objects (orange) or in the visually rich maze with objects (yellow).

DOI: https://doi.org/10.7554/eLife.44487.019

The following source data is available for figure 6:

Source data 1. Source data for Figure 6.

DOI: https://doi.org/10.7554/eLife.44487.020
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when phase is taken into account. In the temporal domain, increased spatial resolution would thus

correspond to increased slope of the phase versus position relationship for identical field sizes.

We first looked for differences in the theta oscillation recorded in the Local Field Potential (LFP)

between the two conditions. The mean frequency of the field theta oscillation was not significantly

different when mice were running in the track with or without objects (ØT: 6.79 ± 0.12 Hz, n = 9 ses-

sions in three mice; OT: 6.59 ± 0.33 Hz, n = 8 sessions in two mice; Z = 1.26, p=0.20, two-tailed

WRS test) but was lower than that reported for mice navigating in real linear tracks (Middleton and

McHugh, 2016). The power of theta oscillation (theta index see Materials and methods section) was

also not significantly different (ØT: 3.31 ± 0.23, n = 9 sessions in three mice; OT: 3.38 ± 0.16, n = 8

sessions in three mice; t15 = 0.26, p=0.79, two-tailed unpaired t-test). Theta frequency was not mod-

ulated by running speed of the animal in ØT (r = 0.02 ± 0.02, n = 9 sessions in three mice; Figure 7—

figure supplement 1A,C) as previously observed in virtual linear tracks when only distal cues are

present (Ravassard et al., 2013). Theta frequency-speed modulation was, however, significant in OT

(r = 0.08 ± 0.03, n = 8 sessions in three mice; t15 = -1.44, p=0.17, two-tailed unpaired t-test; Fig-

ure 7—figure supplement 1A,C). Theta amplitude was similarly modulated by running speed in

both conditions (ØT: r = 0.07 ± 0.03, n = 9 sessions in three mice; OT: r = 0.03 ± 0.02, n = 8 sessions

in three mice; t15 = 0.08, p=0.43, two-tailed unpaired t-test; Figure 7—figure supplement 1B,D).

The proportion of active putative pyramidal cells with significant theta modulation was not different

between conditions (ØT: 92.24%, n = 361 active cells; OT: 91.97%, n = 299 active cells; �2 = 0.01,

df = 1, p=0.89, Chi-Square test). The coupling of spikes to theta oscillation was also not significantly

different between conditions in terms of preferred phase (ØT: 203.91˚±2.6, n = 361 active cells; OT:

191.17˚±2.87, n = 299 active cells; p=0.07, circular Kruskal-Wallis; Figure 7—figure supplement 2A,

B) and strength (mean resultant vector length ØT: 0.18 ± 0.006, n = 361 active cells; OT:

0.19 ± 0.009, n = 155 active cells; Z = �1.63, p=0.1, two-tailed WRS test; Figure 7—figure supple-

ment 2A,C).

We then analyzed place cells’ theta phase precession. To compensate for decreased spatial sta-

bility in the ØT condition, we took into account only trials with good correlation with the average

place fields (Spatially Stable Trials or SST) for place cells recorded in the empty track

(Schlesiger et al., 2015), but included all trials for place cells recorded in the track with objects. The

stability index of SST fields in ØT was slightly but significantly higher than the stability index of all

fields in OT (ØT, n = 48 SST fields; OT, n = 310 fields; Z = 3.32, p<10�3, two-tailed WRS test). The

percentage of fields with significant (p<0.05) and negative correlation between phase and position

(i.e. precessing fields) was high in the track with objects (40.22%), comparable to that observed in

real linear tracks in mice but low in the empty track (7.46%; �2 = 26.57, df = 1, p<10�6 compared to

OT, Chi-Square test). Accordingly, the correlation between phase and position was significantly dif-

ferent from zero for place cells recorded in the track with objects (r = �0.14 ± 0.018, n = 177 fields;

p<10�14, one sample sign-test; Figure 7A and B) but not for those recorded in the track without

objects (r = 0.15 ± 0.024, n = 15 fields; p=0.30, one sample sign-test; Figure 7A and B). Moreover,

phase precession slopes (calculated on normalized place field sizes) were negative and significantly

different from 0 for cells recorded in the track with objects (�2.00 ± 0.17 rad/U, n = 177 fields;

p<10�14, one sample sign-test; Figure 7C) but not in the track without objects (1.82 ± 0.44 rad/U,

n = 15 fields; p=0.3, one sample sign-test; Figure 7C). Similar results were observed when a wave-

form-based method (which takes into account the asymmetry of theta waves, Belluscio et al., 2012)

was used to estimate theta phase (Figure 7—figure supplement 3).

In the track without objects, the decrease in phase-position correlation could result from the

higher inter-trial spatial dispersion, which could lead to spikes at different theta phases for identical

positions. To assess this possibility, we performed phase-precession analysis on single-trial-detected

fields and averaged the slopes of individual passes (Schmidt et al., 2009). The correlation was still

negative and significantly different from 0 in OT (r = �0.13 ± 0.025, n = 208 single-trial fields;

t207 = �5.75, p<10�8, one sample sign-test) but not in ØT (r = 0.042 ± 0.04, n = 41 single-trial fields;

t40 = 0.92, p=0.35, one sample t-test). Similarly, the slope of the regression line was negative and

significantly different from 0 in OT (�1.27 ± 0.75 rad/U, n = 208 single-trial fields; p<10�3, sign-test)

but not in ØT (0.74 ± 0.96, n = 41 single-trial fields; p=0.93, sign-test).

Because a low percentage of active cells were place cells in the track without objects, we ran an

additional analysis that is independent of place field detection. It exploits the fact that phase pre-

cessing cells emit theta paced spikes at a frequency slightly faster than the concurrent LFP theta

Bourboulou et al. eLife 2019;8:e44487. DOI: https://doi.org/10.7554/eLife.44487 14 of 30
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Figure 7. Effects of local cues on hippocampal temporal coding resolution . (A) Left: Mean firing rate maps of representative CA1 place cells with place

fields highlighted by a bold line (left) recorded in the maze without objects (top, only spatially stable trials see Materials and methods section) and with

objects (bottom). Right: spikes phase (radian) versus position in the corresponding place fields. (B–C) Distribution of significant phase position

correlation (B) and slopes (C) in the condition without objects (top; correlation) and with objects (bottom). The median of the distribution is indicated by

a bold line and 0 by a dotted line. (D) Color-coded cross-correlogram between the power spectra of neuronal spikes and LFP for each theta-modulated

cell recorded on the maze without (bottom left, blue) and with (bottom right, orange) objects. Black dots indicate the maximum of each cross-

correlation. Each cross-correlation is normalized by its maximum. Top: Distribution of the maximum cross-correlations used to quantify the frequency

shift for all the cells. (E) Examples of cross-correlograms computed for two pairs of place cells with overlapping place fields at the behavioral (top) or

theta time scale (bottom, see Materials and methods) in order to quantify Cross-Correlogram (CCG) and theta Offsets respectively in no object (blue;

left) or object (orange; right) conditions. (F) Relationship between ‘CCG’ and ‘theta’ offsets in the cross-correlograms of all the spikes in overlapping

place fields of neuron pairs recorded in no object (top; blue) and object condition (bottom; orange).

DOI: https://doi.org/10.7554/eLife.44487.021

The following source data and figure supplements are available for figure 7:

Source data 1. Source data for Figure 7.

DOI: https://doi.org/10.7554/eLife.44487.025

Figure supplement 1. Speed modulation of LFP theta frequency and amplitude in OT and ØT.

DOI: https://doi.org/10.7554/eLife.44487.022

Figure 7 continued on next page
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oscillation (O’Keefe and Recce, 1993). We performed cross-correlation between the power spectra

of neuronal spikes and LFP for all active cells with significant theta modulation of spiking activity

(ØT: 112/342 cells = 32.74%; OT: 148/271 cells = 54.6%; c2 = 29.59, df = 1, p<10�7, Chi-square

test) and compared the frequency shift (>0) between spiking and LFP theta oscillations between the

two conditions (Geisler et al., 2007) (Figure 7D). The shift was significantly higher in the OT

(0.45 ± 0.03 Hz, n = 148 active cells; Figure 7D) versus ØT (0.26 ± 0.01 Hz, n = 112 active cells;

Z = �2.74, p=0.006, two-tailed WRS test; Figure 7D). Altogether, these results suggest that local

visual cues are important for proper theta phase precession in the hippocampus.

To further investigate the effect of local visual cues on temporal coding, we next focused on

theta-timescale spike coordination. Previous studies have reported, for place cells with overlapping

place fields, a positive correlation between the physical distance separating their place fields’ cen-

ters and the time (or phase) lag of their spikes within individual theta cycles (Skaggs et al., 1996;

Dragoi and Buzsáki, 2006). Our analysis revealed a strong correlation between theta phase and

physical distance in the presence of virtual 3D objects (OT: R = 0.39, n = 629 pairs in three mice;

p<10�24, Pearson correlation; Figure 7E,F) but not otherwise (ØT: R = 0.21, n = 28 pairs in three

mice; p=0.26, Pearson correlation; Figure 7E,F). These results show that local visual cues are impor-

tant for temporal coding in the hippocampus beyond theta phase precession.

Discussion
Our study aimed at determining whether hippocampal spatial coding resolution can rapidly adapt to

local features of the environment. We found that spatial coding resolution was increased in the pres-

ence of local visual cues through an increase in the proportion of spatially selective place cells

among active cells but also enhanced place fields’ spatial selectivity and stability. These effects were

most prominent in the vicinity of local cues and dynamic upon their manipulations. Local sensory

cues also proved to be important for temporal place cell coding such as theta phase precession and

theta timescale spike coordination.

Spatial resolution can be improved by pooling information across neurons (Wilson and McNaugh-

ton, 1993). We found that local visual cues could dramatically increase the number of place cells

among active cells (by a threefold factor). The mechanisms of place cell activation are not fully

understood. Using sensory-based models of place cells activation (Hartley et al., 2000;

Strösslin et al., 2005; Barry et al., 2006; Sheynikhovich et al., 2009) one can predict that an

increase in the quantity/quality of sensory cues in an environment will enhance the number of place

cells coding that environment (Geva-Sagiv et al., 2015). However, previous studies using local

enrichment with multimodal sensory cues or real objects reported only weak or no effects on dorsal

hippocampal cell activity. One study recording in rats navigating between cue-rich and cue-poor

parts of the same track reported no effect on the proportion of place cells or on the density of place

fields. Furthermore, population vector analysis did not reveal a better disambiguation of nearby

locations in the cue-rich part of the track compared to the cue-poor suggesting similar spatial coding

resolution (Battaglia et al., 2004). Other studies found no overall increase of place cells proportion

in 2D environment containing real objects nor a specific bias for place cells to fire near the objects

(Renaudineau et al., 2007; Deshmukh and Knierim, 2013). One possibility to explain the lack of

recruitment of additional cells in these studies could be a high recruitment rate of the dorsal hippo-

campus even in the ‘cue poor’ condition due to the presence of uncontrolled local cues

(Ravassard et al., 2013).

We found that place field density was specifically increased near objects. However, studies so far

have revealed an homogeneous allocation of place fields in space (Muller et al., 1987; Rich et al.,

Figure 7 continued

Figure supplement 2. Theta modulation of spikes in OT and ØT.

DOI: https://doi.org/10.7554/eLife.44487.023

Figure supplement 3. Effect of objects on theta phase precession estimated with a waveform-based approach Distribution of significant phase

position correlation (left) and slopes (right) in the condition without objects (top, blue) and with (bottom, orange) when theta phase was detected using

a waveform-based approach which takes into account theta waves asymmetry.

DOI: https://doi.org/10.7554/eLife.44487.024
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2014) in a given environment. Locally activated place cells could correspond to object-responsive

(OR) cells, which tend to discharge near several objects or landmarks in a given environment

(Deshmukh and Knierim, 2011). However, the proportion of these cells is generally low in the dorsal

hippocampus (between 6 and 8%) which is in line with the fact that places near real objects are not

overrepresented at the population level. We note, however, that this proportion may be underesti-

mated and vary depending on the recording location along both the proximo-distal axis and radial

axis (Geiller et al., 2017). For example, the distal part of CA1, closer to the subiculum, is more

heavily innervated by the lateral entorhinal cortex where OR cells were first discovered

(Deshmukh and Knierim, 2011) and which is believed to feed information about the ‘what’ visual

stream to the hippocampus (Knierim et al., 2014). Extracellular recordings specifically targeting this

area in the intermediate hippocampus reported an increased proportion of place cells with smaller

place fields in the presence of objects (Burke et al., 2011). Interestingly, in this study, the decreased

place field size was compensated for by increased place fields’ number such that the probability of

place cell activation for any point in space was similarly low between the objects and non-objects

conditions. However, because objects were distributed all along the maze in this study the local

effect of objects was not evaluated. In the present work, the strong increase in the number of place

fields in OZ resulted in a significant increase in the proportion of place cells active at these locations

despite a local reduction in place field size (OZ: 6.56 ± 0.32%/10 cm, n = 12 spatial bins of 10 cm,

six in each direction; ØZ: 4.50 ± 0.29%/10 cm, n = 20 spatial bins of 10 cm, 10 in each direction;

t30 = �4.54, p<10�4, two-tailed unpaired t-test). This result shows that while there might be a gen-

eral mechanism to maintain a constant and low proportion of place cells activated at each position

notably between dorsal and ventral parts of the hippocampus (Skaggs and McNaughton, 1992;

Maurer et al., 2006) or between objects and non-objects conditions (when objects are distributed

all along the track, Burke et al., 2011), spatial coding resolution can nevertheless be increased

locally around virtual 3D objects. Whether virtual objects in our study are perceived by mice as real

objects is unclear. They notably lack the multisensory component inherent to real objects

(Connor and Knierim, 2017). Nevertheless, they triggered a large (50%) increase in place cell’s pro-

portion which is not compatible with the modest proportion of OR cells reported in our and previous

studies.

Instead, our results are more compatible with the hippocampal mapping system using local visual

cues to improve its spatial coding resolution. Consistent with this hypothesis, spatial coding was not

only quantitatively but also qualitatively increased with a higher spatial selectivity, spatial information

content and stability of place fields. Previous studies have reported overrepresentations near

rewarded locations (O’Keefe and Conway, 1978; Hollup et al., 2001; Dupret et al., 2010;

Danielson et al., 2016; Gauthier and Tank, 2018; Sato et al., 2018) or specific sensory cues

(Wiener et al., 1989; Hetherington and Shapiro, 1997; Sato et al., 2018). Importantly, we could

also observe overrepresentations of the ends of the maze in ØT, where rewards are delivered and

which are associated with prominent visual cues. Nevertheless, End-track fields had a low spatial

information content and stability when compared to fields recorded in OT (but similar to On-track

fields recorded in the same maze). This argues against increased spatial coding resolution at these

locations and further suggests a possible dissociation between overrepresentation and increased

spatial coding resolution. Finally, improved coding resolution near objects could be instantaneously

tuned upon object manipulation while overrepresentations of specific sensory stimuli or rewarded

locations usually takes several days to develop (Le Merre et al., 2018; Sato et al., 2018).

A previous study in rats specifically compared place cell coding in real and virtual reality environ-

ments with distal visual cues only (Ravassard et al., 2013). They reported a lower number of spa-

tially modulated cells and lower spatial selectivity in the virtual environment and concluded that

distal visual cues alone are not sufficient to fully engage the hippocampal mapping system. Our

results complement this study by showing that local visual cues, on the other hand, can increase the

proportion of spatially modulated cells (i.e. place cells) among active cells and spatial selectivity. Sev-

eral factors could explain the specific effect of local visual cues on spatial coding observed in the

present study. First, objects could constitute a stable reference point in space to refine estimation of

the current subject’s position possibly through anchoring of the path integrator system

(McNaughton et al., 2006; Poucet et al., 2015). Close to the objects, this effect could be further

reinforced through motion parallax effect. Second, objects as local visual cues have a higher sensory

resolution compared to distal visual cues. This can lead to increased spatial coding resolution
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according to sensory based models of place cell activation (Hartley et al., 2000; Strösslin et al.,

2005; Barry et al., 2006). In line with this, animals tend to increase their sensory sampling rate in

order to get a better sensory resolution near important locations (Geva-Sagiv et al., 2015). Third,

objects, as salient cues in the environment, could modify the attentional state of the animal and

favor spatial awareness. Such rise in attention has been shown to increase spatial selectivity in mice

(Kentros et al., 2004). However, we note that animals were not required to pay close attention to

objects locations to perform the task, as task performance was not different between the ØT and

OT conditions. Alternatively, objects could represent a source of additional noise in the system thus

requiring a higher number of spatially modulated cells and increased spatial selectivity for efficient

position coding. However, position decoding was very poor in the maze without objects, which

argues against this possibility.

The effects of local cues on spatial coding accuracy were even more pronounced in the temporal

domain. Indeed, in the absence of local cues theta phase precession was strongly reduced as

observed in rat running in place in a wheel (Hirase et al., 1999) despite the presence of place fields

and patterns on the walls providing optic flow. When local cues were included, however, hippocam-

pal place cells precessed at a rate comparable to that observed in real environments

(Middleton and McHugh, 2016). An increased slope of theta phase precession in the presence of

real objects was reported before (Burke et al., 2011) without a significant change in the correlation

between phase and position. Because place fields were smaller in the presence of objects, this

increase could result from a scaling of theta phase precession rate with place field size

(Huxter et al., 2003). In our study, we measured theta phase precession on normalized field sizes

and also using single trials. We observed a significant and positive correlation between phase and

position in the presence of 3D objects, while this correlation was not different from 0 in the absence

of local visual cues. This is consistent with improved temporal spatial information coding in the pres-

ence of local visual cues.

To ascertain that this effect did not result from changes in place fields’ quality, additional analysis,

independent of place fields’ detection, were performed (Geisler et al., 2007). These analyses also

showed that in the presence of local cues individual cells’ firing tended to oscillate faster than theta

oscillation recorded in the LFP (a sign of theta phase precession) while this was much less the case in

the absence of local cues. Importantly, the frequency and power of the theta oscillation recorded in

the LFP and the coupling of putative pyramidal cells’ firing to this oscillation were also not signifi-

cantly different between conditions and cannot explain observed differences. The only difference

was an attenuation of theta frequency speed modulation in the absence of local cues while theta

amplitude vs speed modulation was equivalent in both conditions. A similar absence of theta fre-

quency vs speed modulation (with intact theta amplitude vs speed modulation) was observed in rats

navigating virtual reality environments in the absence of local visual cues (Ravassard et al., 2013).

However, in this study, theta phase precession was unaffected. Thus, the link between an absence of

theta frequency vs speed modulation and reduced theta phase precession is not straightforward.

Future studies are needed to decipher the mechanisms of the effect of local cues on theta phase

precession. Theta phase precession is thought to be involved in the generation of theta sequences,

where the time lags between spikes of place cells with overlapping place fields are proportional to

the distance separating those fields. This so-called theta sequence compression is thought to be

important for spatial memory. Here, we found that theta timescale coordination could be observed

in the presence of 3D objects only. This suggests that local sensory cues are important for temporal

coding beyond theta phase precession.

Altogether, our results show that enriching an environment with local visual cues allows coding at

higher spatial resolution with a high number of spatially modulated cells, smaller firing fields,

increased spatial selectivity and stability and good theta phase precession/theta timescale spike

coordination. The use of virtual reality raises a growing interest in the field of neuroscience to study

spatial cognition in rodents but also in non-human and human primates (Epstein et al., 2017). Our

results suggest that enriching these environments with local visual cues could help comparing spatial

coding in real and virtual environments.

We observed that local visual cues induce a rescaling of spatial coding which is both global and

local. What would be the benefit of this rescaling? In the wild, rodents can travel kilometers away

from their home to food locations through empty fields (Taylor, 1978). Mapping all parts of

explored environment at high resolution would require a very large number of neurons and
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computational power (Geva-Sagiv et al., 2015). Accordingly, place fields tend to be larger in bigger

environments (Fenton et al., 2008) and the statistics of new place cells recruitment as an environ-

ment becomes bigger are non-uniform (Rich et al., 2014). Thus, there might be a computational

benefit to be able to map at high resolution important places like home base or food locations and

to map at lower resolution long transition routes between those locations (Geva-Sagiv et al., 2015).

Such resolution could depend on the number of local sensory information as presented here. Future

work should decipher whether increased spatial coding resolution is associated with better naviga-

tional accuracy and spatial memory.

Materials and methods

Animals
Data were acquired from 11 male mice C57BL/6J (Janvier/Charles River) between 8 and 12 weeks

during the recording phase (weight: 21–23.6 g). The mice were housed 2 or three per cages before

the first surgery and then individually with 12 inverted light/dark cycles. Trainings and recordings

occurred during the dark phase.

Ethics
All experiments were approved by the Institut National de la Santé et de la Recherche Médicale

(INSERM) animal care and use committee and authorized by the Ministère de l’Education Nationale

de l’Enseignement Supérieur et de la Recherche following evaluation by a local ethical committee

(agreement number 02048.02), in accordance with the European community council directives

(2010/63/UE).

Surgical procedure to prepare head fixation
A first surgery was performed to implant a fixation bar later used for head-fixation. Animals were

anesthetized with isoflurane (3%) before intraperitoneal injection of ketamine (100 mg/Kg) mixed

with xylazine (10 mg/Kg) supplemented with a subcutaneous injection of buprenorphine (0.06 mg/

Kg). Two jeweller’s screws were inserted into the skull above the cerebellum to serve as reference

and ground. A dental cement hat was then constructed leaving the skull above the hippocampi free

to perform the craniotomies later on. The free skull was covered with a layer of agarose 2% (wt/vol)

and sealed with silicon elastomer (Kwik-Cast, World Precision Instruments). A small titanium bar

(0.65 g; 12 � 6 mm) was inserted in the hat above the cerebellum to serve as a fixation point for a

larger head plate used for head fixation only during trainings and recordings.

Virtual reality set up
A commercially available virtual reality system (Phenosys Jetball-TFT) was combined with a custom

designed 3D printed concave plastic wheel (center diameter: 12.5 cm; side diameter: 7.5 cm; width:

14 cm, covered with silicon-based white coating) to allow 1D movement with a 1/1 coupling

between movement of the mouse on the wheel and movement of its avatar in the virtual reality envi-

ronment. This solution was preferred to the original spherical treadmill running in a X-only mode

(which takes into account only rotations of the ball in the X axis to actualize the position of the avatar

in the virtual reality environment) which also allows 1D movement but with a more variable coupling

between movement of the mouse on the treadmill and its avatar in the virtual reality environment.

The wheel was surrounded by six 19-inches TFT monitors, which altogether covered a 270 degrees

angle. Monitors were elevated so that the mice’s eyes level corresponded to the lower third of the

screen height to account for the fact that rodents field of view is biased upward. The head fixation

system (Luigs and Neumann) was located behind the animal to not interfere with the display of the

virtual reality environment. The virtual reality environment was a virtual 200 cm long and 32 cm wide

linear maze with different patterns on the side and end walls and virtual 3D objects (see virtual reality

environments section). Movement of the wheel actualized the mouse’s avatar position. The mouse

could only perform forward or backward movements but could not turn back in the middle of the

track (see training section).
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Virtual reality environments
No objects track (ØT)
Each side wall had a unique pattern (black and orange stripes on one wall; green crosses on black

background on the other wall). End-walls had grey triangular or round shapes on a yellow back-

ground (Figure 1A).

Objects track (OT)
This maze was identical to the ØT maze concerning wall patterns and dimensions but three virtual

objects were included on the sides between the animal trajectory and the walls (Figure 1A). The

objects were a yellow origami crane (dimensions: 9 � 9 � 7 cm; position: 37 cm from end wall), a

blue and grey cube (dimensions: 5 � 5 � 5 cm; position: 64 cm from end wall) and a tree (15 �

15 � 22 cm; position: 175 cm from end-wall). The animal could neither orient toward the objects nor

get any sensory feedback from them by any other mean but vision.

Pattern no objects track (PØT)
This maze had the same dimensions as the previous mazes, but the side walls had distinct symmetri-

cal patterns in different locations along the maze (50 cm long; black dots on white background,

black and green squares, black and white stripes and green crosses on black background).

Enriched objects track (EOT)
This maze was identical to the Pattern No Objects Track (PØT) and included the same virtual reality

objects (identical in dimensions and locations) to those of the Objects Track (OT) maze. Outside the

maze walls, two large 3D columns were positioned on each side (dimensions 8 � 8�47 cm; positions

58 and 143 cm from end wall) to provide additional visual cues.

Training
Mice were first habituated to the experimentalist through daily handling sessions of 20 min or more

that continued throughout the experiment. After a 3 days post-surgery recovery period, mice were

water-deprived (1 ml/day, including the quantity of water taken during the training). After 2–3 days

of water deprivation, they were progressively trained to run in the virtual reality set up. First, mice

were familiarized with running head-fixed on the wheel for water rewards in a black track (screens

always black). During these sessions, animals received as a reward sweetened water (5% sucrose) for

each 50 centimeters run on the wheel. When animals were comfortable with the setup, they were

trained to run in one of three linear virtual tracks (familiar track) assigned randomly. When animals

reached the end of the track, a liquid reward delivery tube extended in front of the animal and ani-

mal had to lick to get the reward (a 4 mL drop of water of 5% sucrose). Animals were then teleported

in the same position but facing the opposite direction of the maze and had to run up to the end of

the maze in the opposite direction to get another reward. Animals were initially trained during 15

min sessions. Session time was progressively increased to reach 60 min. Ad libidum water access

was restored if the weight of the animal decreased beneath 80% of the pre-surgery weight at any

stage during training.

Recording procedure
When animals reached a stable behavioral performance (at least one reward/minute during 60 min),

we performed acute recordings using silicon probes (4/8 shanks; A-32/A-64 Buzsáki Probe, Neuro-

nexus; see Figure 1—figure supplement 1). On the day before the first recording session, animals

were anesthetized (induction: isoflurane 3%; maintenance: Xylazine/Ketamine 10/100 mg/Kg supple-

mented with Buprenorphine 0.1 mg/Kg) and a craniotomy was drilled above one hippocampus (cen-

tered on a location �2 mm posterior and ±2.1 mm lateral from bregma). The craniotomy was

covered with agarose (2% in physiological saline) then sealed with silicon elastomer (Kwik-Cast,

World Precision Instruments). This craniotomy was used to record acutely during 2–3 consecutive

days (with the probe lowered in a new location every time). Then a second craniotomy was per-

formed over the other hippocampus following the same procedure and recordings were performed

during 2–3 additional days. Before each recording session, the backside of the probe’s shanks was

covered with a thin layer of a cell labeling red-fluorescent dye (DiI, Life technologies) so that its
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location (tips of the shanks) could be assessed post-hoc histologically. The silicon probe was then

lowered into the brain while the animal was allowed to walk freely on the wheel with the screens dis-

playing a black background. The good positioning of the probe with recording sites in the CA1 pyra-

midal cell layer was verified by the presence of multiple units showing complex spike bursts on

several recordings sites and the recording of sharp-wave ripples during quiet behavior. After posi-

tioning of the silicon probe the virtual reality environment was displayed on the screen. On the day

of the last recording in each hippocampus, the backside of the probe’s shanks was covered with a

thin layer of a cell labeling red-fluorescent dye (DiI, Life technologies) so that its location (tips of the

shanks) could be assessed histologically post-hoc. All mice (n = 11) experienced a familiar environ-

ment (either ØT, OT, PØT or EOT) for around 20 back and forth trials. For mice trained in ØT or OT

(n = 3 and 3, respectively), this first exploration was followed, after 3 min of free running with the

screens displaying a black background, by exploration of a new environment, identical to the previ-

ous one except for the presence of the three 3D objects (objects were added for mice trained in ØT

and removed for mice trained in OT) for another 20 consecutive back and forth trials. For some of

these mice (n = 2 for ØT, n = 2 for OT, n = 2 for PØT and n = 2 for EOT) sessions in the familiar track

and novel track were divided into two sub-sessions interleaved by 3 min of free running with the

screens black. The two sub-sessions in the familiar environment and the new environment were

pulled together for analysis. Note that animals stayed head-fixed on the wheel surrounded by

screens during the entire recording session.

Data acquisition and pre-processing
The position of the animal in the virtual maze was digitalized by the virtual reality controlling com-

puter (Phenosys) and then sent to a digital-analog card (0–4.5V, National Instrument Board NI USB-

6008) connected to the external board (I/O Board, Open Ephys) of a 256 channels acquisition board

(Open Ephys). Neurophysiological signals were acquired continuously on a 256-channels recording

system (Open Ephys, Intan Technologies, RHD2132 amplifier board with RHD2000 USB interface

board) at 25,000 Hz. Spike sorting was performed semi-automatically using KlustaKwik

(Rossant et al., 2016; https://github.com/klusta-team/klustakwik). Clusters were then manually

refined using cluster quality assessment, auto- and cross-correlograms, clusters waveforms and simi-

larity matrix (Klustaviewa, Rossant et al., 2016).

Data analysis
Data analysis was performed in the MATLAB software environment and the source code is available

from GitHub (Marti et al., 2019; copy archived at https://github.com/elifesciences-publications/

codes_bourboulou_marti_2019).

Reward and object zones definition
The reward zones, located between the maze extremities and 10% of the track length (0–20 cm and

180–200 cm), were not considered in the analysis. The object zone was composed of two zones, one

from 30 to 70 cm including both the origami crane and the cube and the other from 160 to 180 cm

including the tree.

Firing rate map
The maze was divided into 100 spatial bins measuring 2 cm. For each trial, the number of spikes and

the occupancy time of the animal in each spatial bin were calculated to obtain the spikes number

vector and the occupancy time vector, respectively. These vectors were smoothed using a Gaussian

filter with a half-width set to 10 spatial bins. Spikes occurring during epochs when velocity was lower

than 2 cm/s were removed from all analysis. The smoothed spikes number vector was divided by the

smoothed occupancy time vector to obtain the firing rate vector for each trial. The firing rate vectors

were pooled for a specific condition (e.g. Familiar Objects Track) and direction of the animal (e.g.

back) to generate a firing rate map. These pooled vectors were also averaged to provide the mean

firing rate vector, corresponding to the mean firing rate for each spatial bin.

Bourboulou et al. eLife 2019;8:e44487. DOI: https://doi.org/10.7554/eLife.44487 21 of 30

Research article Neuroscience



Pyramidal cell classification
Cells with a mean firing rate lower than 20 Hz and either a burst index (Royer et al., 2012) greater

than 0 or the spike duration greater than 0.4 ms were classified as putative pyramidal neurons. They

were classified as interneurons otherwise. To compute the proportion of active putative pyramidal

cells, only sessions with at least 15 recorded neurons were included.

Active cells classification
A cell was considered as active when the mean firing rate was greater than 0.5 Hz, the peak firing

rate was greater than 1.5 Hz and the cell fired at least one spike in 50% of the trials. These three cri-

teria had to be verified in either the forth or back direction.

Place fields detection
To detect a mean place field, a bootstrap procedure was performed. For each trial, a new spikes

train was generated using a Poisson process with l equal to the mean firing rate of the trial and a 1

ms time interval. A ‘randomized’ firing rate map was then generated and the mean firing rate vector

was determined and compared with the mean firing rate vector from the initial rate map. This opera-

tion was repeated 1000 times to determine a p-value vector (p-value for each 2 cm spatial bin). Place

fields candidates were defined as a set of more than three continuous spatial bins associated with

p-values lower than 0.01. Two place fields were merged when the distance between their closest

edges was at most equal to five spatial bins (10 cm). Place fields’ edges were extended by at most

five spatial bins (for each edge) when the p-value was below 0.30 for these bins. A field with a size

greater than 45 spatial bins (90 cm) was not considered as a place field. To validate a mean place

field, the cell had to verify a stability criterion. Spatial correlations were calculated between the firing

rate vector of each trial and the mean firing rate vector. The spatial bins corresponding to other

detected place fields were not considered in the spatial correlations. The place field was validated if

the spatial correlations were greater than 0.60 for at least 40% of trials. Unless specified, when sev-

eral mean place fields were detected, only the place field with the highest peak was conserved. An

active cell with at least one place field in one direction was considered as a place cell. To compute

the proportion of place cells, only sessions with at least nine active cells were included.

The same procedure was applied to detect place fields per lap without the stability criterion,

which cannot be calculated on single trials. A place field per lap was conserved if it overlapped at

least one spatial bin with the closest mean place field.

Stability index
The stability index of a cell was computed as the mean of the spatial correlations between all pairs

of firing rate vectors. This way, the cell stability index takes into account the activity patterns from all

the trials and provides a reliable quantification of the inter-trial reproducibility of the cells activity.

Note that this stability index is different from usual stability indexes based on correlations of mean

firing rates between even and odd trials or two halves of the same recording session thus values

obtained cannot be directly compared.

Spatial Information
The spatial information (SI) was calculated according to the following formula (Skaggs et al., 1996):

SI ¼
X

N

i¼1

FRi

FR
�

OTi

OTT
� log2

FRi

FR

� �� �

where N is the number of spatial bins (N = 100), FRi is the mean firing rate determined in the i-th

spatial bin, FR is the mean firing rate, OTi is the mean occupancy time determined in the i-th spatial

bin, OTT is the total occupancy time based on the mean occupancy time vector.

As another measure of spatial information, we computed the Mutual Information using the follow-

ing formula:

MI ¼
X

N

i¼1

X

4

j¼1

pi;jlog2
pi;j

pi:pj

� �
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where N is the total number of spatial bins, pi is the occupancy probability of the animal in the i-th

spatial bin, pj is the probability to obtain a firing rate amongst one of four non overlapping quartiles

of firing rates and pi,j is the joint probability of the animal to be in the i-th spatial bin with a firing

rate in the j-th quartile. The Mutual Information was then normalized with a surrogate-based distribu-

tion to correct possible bias due to basal firing rate (Souza et al., 2018).

Out/in-field firing ratio
The out/in-field firing ratio was computed as the ratio between the mean firing rate outside the

mean place field (excluding secondary place fields) and the mean firing rate inside the mean place

field.

Place field dispersion
A place field dispersion measure has been computed to quantify how much each place field per lap

was dispersed around the mean place field. The place field dispersion (PFD) was calculated accord-

ing to the following formula:

PFD¼
L

N

1

M

X

M

i¼1

C�Cið Þ2
" #1

2

where C is the center of the mean place field, Ci is the center of the field in the i-th lap and M is the

number of laps with a single-trial detected field, L is the total length of the maze and N is the num-

ber of spatial bins. The center of a place field was defined as the spatial bin with the highest firing

rate.

Place field width
Place field width was computed as the distance between the place field edges and only determined

for entire place fields. A place field was considered as complete when its firing rate increased above

30% of the difference between highest and lowest place field activity and then dropped below this

threshold.

On-track and end-track fields
A mean place field was considered as End-Track field if the peak of the field was located at the

beginning of the reward zone (i.e. at the 11-th or the 90-th spatial bin). All other fields were classi-

fied as On-Track fields.

Distribution of place fields’ position
To statistically assess whether the place fields were non-uniformly distributed in the maze, we tested

the null hypothesis that all fields were uniformly distributed. Based on this hypothesis, the total num-

ber of place fields was redistributed with an equal probability to be in each 10 cm spatial bin. The

standard deviation of this uniform distribution was then compared to the initial distribution. This

operation was repeated 1000 times (bootstrap procedure) to obtain a p-value, corresponding to the

probability of the place fields to be uniformly distributed. When this p-value was lower than 0.05,

the null hypothesis was rejected and the distribution was considered as non-uniform. To ensure that

single values of place fields’ percentage in a given bin did not make the distribution non-uniform,

values greater than the 93-th percentile and lower than the 6-th percentile have been excluded from

the initial distribution.

Local stability
A local stability index was developed to assess how consistent a firing rate was over the laps for a

given spatial bin. To this end, two mean firing rate vectors were calculated, in the neighborhood of

each spatial bin (2-spatial bins half-window) for even and odd trials. Local stability index was defined

as the spatial correlation between these two vectors for a given spatial bin.
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Position decoding
To address how informative the firing rates of the CA1 pyramidal cells ensemble were about the

position of the animal in the different virtual environments, we used Bayesian decoding and Firing

Rate Vectors (FRV) methods. For each time window, the distribution of the animal position probabil-

ity across the whole maze was calculated using the firing activity of all active cells (place cells and

non place cells). The mode of this distribution (maximum of probability) was chosen as the decoded

position for a given time window. We used a classical ‘memoryless’ Bayesian decoder (Brown et al.,

1998; Zhang et al., 1998). The decoding of the spikes data was restricted to periods when the ani-

mal was running (speed >2 cm/s) or with good Theta/Delta ratio and cross-validated using the ‘leave

one out’ approach. We computed the animal’s probability to be in each spatial bin x (2 cm) knowing

that N cells fired n spikes in a time window according to the following formula:

P xjnð Þ ¼C t;nð ÞP xð Þ
Y

N

i¼1

fi xð Þni

 !

exp �t
X

N

i¼1

fi xð Þ

 !

with P(x) a uniform spatial prior, fi(x) the average firing rate of the neuron i over x (i.e. the tuning

curve over the position), ni the number of spikes emitted by the neuron i in the current time window

and t the length of the time window (150 ms; non-overlapping) and C(t;n) a normalization factor

intended to set the posterior probability for one time window to 1. This formula assumes that the

spikes trains obey to a Poisson process and that cells activity is independent. Position decoding was

also performed using the FRV method (Middleton and McHugh, 2016). For each 100 ms time bin,

the Pearson correlations were calculated between firing rates across all cells and the mean firing

rates from all cells for a given spatial bin. A decoding error was defined as the absolute value of the

difference between decoded and real position. Accuracy was defined as the probability at the real

position in a particular time bin. To ensure that the position decoding was not influenced by the

number of cells, a drop cell approach was performed (van der Meer et al., 2010). Briefly, for M

recorded active cells, the position was decoded using k different subsets of cells with increasing

sizes 5*k with k ranging from 1 to the last multiple of 5 < M. For the k-th subset, the decoding was

repeated 50 times using 5*k randomly selected cells and the median value of probabilities for a

given time and spatial bin was chosen as the final probability. The presented results were computed

for a subset composed of 20 cells (k = 4).

Map similarity over trials
To analyze the dynamic of the changes of spatial representation between familiar and novel condi-

tions, map similarities were performed for 10 back and forth trials before and after the experimental

manipulation. For each active putative pyramidal cell, map similarities consisted of the Pearson cor-

relation between the firing rate map of each back and forth trial and a template firing rate map. This

template firing rate map was calculated as the average of the firing rate map from all the laps in the

condition with objects (most stable condition). The maps corresponding to back (forth) trials were

correlated to the mean back (forth) trial map in the object condition and the correlations values

were averaged to obtain a single value for this back and forth trial. When map similarity was deter-

mined for a lap in the object condition, the template firing rate map was computed without it.

Object-responsive cells detection
OR cells tend to discharge systematically at the location of several objects (if they do not code for

object identity) present in the environment or at least one object (if they in addition code for object

identity). For this analysis, we took advantage of the fact that our animals were passing near the

same objects in both back and forth trials. We defined individual objects zones (IOZ), one for each

object. For a given object, IOZ corresponded to all spatial bins occupied by the object. Here are the

IOZ defined for each object in both directions: origami crane: 30–46 cm, cube: 60–70 cm and tree

164–180 cm. Place cells were classified as OR cells if they were bidirectional (firing in both back and

forth trials) and had at least one place field in a IOZ corresponding to the same object for both back

and forth trials or several place fields in several IOZs corresponding to the same objects in both

back and forth trials.
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Phase precession analysis
Phase precession was calculated on all spikes (above speed threshold) for the track with objects but

restrained to Spatially Stable Trials (SST) in the no object condition to equalize stability between

both conditions. SST consisted of at least three trials where the in-field correlation with the mean

place field exceeded 0.6. To assess theta phase precession, the Local Field Potential (LFP) of the

channel with the highest number of pyramidal cells (Skaggs et al., 1996) was filtered (4th order Che-

byshev filter type II) in the theta band (4–12 Hz). The instantaneous theta phase for each time bin (1

ms) was determined by two different methods: either using the Hilbert transform of the filtered LFP

or a waveform-based approach (Belluscio et al., 2012). In the later method, cycles extrema were

detected in the wide-band signal (1–40 Hz) in each half cycles defined by a zero-crossings of a nar-

row-band filter (4–10 Hz). LFP theta band phase was then estimated by a linear interpolation

between peaks, through and each half cycle in order to preserve theta asymmetry. Both methods

produced similar results. Thus, the theta phases used in this paper were obtained using Hilbert trans-

form (unless noted). Only theta phase locked cells were considered in the following analysis (non-uni-

form phase distribution, p<0.05, Rayleigh test). Circular linear analysis was used to determine the

correlation strength and slope value of the relation between spikes phases and normalized positions

(0–1) through the mean place field (Kempter et al., 2012). Briefly, the phase precession slope was

computed with a linear regression model between circular (spike phases) and linear (animal’s posi-

tion) data. The slope of the regression was used to scale the animal’s position and to transform it

into a circular variable. A circular-circular correlation could thus be computed on the data to assess

the strength of the relationship between spike phases and animal’s position. A significance value

was determined by re-computing the correlation values for 1000 permutations of the spikes

position.

Analysis of phase precession on single-trial detected fields was also performed (Schmidt et al.,

2009). Phase precession slope and correlation values were computed similarly to the previously

described method. The single lap slope and correlation values were averaged only for sessions with

at least three significantly precessing trials where the cell emitted a minimum of four spikes inside

the mean place field.

Unit-LFP shift and spike phase spectrum
To quantify phase precession independently of the position of the animal and the place field detec-

tion, Unit-LFP shift was used. For all active putative pyramidal cells, a discreet multitaper spectrum

in the theta band (4–12 Hz) of the cell’s spikes was performed (mtpointspectrum, Chronux 2.11;

http://chronux.org/)) as well as the continuous multitaper spectrum of the simultaneously recorded

LFP (mtspectrumc, Chronux 2.11). A theta modulation index (Mizuseki et al., 2009) was defined for

each cell spike spectrum as the mean power around the peak theta frequency ±0.5 Hz divided by

the mean power below 5 Hz or above 9 Hz. A cell was considered as theta modulated if this index

was greater than 1.4. The cross correlogram was then calculated for theta modulated cells to deter-

mine the lag in the theta band between the LFP and the cells’ spectrum (Geisler et al., 2007). A

positive lag indicates that the cell is firing faster than the concurrent LFP.

Speed modulation of theta frequency and amplitude
The instantaneous theta frequency was computed from the instantaneous theta phase extracted

from the Hilbert transform of the filtered LFP in the theta band. For each time ti, the instantaneous

theta frequency (F�(ti)) was determined based on the unwrapped phase:

F� tið Þ ¼
Phase tiþ1ð Þ�Phase tið Þ

2p �Fs

where Fs is the sampling frequency.

Instantaneous theta amplitude was defined as the module of the LFP Hilbert transform and nor-

malized by the mean LFP theta amplitude. The Pearson correlation coefficient was then calculated

between the speed of the animal and theta frequency/amplitude.

A theta peak detection method was also used to calculate the instantaneous theta frequency.

Theta peaks were detected with zero crossing of the instantaneous LFP phase and frequency was
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deduced from the time between two successive theta peaks. This value was affected to all the time

stamp of the corresponding cycle.

Theta timescale correlation
To calculate the theta timescale lag between the spikes of two overlapping place fields, two cross-

correlograms (CCGs) were computed (Dragoi and Buzsáki, 2006; Robbe and Buzsáki, 2009;

Skaggs et al., 1996; CCGHeart; http://fmatoolbox.sourceforge.net/). First a ‘Real-time scale’ CCG

was computed with a 1 s time window and 3 ms time bin. The CCG time lag was defined as the

peak of the filtered CCG between [0–2] Hz. ‘Theta time-scale’ CCG was computed with a 200 ms

time window and 1 ms time bin. The theta time lag was defined as the peak of the filtered CCG

between [0–20] Hz. Only pairs of cells with a CCG mean bin count of 1 count/ms were included in

this analysis. The relation between the CCG time lag and theta time lag was assessed using Pearson

correlation.

Preferred theta phase
Preferred theta phase and Mean Resultant Vector Length of each cell were defined thanks to circ_-

mean and circ_r circular statistics MATLAB toolbox functions (Berens, 2009; https://github.com/circ-

stat/circstat-matlab). Global phase 180˚ was defined as the maximal pyramidal cells activity

(Skaggs et al., 1996).

Statistics
All statistical analyses were conducted using MATLAB codes (MathWorks). For each distribution, a

Lilliefors goodness-of-fit test was used to verify if the data were normally distributed and a Levene

test was used to assess for equal variance. If normality or equal variance were not verified, we used

the Wilcoxon rank sum test otherwise the Student t-test was used to compare two distributions. In

case of multiple comparisons, the Kruskal-Wallis test with Bonferroni post-hoc test was used. Spatial

correlations were computed using Pearson’s correlation coefficient. Chi-square test was used to

compare percentages of phase precessing cells. For circular distributions comparison, we first tested

if they came from a Von-Mises distributions (Watson Test) with a common concentration (circ_ktest),

if the distribution respected these constrains circular ANOVA: Watson-Williams multi-sample test for

equal means (circ_wwtest) was applied.

Acknowledgements
The authors thank Caroline Filippi for help with histology; Mathieu Pasquet, Ludovic Petit, Susanne

Reichinnek and Robert Martinez for technical assistance; David Dupret, Pierre-Pascal Lenck-Santini,
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de la Recherche Médicale

Jerome Epsztein

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Romain Bourboulou, Conceptualization, Software, Formal analysis, Investigation, Visualization, Writ-

ing—review and editing; Geoffrey Marti, Conceptualization, Data curation, Software, Formal analy-

sis, Visualization, Writing—review and editing; François-Xavier Michon, Software, Writing—review

and editing; Elissa El Feghaly, Investigation, Writing—review and editing; Morgane Nouguier, Con-

ceptualization, Investigation; David Robbe, Resources, Writing—review and editing; Julie Koenig,

Conceptualization, Resources, Software, Formal analysis, Supervision, Investigation, Writing—review

and editing; Jerome Epsztein, Conceptualization, Resources, Supervision, Funding acquisition, Visu-

alization, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs

Romain Bourboulou http://orcid.org/0000-0002-9133-8386

David Robbe http://orcid.org/0000-0002-9450-0553

Julie Koenig http://orcid.org/0000-0003-0516-6627

Jerome Epsztein http://orcid.org/0000-0002-5344-3986

Ethics

Animal experimentation: All experiments were approved by the Institut National de la Santé et de la
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Figure 1—figure supplement 1. Histology and spike sorting. (A) Representative histology slide showing a silicon probe track ending in CA1 pyramidal

layer. Scale bar: 1 mm. (B) Probe details: Shank and recording channels spacing (C) (Right) Auto-correlograms (red) and cross-correlograms (black) of 20

CA1 units recorded simultaneously. (Left) Average units waveforms (for visualization each row is normalized by the unit maximum average waveform).
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Figure 1—figure supplement 2. Effects of local visual cues on spatial coding resolution across different recording sessions. (A–D) Box plots of the

place field dispersion (A; ØT: 12.1 ± 0.65 cm, n = 8 recording sessions; OT: 9.69 ± 1.13 cm, n = 8 recording sessions; t14 = 1.86, p=0.08, two-tailed

unpaired t-test), the stability index (B; ØT: 0.14 ± 0.02, n = 8 recording sessions; OT: 0.29 ± 0.04, n = 8 recording sessions; t14 = �3.39, p=0.0044, two-

tailed unpaired t-test), the out/in field firing rate (C; ØT: 0.65 ± 0.03, n = 8 recording sessions; OT: 0.45 ± 0.04, n = 8 recording sessions; t14 = 4.40,

p=0.0006, two-tailed unpaired t-test) and the spatial information (D; ØT: 0.06 ± 0.02, n = 8 recording sessions; OT: 0.27 ± 0.05, n = 8 recording sessions;

Z = �2.88, p=0.0038, two-tailed unpaired t-test) without (blue) or with (orange) objects between different recording sessions.

DOI: https://doi.org/10.7554/eLife.44487.004
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Figure 2—figure supplement 1. Virtual 3D objects improve spatial coding resolution locally across different recording sessions. (A–C) Box plots of the

mean percentage of place fields per spatial bin (A; ØZ: 3.49 ± 0.40%/10 cm, n = 8 recording sessions; OZ: 7.36 ± 0.82%/10 cm, n = 8 recording sessions;

t14 = �4.24, p=0.0008, two-tailed unpaired t-test), the place field width (B; ØZ: 57.1 ± 3.19 cm, n = 8 recording sessions; OZ: 43.2 ± 2.49 cm, n = 8

recording sessions; t14 = 3.46, p=0.0038, two-tailed unpaired t-test) and the local stability index (C; ØZ: 0.36 ± 0.04, n = 8 recording sessions; OZ:

0.50 ± 0.03, n = 8 recording sessions; t14 = �2.53, p=0.02, two-tailed unpaired t-test) in ØZ and OZ in the maze with objects between different

recording sessions.
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Figure 3—figure supplement 1. Virtual 3D objects improve hippocampal population coding accuracy across

different recording sessions Box plots of the Bayesian decoding error. (A; BD error; ØT: 46.3 ± 1.20 cm, n = 5

recording sessions; OT: 27.6 ± 3.26 cm, n = 7 recording sessions; Z = 2.76, p=0.0058) and Bayesian decoding

accuracy (B; BD accuracy; ØT: 0.017 ± 9�10–4, n = 5 recording sessions; OT: 0.048 ± 0.005, n = 7 recording

sessions; Z = 2.76, p=0.0058) in the maze without (blue) and with (orange) objects.

DOI: https://doi.org/10.7554/eLife.44487.010
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Figure 3—figure supplement 2. Firing Rate vector decoding in familiar conditions. (A) Confusion matrix between the real (x-axis) and the decoded

position (y-axis) for all recording sessions performed on the track without objects (top, blue) or with objects (bottom, orange). (B) Box plots depicting

the Firing Rate Vector decoding error (FRV error) in the maze with (orange) and without (blue) objects. (C) Box plots depicting the Firing Rate Vector

decoding accuracy (FRV correlation) in the maze with and without objects.
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Figure 4—figure supplement 1. Spatial coding resolution adaptation upon objects manipulations is already visible during the first session in the new

condition Box plots comparing familiar (empty boxes, all recording sessions) and new (filled boxes, first recording session) conditions upon objects

manipulation. Two pairs of box plots are illustrated; Left: comparison between the familiar condition without objects (blue, ØTfam) and the new

condition with objects (orange, OTnew). Right: comparison between the familiar maze with objects (orange, OTfam) and the new maze without objects

(blue, ØTnew). A gradient color arrow shows the direction of the transition. Plots show the place field spatial dispersion (A; ØTfam vs OTnew: Z = 2.85,

p=0.0043, two-tailed WRS test; OTfam vs ØTnew: Z = �2.62, p=0.008, two-tailed WRS test), the stability index (B; ØTfam vs OTnew: Z = �4.91, p<10�6,

two-tailed WRS test; OTfam vs ØTnew: Z = 4.41, p<10�4, two-tailed WRS test), the out/in field firing (C; ØTfam vs OTnew: Z = 3.34, p=0.001, two-tailed

WRS test; OTfam vs ØTnew: Z = �2.71, p=0.006, two-tailed WRS test) and the spatial information (SI; D; ØTfam vs OTnew: Z = �3.94, p<10�4, two-tailed

WRS test; OTfam vs ØTnew: Z = 2.74, p=0.006, two-tailed WRS test).
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Figure 4—figure supplement 2. Virtual 3D objects modulation of hippocampal population coding accuracy upon objects manipulation. (A–

B) Confusion matrix between the real (x-axis) and the decoded position (y-axis) for all new recording sessions performed on the track without objects

(A, blue) or with objects (B, orange). (C–D) Box plots comparing Bayesian decoding in familiar (empty boxes) and new (filled boxes) conditions upon

objects manipulation. Two pairs of box plots are illustrated; Left: comparison between the familiar condition without objects (blue, ØTfam) and the new

condition with objects (orange, OTnew). Right: comparison between the familiar maze with objects (orange, OTfam) and the new maze without objects

(blue, ØTnew). A gradient color arrow shows the direction of the transition. Plots show the Bayesian decoding error (C; ØTfam: 46.3 ± 0.70 cm, n = 180

trials vs OTnew: 30.7 ± 1.09 cm, n = 86 trials; t264 = 12.4, p<10�27; two-tailed unpaired t-test; OTfam: 27.1 ± 0.94 cm, n = 249 trials vs ØTnew: 37.6 ± 1.18

cm, n = 175 trials; Z = �6.58, p<10�35, two-tailed WRS test) and the Bayesian decoding accuracy (D; ØTfam: 0.017 ± 3.8�10�4, n = 180 trials vs OTnew:

0.046 ± 1.8�10�3, n = 86 trials; Z = �12.6, p<10�35, two-tailed WRS test; OTfam: 0.05 ± 1.5�10�3, n = 249 trials vs ØTnew: 0.026 ± 1.1�10�3, n = 175

trials; Z = 10.6, p<10�25, two-tailed WRS test).
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Figure 7—figure supplement 1. Speed modulation of LFP theta frequency and amplitude in OT and ØT. (A–

B) Mean theta frequency (A) or amplitude (B) across all recording sessions as a function of animal speed (bin: 5

cm/s). (C–D) Box plots of the correlation between theta frequency (C) or amplitude (D) vs speed for individual

sessions.
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Figure 7—figure supplement 2. Theta modulation of spikes in OT and ØT. (A) Mean theta phase plotted against strength of phase locking (Mean

Resultant Vector Length: MRLV) for all theta modulated cells (p<0.05, Rayleigh Test) in OT (orange) and ØT (blue). Solid lines: probability distribution of

the preferred theta phase for the two conditions. Black line: illustrative theta cycle (B) Box plots of the mean theta phase for OT(orange) and ØT (blue)

conditions (C) Box plots of the Mean Resultant Vector Length in OT(orange) and ØT (blue) conditions.
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Figure 7—figure supplement 3. Effect of objects on theta phase precession estimated with a waveform-based approach Distribution of significant

phase position correlation (left) and slopes (right) in the condition without objects (top, blue) and with (bottom, orange) when theta phase was detected

using a waveform-based approach which takes into account theta waves asymmetry. The median of the distribution is indicated by a bold line and 0 by

a dotted line. (A) The correlation between phase and position was significantly different from zero for place cells recorded in the track with objects

(r = �0.14 ± 0.016, n = 159 fields; p<10�13, one sample sign-test) but not for those recorded in the track without objects (r = 0.14 ± 0.05, n = 15 fields;

p=0.30, one sample sign-test). (B) Phase precession slopes (calculated on normalized place field sizes) were negative and significantly different from 0

for cells recorded in the track with objects (�1.83 ± 0.24 rad/U, n = 159 fields; p<10�13, one sample sign-test) but not in the track without objects

(1.63 ± 0.84 rad/U, n = 15 fields; p=0.3, one sample sign-test).
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Part III

D I S C U S S I O N





6
D I S C U S S I O N

In this thesis work, we studied the effects of local visual cues on
dorsal hippocampal spatial coding and particularly on its accuracy
to represent space. In order to do so, we recorded the extracellular
activity of dorsal CA1 place cells in mice shuttling back and forth in
a virtual linear track. Virtual reality allowed us to finely control the
sensory cues provided to the animal. We used several types of visual
information such as 3D visual objects or 2D patterns on the walls to
evaluate their relative impact on spatial coding resolution.

We observed that virtual objects improved the resolution of spatial
coding globally and in their vicinity. The results obtained at the indi-
vidual cells level were confirmed by a population decoding approach.
These changes in rate coding quality were also observed for tempo-
ral coding. Local visual objects improved theta phase precession. An
online modification of the objects availability during the recording
session showed a quasi-instantaneous modification in spatial coding
resolution following the manipulation. Finally, patterns on the walls
led to an enhancement of spatial coding resolution, but in a lesser
extent than for the object condition.

6.1 comparison with previous studies using physical ob-
jects

Several models of place cells formation postulate that they can be
activated thanks to external sensory cues [Hartley et al. 2000; Strosslin
et al. 2005; Barry et al. 2006; Sheynikhovich et al. 2009; Laptev and
Burgess 2019]. A rich environment, populated with various sensory
stimuli, could thus lead to a higher place cells’ recruitment and finer
spatial coding than in an empty one. Battaglia et al. [2004] addressed
this question with an experimental paradigm similar to ours. In this
study, the authors recorded the activity of place cells in rats foraging
in linear tracks with different enrichments in visuo-spatial cues. They
used a cue-rich, a cue-poor and a track divided in a rich and poor area
(combined cue-rich/cue-poor) (see § 4.2.3). Contrarily to our results,
they did not observed any change in the proportion of detected place
cells between the cue-rich and cue-poor tracks. This absence of changes
in RW compared to VR could be due to a higher basal activation of
the hippocampal spatial resources by uncontrolled local cues in their
experiment (e.g.: olfactory cues). Coherently to their initial hypothesis,
the authors observed a smaller scale of the spatial representation
at the population level in presence of intra maze cues in the cue-
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rich condition compared to a cue-poor condition. Curiously, no such
change was observed in the combined condition between the cue-rich
and the cue-poor regions of the same linear track. The visuo-spatial
cues provided in the rich part of their track were small and potentially
less salient. Thus, this could explain an absence of local effect of the
enrichment by an overshadowing of this cues by other local ones.

Similarly, Burke et al. [2011] investigated the contribution of objects
on place cells coding of rats circumnavigating in a circular linear track
with several intra-maze objects (see § 4.2.3 ). In this experiment, they
observed an augmentation of the number of place fields, but also a
reduction of their size. This led to a homogenous probability for a
given location in the maze to be represented by a place field. Burke
et al. [2011] observed a stronger recruitment of hippocampal place
cells but did not investigate local changes in place cells resolution
as in our case. This could be explained by the fact that the objects
were too close and numerous in Burke et al. [2011] to allow such
quantification. These factors potentially led to a merger of the local
effect on spatial coding of a single object with its neighbor. Also, as
in Battaglia et al. [2004], potential uncontrolled local cues could have
maintained a similar level of sensory drive along the maze. That is
also why, in our case, VR was a useful tool to reach a better control of
the visual information and an elimination of uncontrolled local cues.

Furthermore, Burke et al. [2011] performed their recordings in the
distal part of the intermediate hippocampus. A lack of local modu-
lation of spatial resolution could be explained by the fact that they
mostly focused on the size of the place fields. Given that space is
represented at a larger scale in the distal part of intermediate CA1,
it could hide a modest or small variation of place fields’ size. Also,
a larger contribution of non-spatial information, due to stronger in-
puts from the LEC could influence the spatial code in this part of the
hippocampus. In our study, we did not focus our analyses on a spe-
cific anatomical part of dorsal CA1. The randomization of the acute
implantation sites added to the width of our our multi-shanks silicon
probes were not suited for such analysis. However, it allowed us to
study the dorsal hippocampus as a whole.

6.2 could the local change in resolution be due to

object-responsive cells?

Previous studies already highlighted that proximal objects controlled
place cells orientation, but did not evidence any clustering of place
cells around proximal objects [Cressant et al. 1997, 1999; Lenck-Santini
et al. 2005; Renaudineau et al. 2007; Lefort et al. 2019]. However,
some other studies reported a population of spatially modulated
cells in dorsal hippocampus, object-responsive cells, active at the
location or near several objects [Gothard et al. 1996b; Deshmukh and
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Knierim 2013; Geiller et al. 2017a]. Consequently, we wondered if, in
our experiment, the accumulation of place fields in the vicinity of
the objects could be caused by the firing of object-responsive cells.
The identification of this type of cells implies the presence of one
or multiple firing fields at the location or with a fixed distance to at
least two objects. Otherwise, their activity can not be distinguished
from "classical" place cells. In our case, we used the fact that mice
were performing forward and backward journeys to identify them
(see discussion and methods of the Results section § ii ). We were
able to identify a very low proportion of putative object-responsive
cells. The drastic increase of the number of place fields and over-
representation in our study are not compatible with the proportion of
object-responsive cells reported in Deshmukh and Knierim [2013] and
Geiller et al. [2017a]. Furthermore, in one of the condition with object
(rich with object), we observed no over-representation of the object-
zones but local quantitative improvement of spatial coding instead.
Consequently, we can not attribute our results to the activation of
object-responsive cells only.

6.3 comparison with previous reports of heterogenous

coding in place cells

Wiener et al. [1989] and Hetherington and Shapiro [1997] reported that
place cells were more frequently coding for location close to borders
or to orienting cue cards on the walls. In Wiener et al. [1989], the
authors used a random Monte Carlo analysis, in order to uncover a
more important representation of a location than expected by chance:
over-representation. This random distribution of the ensemble of place
fields they detected allowed to estimate a chance level of the incidence
of place fields for each location in the arena. By comparing the dis-
tribution of the place fields they detected with these surrogate data,
the authors observed that in their task, place fields were more likely
to be near the walls than in the center of the arena. Nevertheless,
this over-representation could potentially be due to particularities of
their behavioral paradigm. First, by looking at the distribution of the
place fields in a goal directed task, they found an over-representation
located close to goal positions. Second, they also observed a trend
for animals to spend more time close to the borders. Thus we cannot
totally rule out a behavioral bias leading to this over-representation.
With a similar approach, Hetherington and Shapiro [1997] described
an over-representation in the vicinity of the walls that carried a salient
cue card in a random foraging task. These studies only focused on
a quantitative aspect of place cells coding. However in a later study,
Olypher et al. [2003] investigated a qualitative aspect of place cells
coding and showed an augmentation of local spatial information in
the vicinity of cue card on the wall of the recording arena.
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Our results complement these previous studies about heterogenous
coding of space in the hippocampus by analyzing quantitative and
qualitative aspects of place cells coding at the same time. Also, we
confirmed the results observed using individual cells data pooled
across all recording sessions with analyses performed for populations
of simultaneously recorded neurons. Interestingly, in experiments of
Hetherington and Shapiro [1997] the authors recorded 3 and 45 cells
respectively in CA1 and CA3 subfields of the hippocampus. Thus
the firing change of place cells observed is very likely to take place
in CA3. Because space coding differs in CA3 and CA1 [Leutgeb and
Leutgeb 2007; Mizuseki et al. 2012; Lu et al. 2015], it would be of
great interest to compare Hetherington and Shapiro [1997] results
with recordings from CA3 in our experimental conditions. During my
thesis, I acquired such data. However, post-hoc histological inspections
of the electrode traces revealed an inconsistent proper marking (with
dye) of the electrode’s shanks so that it was sometimes impossible
to know whether the shanks were in CA3 or DG. Also, the number
of sessions and animals recorded in CA3-DG is not sufficient for the
moment to answer this question.

In our study, in the poor track without object, we observed an
over-representation of the beginning and end of the track. These over-
representations were unlikely to be directly related to the delivery or
the location of the reward as we did not considered 20 cm of the maze
at each ends in our analyses. It could however be caused by a higher
availability of visual cues due to the proximity with the walls at the
ends of the corridor. Indeed, similar over-representation have already
been observed at the location of a door [Spiers et al. 2015] or under an
arch [Sato et al. 2018]. Albeit their high proportion, the overall quality
of this end-track fields was lower than for on-track fields. This suggests
that different types of over-representation could exist and subserve
different functions (salient landmark, geometrical landmark, goal).
This hypothesis is supported by the variety of dynamics observed for
the formation and disappearance of goal over-representation (see 4.3.1).
Nevertheless, over-representation and local variation of place field
resolution got until now very little attention. As I will detail later (§
6.7), the impact of these local variations of place cells number and their
spatial coding resolution on areas downstream of the hippocampus
and finally on animal behavior is not trivial and will need further
investigations.

6.4 toward a better understanding of place cells cod-
ing in virtual reality

After the demonstration by Holscher et al. [2005] that rodents could
navigate in a virtual reality environment, neuronal recordings using
such apparatus became increasingly popular. The success of this tech-
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nique mostly resides in the fact the it allows a tight control of sensory
information provided to the animal in 1D [Harvey et al. 2009; Chen
et al. 2013; Domnisoru et al. 2013; Ravassard et al. 2013; Campbell et al.
2018; Casali et al. 2019] or 2D environments [Aronov and Tank 2014;
Aghajan et al. 2015; Chen et al. 2018; Haas et al. 2018; Chen et al. 2019].
Also, it provides realistic environmental stimuli and contexts for tech-
niques needing head fixation of the animal like in-vivo patch clamp or
imaging [Harvey et al. 2009; Dombeck et al. 2010; Schmidt-Hieber and
Häusser 2013; Villette et al. 2015](see Appendix iv).

Some of the first extracellular recordings of hippocampus in VR

led to diverging hypothesis about place cells coding in these appara-
tus. Rats recorded by Aronov and Tank [2014] exhibited place, grid,
head-direction and border cells coding similar in VR and in real envi-
ronments. Conversely, Aghajan et al. [2015] described a lack of spatial
selectivity for hippocampal place cells in their recording condition.
These divergences could be explained first by critical differences in
the method used to fix the animal’s body in VR. In both apparatus
rats were body harnessed, but only the fixation system in Aronov
and Tank [2014] allowed physical rotation of the animal leading to
a corresponding rotation in VR (see § 4.2.3). Thus, in Aghajan et al.
[2015], the absence of vestibular inputs could have perturbed the
orientation of the hippocampal maps and caused a lack of spatial
selectivity. A second potential cause of discrepancies between these
two studies relies within the constellation of visual cues used in VR.
Indeed, the VR environment in Aronov and Tank [2014] contained
multiple local visual cues, hanging from the roof and on the walls of
the environment, while the VR environment of Aghajan et al. [2015]
only contained distal visual cues. Thus, one possibility is that that
local proximal cues might have contributed to the stable hippocampal
spatial coding.

This thesis work supports the later explanation for an increase in
the cellular recruitment and the spatial selectivity in VR. In our case,
the use of patterns on the walls were not enough to reach the level
of spatial coding improvements initiated by the introduction of local
visual objects in VR. These results are compatible with observation of
Radvansky and Dombeck [2018]. In this study, the authors trained
mice to shuttle back and forth in an "olfactory space" (see § 4.2.3.2).
Head-fixed mice were first trained in a virtual linear track in presence
of two monotonically increasing odor gradients for the upward and
downward directions1. After a correct learning of the task, mice were
able to perform it in the dark, relying exclusively on the two odors
gradients. Interestingly, Radvansky and Dombeck [2018] reported that
making the odor gradients uninformative (flat odor concentration

1 Visual information were first provided to guide the animal’s learning of the task,
but not once the animal successfully learned to perform the task and to accurately
anticipate the rewards in the dark only using the odor gradients.
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along the track) led to a drastic drop in the proportion of cells re-
cruited during the task. These results highlight the fact that providing
relevant local sensory cues promotes the activation of the hippocampal
mapping system in VR. However we cannot exclude an important role
of vestibular inputs for the stability of place fields in 2D VR environ-
ments. Further experiments in a 2D VR environment enriched in local
cues are needed to clarify this point.

Aghajan et al. [2015] further observed that despite the strong insta-
bility of hippocampal spatial firing in their 2D virtual environment,
hippocampal cells could be activated during short "motifs" of ∼2

seconds, exhibiting a similar structure between RW and VR (duration,
firing rate, phase precession). Their location was diffuse in VR, par-
tially explaining the spatial instability of cells firing. Curiously, the
introduction of a triangular array of floating columns indicating the
location of rewards inside the arena led to an improvement of place
cells coding. In this new task, the animals had to unidirectionally nav-
igate towards one of the pillars to obtain a reward before navigating
to the next. In this condition, place cells firing was stabilized at the
location and between reward locations. In this case, the improvement
in spatial selectivity could either be caused by an anchoring of place
fields by the floating column or a modification of the navigation strat-
egy (beaconing, stereotypy,...). Indeed, these factors have been shown
to deeply affect hippocampal activity [Markus et al. 1995; Poucet and
Hok 2017] [but see Trullier et al. 1999].

Altogether these data encourage the use of more proximal visual
cues in VR where most of the other sensory modalities available to
the animal are made irrelevant for navigation. The higher availability
in local virtual cues could facilitate the comparison of VR data with
the one acquired in RW and promote the development of translational
research between different species. It would also be interesting to
investigate if non-visual discrete cues (odor, sound,...) could have a
similar effect on place cells activity.

6.5 influence of visual information on phase preces-
sion

In the absence of object, the temporal coding of place in our experiment
cells was strongly affected and appeared similar to data acquired in
rats running in a wheel [Hirase et al. 1999]. To take into account the
higher instability of place cells firing we quantified this phenomenon
at different scales. First, we focused on session-averaged data while
restricting our analysis to spatially stable trials with the mean place
field (see Methods ii). Then, we calculated phase precession on a lap-
by-lap basis as in Schmidt et al. [2009]. All of these approaches failed
to uncover a robust phase precession. In a second step, we adopted
methods agnostic to the animal’s position [Geisler et al. 2007; Mizuseki
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et al. 2009]. These analyses rely on the fact that a phase precessing cell
should oscillate faster than the concurrent theta wave. These methods
confirmed a very affected phase coding in our poor condition without
objects. Surprisingly, in this condition, the visual flow information
provided to the animal did not appear to be sufficient to drive a
strong enough theta frequency modulation by speed as observed
in Ravassard et al. [2013]. Intriguingly, in Ravassard et al. [2013],
theta phase precession was preserved. This could be explained by a
richer visual environment between the condition they used and our
poor condition. Notably, projection of a pattern on the floor, coherent
with the rat movement in VR, could have provided additional speed
information to the animal [Raudies and Hasselmo 2012; Raudies et al.
2012]. Also, the body fixation of the rat allowed it to move the head. In
our case, the head fixation of the mice is likely to affect more deeply the
vestibular system of the animal. One other explanation for the weak
phase precession in our condition could be species differences with
mice relying more on local cues for temporal spatial coding compared
to rats [Hok et al. 2016]. Consequently, a loss of vestibular speed
signal and a modest visual flow could have a more pronounced effect.
The reintroduction of richer visual information provided a suitable
substrate for place cells temporal coding in the other conditions of our
experiment.

Beyond its spatial correlate, phase precession has been related to a
variety of non spatial phenomena like jumping [Lenck-Santini et al.
2008], fixation in a nose poke [Takahashi et al. 2014] running in a
wheel [Hirase et al. 1999; Pastalkova et al. 2008] and in relation to
odor or sound presentation [Aronov et al. 2017; Terada et al. 2017].
Recently, Robinson et al. [2017] showed that phase precession could
also be observed in hippocampal neurons while a rat sampled an
object. In our case, the observed increase in phase precession can not
be attributed to "object sampling" as phase precessing fields were not
only located at the object location but everywhere in the environment.
Also, the rich condition without object also led to an improvement in
phase coding.

Visual information were not thought to be involved in the generation
of phase precession. Indeed, in some of the behavioral correlates of this
temporal coding, only static visual information were provided to the
animal (wheel running, fixation,...). Our study showed that the type
of visual cues provided to the animal can participate in the generation
of phase precession. Nevertheless, the mechanism of this effect was
not investigated in our experiment. We can however suppose that in
our condition, with reduced vestibular inputs, a reliable speed signal
can mostly be extracted from visual flow and the presence of virtual
objects. In this context, the use of VR could be a useful tool to better
understand the mechanism underlying the influence of external cues
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on the generation of phase precession [Harvey et al. 2009; Aghajan
et al. 2015; Haas et al. 2018].

6.6 are 3d virtual objects really that important?

In VR, visually enriched environments have been reported to facilitate
the learning of a behavioral task [Youngstrom and Strowbridge 2012].
In our team, we noticed that the animals were sometimes adopting
naturalistic behaviors while passing in front of an object. Some mice
tried to avoid the objects, by orienting their body position away from
it, even if it was impossible to interact with them. Similar interaction
with non-physical objects have been observed in augmented reality
[Grosso et al. 2017]. In this task, 2D images of an object were projected
on the floor of an arena. This projection was modified in real time
according to the position and point of view of the animal to give it
the impression of a 3D object (see § 5.3.3). Even if this "3D object"
was not physical and only experienced through vision, it triggered
spontaneous avoidance and novel object recognition behavior [Grosso
et al. 2017]. In our experiment, the strong and consistent remapping
following the introduction of the objects highly suggests that the
animals noticed and perceived them.

It is known that rodents can perceive and distinguish 3D objects,
even if they are presented only as 2D images or solely perceptible
through vision [Burke et al. 2012; Ahn and Lee 2017; Connor and
Knierim 2017; Ahn et al. 2019]. In our data, the improvement of
spatial coding was more pronounced in the presence of objects than
enriched wall patterns. In addition we did not observed any systematic
influence of the wall patterns transitions or distal columns on place
cells coding as reported in MEC by Kinkhabwala et al. [2018] and Casali
et al. [2019]. This suggests that objects have a singular influence on
place cells coding in VR. However, the particular parameters leading to
such a strong effect on hippocampal spatial coding is still unresolved.
One candidate explanation is that the saliency of objects is used by
the animals, either due to the size, color, stability, parallax effect or
dimension of the object. All these parameters have been shown to be
crucial factors for the use of an object during real world navigation
[Biegler and Morris 1996; Jeffery 1998; Zugaro et al. 2001; Caduff and
Timpf 2008; Scaplen et al. 2014] (see § 5.3).

In recent experiments, we chose to test if the third dimension of
an object could be important to influence the hippocampal coding.
3D objects could recruit perirhinal and lateral entorhinal cortex to a
greater extent and support the spatial hippocampal representation
with non-spatial information. Consequently, we used 2D compressions
of the same 3D objects and positioned them with a parallel orientation
in comparison to the track’s walls. We preserved a distance to the wall
identical to the one used in previous experiments. This experimental
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design should allow us to investigate more specifically whether these
2D compressed objects play a similar role than 3D objects. Conversely
to 2D objects, the shape of visual 3D objects change to a greater extent
as an animal moves next to them and could provide a more accurate
estimation of position for this reason. Hitherto, two animals have been
recorded in this condition during my thesis. Other recordings will
be needed to complement this preliminary data. Also, it would be
interesting to examine if visual objects could trigger other primary
sensory areas, suggesting that 3D visual objects could be recognized as
"multimodal". This would be possible due to a cross-modal transfer of
visual information to another modality (e.g.: touch) as in cross-modal
objet recognition [Winters and Reid 2010; Gaynor et al. 2018].

6.7 is more really better and broader worse?

A widespread thinking about place cells is that, the narrower they
are, the better they will represent space. However, numerous works
suggest that this postulate is not always true [Pouget et al. 2000; Quian
Quiroga and Panzeri 2009]. First we have already highlighted that
a unique look at individual tuning of cells is not enough (see § 4.5).
Indeed, the width of receptive fields can average out at the population
level to lead to an accurate signal from a reader perspective. Addi-
tionally, previous studies also showed that a broadening of receptive
fields could be advantageous to represent multidimensional or more
robust information in some conditions [Pouget et al. 1999; Zhang and
Sejnowski 1999; Shamir and Sompolinsky 2006; Kobak et al. 2019].
Also, an important point is notably to determine if larger place fields
are stable in space from one trial to the next (as could be the case in the
ventral hippocampus) or whether they result from a spatial instability
of narrower place fields between trials. In our case we believe that
the later explanation is more likely because the size of place fields
detected on single trials was identical.

In the seminal study of Georgopoulos et al. [1986], the authors
showed that a population of broadly tuned neurons of a monkey’s
motor cortex could carry a very precise prediction of the arm position.
Similarly, in Keinath et al. [2014], decoding the activity of neurons in
the ventral hippocampus of rats foraging in an arena led a precise
position signal. Place cells in the ventral hippocampus are broadly
tuned for space [Young et al. 1994; Kjelstrup et al. 2008; Royer et al.
2010], but the error of the decoder used in this study was comparable
to dorsal hippocampus with narrower place fields. In our case, we
characterized the place cells tuning by multiple factors (size, stability,
signal to noise ratio,...). Population analyses were performed in order
to consider a potential improvement of the position coding at the net-
work level in a population of broadly tuned neurons (see § 4.5). With
this approach, we confirmed the results we previously observed at the
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individual cells level. All our analyses converged to a positive effect
of visual cues and notably virtual objects on place cells coding quality.
Furthermore, they confirmed the global and local improvements of
space coding in the vicinity of the objects.

Heterogeneously distributed and tuned population can be more
informative and resilient to noise [Wilke and Eurich 2002; Młynarski
and Hermundstad 2018]. Over-representing a particular location can
be metabolically costly, however it could allow to make a behaviorally
relevant location more robust and to avoid a costly error during
behavior [Młynarski and Hermundstad 2018]. In real world, a goal
location is very important, storing it using very few or unreliable
neuronal resources can later be costly if it does not allow to find it
later. Similarly, highly informative locations, rich in salient sensory
cues, could represent an asset for further use during navigation. Thus,
an adaptation of the internal representation of space to the external
availability and reliability of cues could strongly optimize behavior
while minimizing the metabolical cost of storing this representation
[Knill and Pouget 2004; Pfuhl et al. 2011; Jeffery et al. 2016].

In our task, the behavioral load was very low. Consequently, it sug-
gests a latent selection and adaptation of the neuronal representation
of space to the external world. It would however be of the upmost
importance to link this phenomenon with a behavioral output. Can an
animal use this increase in spatial resolution to find more accurately
a reward? In this case, a better resolution of the hippocampal map
could also be driven by non sensory rich but behaviorally important
locations like a reward or nest. In parallel, this local adaptation to
external cues could be more advantageous in big environments, where
storing a cognitive representation could be much costly.

A previous study reported a better self-consistency of the hippocam-
pal spatial code (better position decoding probability) in a task follow-
ing an increase in the number of rewards [Wikenheiser and Redish
2011]. However the link between this neuronal coding precision and
behavior is non trivial. A recent work highlighted that, in the visual
cortex, population decoding of a very large population of neurons
(∼20,000 neurons) had discrimination thresholds of 0.3◦ in an orienta-
tion decoding task [Stringer et al. 2019a]. This performance was ∼100

times smaller than values reported in behaving mice. This implies that
sensory information are lost during their processing or in biological
bottlenecks while they are transferred to downstream areas [Attneave
1954; Barlow 1964]. How sensory information is selected from primary
sensory to integrative areas of the brain will need more investigation
for a better understanding of the neuronal basis of efficient and flexible
behavior.
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6.8 directionality of place cells in virtual reality

In a linear track, place cells can fire in only one direction or both,
their firing is directional [McNaughton et al. 1983; Markus et al. 1995;
Gothard et al. 1996a]. If a place cells is bidirectional (e.g.: fires in
the inward and backward direction) in the linear track, a cell can
either code for a distance from the starting point or for an allocentric
position in the maze. In the previously mentioned study, Battaglia
et al. [2004] investigated the influence of proximal sensory cues on this
directional firing of place cells. They observed that the introduction
of proximal sensory cues increased the proportion of bidirectional
cells. In addition, local visuo-spatial cues increased the proportion of
cells doing position coding compared to the cue-poor condition. In
our task, we observed comparable effects of 3D virtual objects on the
directional firing of place cells.

Coherently with previous reports of place cells recordings in virtual
linear mazes in Ravassard et al. [2013], most of the bidirectional place
cells were doing distance coding. However, the enrichment in visual
information led to an increase in position coding of bidirectional
cells. This result shows that directional firing of place cells in VR

can be improved by visual information, in an head fixed animal.
Also, it suggests that directional firing of place cells do not entirely
depend on the head direction system relying on vestibular inputs.
In our case, the increase in position coding could reflect the fact
that the animal constructs a view-invariant allocentric representation
of space in the presence of objects. These results are particularly
interesting because our experimental apparatus used a wheel to detect
the animal movements. It imposed us to "teleport" the animal in
the other direction at the end of the maze to allow it to perform
back and forth runs (see Method section of ii ). Thus, the increase
in position coding could imply that the animal understand that it
made a 180◦ rotation at the same location. However, this correlate
should be confirmed at the behavioral level. In order to answer this,
we could design a task where the animal is trained to find a reward
in only one direction. At the end of the maze, the animal could be
teleported in the starting position without rotation. Then, during a
test phase, we could change the teleportation at the end of the maze
by a rotation and observe if the animal deduce the position of the
reward in the backward direction. Simultaneous recordings of place
cells activity could indicate us if the population of place cells perform
more position coding if the reward is found using an allocentric
reference frame. An other approach would consist in using the same
experimental paradigm but to alternatively teleport the animal in the
other direction or to perform a slow rotation of the environment at the
track’s ends (to improve the likeliness that the animal notices that the
direction is changing). The comparison of place cells coding in these
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two conditions could inform us if the teleportation is interpreted in a
similar way than a passive rotation by the animal.

The results of this section have been partially presented in the form
of posters in Bourboulou et al. [2017] and Nordlund et al. [2019]

6.9 effect of attention on place cell coding

We presented previously that attention during a navigation task could
modulate the stability and the quality of place cells coding [Kentros
et al. 2004; Muzzio et al. 2009a] (see § 4.3.2). At the sight of our
results, we wondered if a similar process of directed attention to
the object could be involved in the increased spatial resolution we
observed. The head-fixation of our animals and the fact that they are
constrained on a "line of exploration" (they can not move along the
Y axis) could be a difficult situation to quantify directed attention
towards the objects. A previous study by Vinck et al. [2015] showed
that the pupil’s diameter could be used as a proxi to quantify the
level of arousal of a head-fixed animal. Thus, we chose to use the
head fixation of the animal to our advantage and to develop a video
system allowing us to track the animal behavior during the task. This
approach will allow an easier tracking of the eyes and whiskers of the
animal than in complex head-mounted systems used in freely moving
rodents [Wallace et al. 2013; Meyer et al. 2018]. During the last year of
my thesis, I developed a camera system allowing the tracking of the
face of the animal during behavior without obstructing the animal’s
field of view. This system allows the capture of the animal profile at a
frequency up to 60Hz with a minimalist interface developed in C++
(Basler C++ library and openCV). The video capture is synchronized
with the acquisition of electrophysiological data thanks to a pulse
generator (60Hz). Each pulse of this oscillator sends a signal to the
electrophysiological acquisition system and trigger the acquisition of a
frame. In parallel, I developed a pupil tracking algorithm usable with
a user friendly Graphical User Interface (GUI) in Matlab. This system
is currently under final testing and will allow a finer quantification of
the animal arousal and behavior.

We will not constraine our analysis to the pupil but we will also
quantify more complex eyes movements as well as movements of the
whisker pad and tongue linked to whisking or licking [Vinck et al.
2015; Mathis et al. 2018; Nath et al. 2019; Stringer et al. 2019b]. Thus,
we will soon have better indications of the mice behavior in the vicinity
of objects. Do 3D objects trigger a higher arousal state leading to a
better signal to noise ratio as in visual cortex? [Vinck et al. 2015] And
does the animal try to investigate the virtual objects through whisking?
These questions could unfortunately not be answered during the time
of my thesis, but will soon be addressed in the team.
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6.10 put landmarks back in the cognitive map

Most of the environment in which we evolve are bounded. Since the
seminal discovery that the geometry of an environment could in itself
be used during navigation [Cheng 1986; Cheng and Newcombe 2005],
several evidence of an effect of geometry on spatially modulated
neurons have been identified. Recordings from place cells have shown
that, when an environment was extended or reduced in one direction,
place fields exhibited a coherent stretch [O’Keefe and Burgess 1996;
Diba and Buzsaki 2008]. Similar experiments performing a rescaling
of an environment observed a comparable augmentation of place field
size in the hippocampus (see § 4.2.4) [Muller and Kubie 1987; Diba and
Buzsaki 2008; Fenton et al. 2008; Rich et al. 2014]. From this point of
view, the scale of the hippocampal space coding seemed to be defined
by borders of the arena. The later discovery of border or boundary
vector cells emphasized the importance of limits of the environment
in defining an internal map of space [Hartley et al. 2000; Barry et al.
2006; Solstad et al. 2008; Lever et al. 2009]. In parallel, the geometrical
pattern of grid cells have been shown to be highly influenced by the
borders of an arena [Krupic et al. 2014; Hardcastle et al. 2015; Stensola
et al. 2015; Krupic et al. 2016, 2018; Hägglund et al. 2019]. Interestingly,
a later study by Gupta et al. [2012] observed that theta sequences of
place cells were representing the environment in a segmented way.
The different chunks of space represented by the theta sequences were
defined by geometrical components (maze intersections and turns) of
the maze. Taken together, these works showed that borders seems to
define the scale, and to segment and structure the way in which the
properties of an environment are encoded. Similar segmentation of
space in different sub-compartment by corners have been reported by
Alexander and Nitz [2017] in retrosplenial cortex. It is worth noting
that this segmentation of space by borders could extend from space
to a segmentation of experience for episodic memory [McKenzie and
Buzsáki 2016; Brunec et al. 2018; Buzsáki and Tingley 2018].

Inside this frame defined by borders, the internal representation
of space is commonly thought to be homogenous [Muller et al. 1987;
Yoon et al. 2013; Rich et al. 2014; Chaudhuri et al. 2019; Stella et al.
2019]. Goals in the environment have been observed to deform this
cognitive map [Hollup et al. 2001; Dupret et al. 2010; Gauthier and
Tank 2018; Sato et al. 2018; Boccara et al. 2019; Butler and Hardcastle
2019; Lee et al. 2019]. Nevertheless, featural cues (non-geometrical
cues) are often only conferred a role in setting the reference frame
and orienting the internal map of space [Muller and Kubie 1987; Cres-
sant et al. 1997, 1999; Renaudineau et al. 2007; Lefort et al. 2019].
Nowadays, multiple local influences of landmarks [Hetherington and
Shapiro 1997; Olypher et al. 2003; Pérez-Escobar et al. 2016; Hägglund
et al. 2019] or other local variations of space coding [Reifenstein et al.
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2012; Dunn et al. 2017; Ismakov et al. 2017; Gerlei et al. 2019] cast some
doubts on the hypothesis of an homogenous spatial code. It is true
that the geometry of an environment is more likely to be unchanged
in time than the featural components of an environment. Neverthe-
less, this view is likely to be amplified in bounded, poor and small
scale environments. It would be a key point for future research to
consider the contribution of landmarks in the structure of the internal
representation of space. For example, we could investigate if features
of an environment cluster or chunk theta sequences or replay in ei-
ther small or large scale environments. In large scale environment,
borders are less prominent or absent [Lew 2011]. Nevertheless, in
this context, the need to segment and organize the knowledge about
the environment is even more important than in small ones. Conse-
quently, it would be very interesting to investigate how landmarks
structure the representation of space for small and large scale complex
environments.

The influence of objects is likely not confined to dorsal hippocampus.
In our experiment, we focused our interest on dorsal hippocampus in
order to compare our results with the existing literature in this area
[Battaglia et al. 2004; Ravassard et al. 2013; Aronov and Tank 2014].
An interesting direction to explore would be to perform recordings
taking into account the longitudinal axis of the hippocampus. Along
this axis, space is represented with an increasing scale [Young et al.
1994; Kjelstrup et al. 2008] and could be an efficient way to perform
nested coding of space [Mathis et al. 2012; Contreras et al. 2018; Har-
land et al. 2018]. In our paradigm, bigger place fields in the ventral
part of the hippocampus could behave similarly than in the dorsal
hippocampus. They could also be more homogeneously distributed
as these hippocampal cells integrate more non-spatial information.
Additionally, recent evidence highlighted that medial entorhinal cells,
including grid cells, could be sensitive to contextual or visual cues
[Pérez-Escobar et al. 2016; Kinkhabwala et al. 2018; Casali et al. 2019;
Høydal et al. 2019]. Thus, it would be very interesting in future ex-
periments to record MEC neurons in our experimental set up. Medial
septum inactivation, in order to affect grid cells firing patterns, would
also be interesting to perform in order to study the contribution of
grid cells inputs to the place cells firing patterns observed in our study
[Koenig et al. 2011; Fattahi et al. 2018].

6.11 conclusion

To summarize, our study showed a strong influence of local visual
cues on the generation and resolution of the internal representation of
space subtended by the hippocampus. Further experiments, in other
brain areas involved in space processing or in more complex environ-
ments will allow us to better understand how the "cognitive map"
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can change in relation to external cues. These local changes in spatial
resolution could subserve a more efficient storage of information in
the hippocampus. But also, they could be linked to an allocation of
hippocampal resources for valuable locations (landmark, goal,...) in
order to provide a more robust representation for an efficient behavior.
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Abstract 22 

Spontaneous locomotion strongly influences the state of the hippocampal network and is 23 

critically important for spatial information coding. However, the intracellular determinants 24 

of CA1 pyramidal cells activation during locomotion are poorly understood. Here we 25 

recorded the membrane potential of CA1 pyramidal cells (PCs) while non-overtrained mice 26 

spontaneously alternated between periods of movement and immobility during a virtual 27 

spatial navigation task. We found opposite membrane polarization between bursting and 28 

regular firing CA1 PCs during movement. Regular firing CA1 PCs were more depolarized and 29 

fired at higher frequency during movement compared to immobility while bursting CA1 PCs, 30 

located deep in the CA1 pyramidal cell layer and preferentially inhibited during sharp wave 31 

ripples, were hyperpolarized during movement in a speed dependent manner. This speed-32 

dependent suppression of a subpopulation of CA1 PCs could enhance signal to noise ratio for 33 

efficient spatial coding during locomotion.  34 

Keywords 35 

Hippocampus; place cells; CA1 pyramidal cells; locomotion; patch-clamp; in vivo  36 



 
 

Introduction 37 

Spontaneous locomotion strongly modulates sensory perception and learning. In the 38 

neocortex, active exploration notably through locomotion can modify the response of 39 

neurons to sensory stimuli, and associated task performance (Crochet and Petersen, 2006; 40 

Niell and Stryker, 2010; Polack et al., 2013; McGinley et al., 2015; Vinck et al., 2015; 41 

Albergaria et al., 2018). Locomotion also profoundly modify hippocampal network dynamics 42 

and coding (Vanderwolf, 1969). During movement, the hippocampal local field potential 43 

(LFP) is dominated by theta (7-12 Hz) oscillations and activated hippocampal cells show place 44 

specific activity (O’Keefe and Dostrovsky, 1971; McNaughton et al., 1983; Wilson and 45 

McNaughton, 1993; Moser et al., 2017). This state is often referred to as the “online” state 46 

of the hippocampus when coding of spatial, temporal or contextual information occurs. 47 

During immobility, the hippocampal LFP is interrupted by large negative transients, called 48 

sharp waves during which fast oscillations or ripples (O’Keefe and Nadel, 1978; Buzsáki et al., 49 

1992) organize the firing of hippocampal cells into sequences representing past or future 50 

locations (Buzsaki, 1989; Foster and Wilson, 2006; Gupta et al., 2010; Pfeiffer and Foster, 51 

2013; Buzsáki, 2015).  52 

The cellular mechanisms of hippocampal pyramidal cells’ activation during 53 

locomotion are poorly understood. Active exploration is often associated with membrane 54 

potential depolarization of pyramidal cells in the somatosensory and visual cortex (Crochet 55 

and Petersen, 2006; Bennett et al., 2013; Arroyo et al., 2018), which could constitute a 56 

permissive state for sparse sensory coding. In the hippocampus, pyramidal cells active during 57 

locomotion (the place cells) show a systematic bump of depolarization in specific places 58 

leading to place-specific firing (the place field) but remains relatively hyperpolarized outside 59 

the place field (Harvey et al., 2009; Epsztein et al., 2011; Bittner et al., 2015; Cohen et al., 60 



 
 

2017; Grienberger et al., 2017) while silent cells have a uniform baseline Vm far away from 61 

threshold in every part of the environment (Epsztein et al., 2011; Bittner et al., 2015). 62 

However, the baseline Vm values of place and silent cells during locomotion largely overlap, 63 

ruling out a simple depolarized permissive state as the main difference explaining their 64 

activation. Alternatively, it could result from differences in their intrinsic membrane 65 

properties. Place cells in a new environment have a high intrinsic frequency of action 66 

potential firing (burst firing cells) even before the start of exploration while silent cells fire 67 

more regularly (regular firing cells) (Epsztein et al., 2011). Furthermore, depolarizing a silent 68 

cell by a constant current injection during locomotion is sufficient to induce place cell coding 69 

(Lee et al., 2012). Burst and regular firing cells could also correspond to two different cell 70 

types (Kandel and Spencer, 1961; Graves et al., 2012) that are differently engaged during 71 

locomotion. Finally, hippocampal cells silent during locomotion could be selectively 72 

suppressed through dedicated inhibitory sub circuits (Lapray et al., 2012; Arriaga and Han, 73 

2017).  74 

To decipher between these scenarios, we combined whole-cell patch-clamp 75 

recordings of hippocampal CA1 pyramidal cells with extracellular field recordings using a 76 

multi-site linear silicon probe while head-fixed mice alternated spontaneously between 77 

periods of locomotion and immobility during a spatial navigation task in a familiar virtual 78 

reality environment. Intracellular recordings allowed us to probe CA1 pyramidal cells’ 79 

intrinsic properties through direct current injections and the effect of locomotion on their Vm 80 

dynamics. We describe an opposite membrane potential polarization of bursting and regular 81 

firing CA1 pyramidal cells during locomotion.  82 

  83 



 
 

Results 84 

Whole-cell membrane potential recordings during spatial navigation in virtual reality 85 

Whole-cell current-clamp recordings were obtained from CA1 pyramidal cells in the dorsal 86 

hippocampus of head-restrained mice running on a circular treadmill (Fig. S1A) as they 87 

explored a linear virtual maze (Fig. S1B) enriched with different patterns and virtual 3D 88 

objects for water rewards (Fig. S1C). Because mice were not over trained (1.15 ± 0.26 89 

reward/min; n = 17 recording sessions) they spontaneously alternated periods of immobility 90 

and movement during exploration (ratio time in immobility vs time in movement = 0.48 ± 91 

0.04; n = 17 recording sessions). This spontaneous behavior allowed us to analyze CA1 92 

pyramidal cells’ membrane potential (Vm) and firing during immobility and movement 93 

periods. In a subset of recordings LFP activity was recorded simultaneously to assess Vm 94 

behavior during ripples spontaneously occurring during immobility periods. 95 

 96 

Heterogeneous membrane potential dynamics of CA1 PCs during movement 97 

We analyzed data from 17 whole-cell recordings of CA1 pyramidal cells in 14 mice. To assess 98 

CA1 pyramidal cell Vm modulation during transitions from immobility to movement we 99 

calculated a modulation index (see methods). The vast majority of CA1 pyramidal cells (n = 100 

16 out of 17; 94%) were significantly modulated during switches in behavioral states. Among 101 

those cells, a majority (n = 10 out of 16; 62.5%) was negatively modulated meaning that their 102 

membrane potential was significantly more hyperpolarized during movement compared to 103 

immobility (HypM cells). A trace from a representative HypM CA1 pyramidal cell is illustrated 104 

in Fig. 1A. The membrane potential was consistently more hyperpolarized (Fig. 1A, B) and 105 

firing rate lower (Fig. 1A, C) during periods of movement. We note that this Vm behavior is 106 
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Fig.1 Hyperpolarized cell during movement:

A. Trace of the Vm and speed of an animal during movement (green), during immobility (blue) or during an 
unaffected state (black) in a CA1 pyramidal cell recording. In the Vm trace, action potentials have been trun-
cated to highlight subthreshold Vm  changes during movement. B. Scatterplot of subthreshold Vm during 
movement versus immobility periods, each point correspond to mean value of one period  C. Scatterplot of 
mean firing frequency  during movement versus immobility periods. D. Scatterplot of mean subthreshold Vm  
variance  during movement versus immobility periods.  E. Intracellular power spectrum during movement 
(green) and immobility (blue) periods.  F. top to bottom : mean velocity, mean subthreshold Vm and norma-
lized subthreshold Vm of each transition during initiation of movement (left) and for the stop of movement 
(right)



 
 

opposite to what is observed in layer 2/3 cortical pyramidal cells during movement (Polack 107 

et al., 2013). On the other hand, Vm variance was consistently lower (Fig. 1A, D) during 108 

movement, which is consistent with cortical pyramidal cells. This decrease was more 109 

pronounced for low frequency oscillations (Fig. 1E). To get an idea of the kinetics of these 110 

changes we focused on the times of transitions between immobility and movement periods 111 

and vice versa. The kinetics of Vm changes (Fig. 1F, middle) mimicked the kinetics of 112 

behavioral changes (Fig. 1F, top), which were faster for immobility to movement transitions. 113 

The effect was consistent from transition to transition in both directions (Fig. 1F, bottom). 114 

The other type of modulated cells (n = 6 out of 16; 37.5%) was positively modulated meaning 115 

that their membrane potential was significantly more depolarized during movement (DepM 116 

cells). A trace from a representative DepM cell is represented in Fig. 2A. For this cell, the 117 

membrane potential was consistently more depolarized during movement versus immobility 118 

periods (Fig. 2A, B) and the firing rate was higher (Fig. 2A, C). Note that in this cell most 119 

action potentials were driven by underlying spikelets (Epsztein et al., 2010; Fig. 2A, inset). 120 

When focusing on the transition periods (Fig. 2F) we also observed a fast depolarization 121 

(hyperpolarization) upon transition to movement (immobility) but with a small time-lag 122 

compared to HypM cells. The transition by transition visualization (Fig. 2F, bottom) also 123 

revealed the consistency of the modulation.   124 

On average, HypM CA1 pyramidal cells displayed a ~2 mV hyperpolarization during 125 

movement (Mov: - 60.5 ± 3.02 mV; Imm: -58.4 ± 3.13 mV; n = 10 cells, P < 10-3,  paired t-test; 126 

Fig. 3A), reduced variability (Mov: 4.26 ± 1.01 mV2; Imm: 6.44 ± 1.20 mV2; n = 10 cells, P = 127 

0.015,  paired t-test; Fig. 3C) and reduced firing rate (Mov: 3.06 ± 1.80 Hz; Imm: 6.37 ± 1.88 128 

mV; n = 8 cells, P = 6 x 10-3,  paired t-test; Fig. 3B). The same conclusions were reached when 129 

analyzing all the transitions for HypM cells independently (Fig. S2; Vm expressed as Z-score). 130 
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Fig.2 Depolarized cell during movement:

A. Trace of the Vm and speed of an animal during movement (green), during immobility (blue) or during an 
unaffected state (black) in a CA1 pyramidal cell recording. In the Vm trace, action potentials have been trun-
cated to highlight subthreshold Vm changes during movement. Magnification: one action potential (black) 
and a superposed spikelet (red) and associated phase plot, bar = 20mV. In this recording, most of action 
potentials were generated thanks to spikelts. B. Scatterplot of subthreshold Vm  during movement versus 
immobility periods, each point correspond to mean value of one period  C. Scatterplot of mean firing 
frequency  during movement versus immobility periods. D. Scatterplot of mean subthreshold Vm variance  
during movement versus immobility periods.  E. Intracellular power spectrum during movement (green) 
and immobility (blue) periods.  F. top to bottom : mean velocity, mean subthreshold Vm and normalized 
subthreshold Vm of each transition during initiation of movement (left) and for the stop of movement (right)



 
 

For immobility to movement transitions (Fig. S2A-C, top), the Vm was hyperpolarized (Mov: -131 

0.5 ± 0.06; Imm: 0.17 ± 0.06; n = 127 transitions, P < 10-13,  paired t-test), firing rate was 132 

decreased (Mov: 2.04 ± 0.53 Hz; Imm: 3.35 ± 0.48 Hz; n = 127 transitions with firing, P < 10-6, 133 

signed rank test) and variance was decreased (Mov: 2.24 ± 0.21 mV2; Imm: 3.87 ± 0.26 mV2; 134 

n = 127 transitions, P < 10-8, signed rank test). 135 

In DepM CA1 pyramidal cells, the depolarization during movement was smaller ~0.6 136 

mV (Mov: -62.4 ± 3.57 mV; Imm: -63.0 ± 3.61 mV; n = 6 cells, P = 0.006,  paired t-test; Fig. 3A) 137 

and the Vm variance was not significantly different (Mov: 3.35 ± 0.81 mV2; Imm: 2.52 ± 0.71 138 

mV2; n = 6 cells, P = 0.17,  paired t-test; Fig. 3C). Accordingly, the firing rate was not 139 

significantly modulated for these cells (Mov: 2.73 ± 1.49 Hz; Imm: 2.04 ± 1.3 mV2; n = 4 cells, 140 

P = 0.13,  paired t-test; Fig. 3B). When analyzing all transitions from immobility to movement 141 

(Fig. S2A-C, bottom), qualitatively similar results were observed: a small depolarization 142 

(Mov: 0.12 ± 0.04; Imm: - 0.26 ± 0.04 mV; n = 180 transitions, P < 10-12,  paired t-test) 143 

without significant change in the variance (Mov: 2.01 ± 0.13 mV2; Imm: 2.04 ± 0.12 mV2; n = 144 

180 transitions, P < 10-12, signed rank test) yielding a small but significant increase in firing 145 

rate (Mov: 1.98 ± 0.28 Hz; Imm: 1.38 ± 0.18 Hz; n = 180 transitions, P = 10-4, signed rank 146 

test).  147 

We note that HypM cells were on average more depolarized than DepM cells during 148 

immobility (HypM: -58.4 ± 3.13 mV, n = 10 cells; DepM: -63.0 ± 3.61 mV, n = 6 cells; P = 149 

0.37,unpaired t-test). To determine if this difference could account for the opposite 150 

modulation between HypM and DepM cells by locomotion we excluded all HypM cells more 151 

depolarized than -55 mV during immobility. This strongly reduced the difference in baseline 152 

Vm between HypM and DepM cells (HypM: -64.6 ± 2.76 mV, n = 6 cells; DepM: -63 ± 3.61 mV, 153 
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Fig.3 Opposite modulation of subth.Vm during movement

A. Left: Mean subthreshold Vm during movement versus immobility of hyperpolarized cells (Hyp M group, in 
yellow), depolarized cells (Dep M group in purple) and non modulated cells (black) during movement. Right: 
Mean subthreshold Vm  during movement versus immobility of Hyp M cells ( ∆ = -2.07 ± 0.42 mV, n=10, p= 
7.88.10-4, paired t-test)  and Dep M cells (∆ = 0.58 ± 0.13 mV , n=6,  p= 0.006, paired t-test). B. Left: Same as 
A for the firing frequency; cells that are totally silent during movement and during immobility were remo-
ved. Right : Mean firing frequency  during movement versus immobility of Hyp M cells (∆ = -3.32 ± 0.87 Hz, 
n=8, p=0.006, paired t-test)  and Dep M cells  (∆ = 0.68 ± 0.33 Hz, n=4, p= 0.128, paired t-test). C. Left : Same 
as A and B for the subthreshold Vm variance. Right: Mean subthreshold Vm variance during movement versus 
immobility of Hyp M cells (∆ = -2.18 ± 0.72 mV2 , n=10, p= 0.015, paired t-test)  and Dep M cells  (∆ = 0.82 ± 
0.52 mV2 , n=6, p= 0.171, paired t-test). 



 
 

n = 6 cells; P = 0.73, unpaired t-test). However, HypM cells were still on average 154 

hyperpolarized by ~1.7 mV during movement (Mov: - 66.3 ± 2.76 mV; Imm: -64.6 ± 2.76 mV; 155 

n = 6 cells, P = 0.038,  paired t-test). Thus, although we cannot exclude a contribution of 156 

baseline Vm differences between HypM and DepM cells in the effect we observed, the effect 157 

can still be observed when this difference is strongly reduced. The difference between HypM 158 

and DepM cells was also not related to changes in animal performance in terms of number 159 

of reward per minute (HypM: 1.08 ± 0.44, n = 10 recording sessions; DepM: 1.2 ± 0.23, n = 6 160 

recording sessions; P = 0.18, rank sum test; Fig. S3) or ratio of time spent in movement and 161 

immobility (HypM: 0.44 ± 0.06, n = 10 recording sessions; DepM: 0.55 ± 0.04, n = 6 recording 162 

sessions; P = 0.25, rank sum test; Fig. S2). 163 

 164 

Heterogeneous speed dependent modulation of membrane potential dynamics in CA1 PCs 165 

Previous extracellular recordings report a speed dependent modulation of CA1 pyramidal 166 

cells firing rate during locomotion (McNaughton et al., 1983; Czurkó et al., 1999). We 167 

wondered whether similar speed dependent modulation could be observed at the 168 

subthreshold level. For each HypM and DepM cells we calculated the correlation between 169 

the Z-scored Vm and speed binned at 0.05 cm.s-1. A majority of HypM (n = 8 out of 10) 170 

showed significant and negative correlations between speed and Vm. Two example cells are 171 

shown in Fig. 4A (top) for recordings performed in a slow (maximal running speed ~6 cm.s-1) 172 

and a fast (maximal running speed ~15 cm.s-1) animal. In both cases the faster the animal 173 

ran the more the cell got hyperpolarized. As a population, HypM cells were significantly and 174 

negatively modulated by speed (r: - 0.46 ± 0.09; n = 10, P < 0.001, one sample t-test; Fig. 4B). 175 

Only half of DepM cells showed significant and positive correlation between speed and Vm. 176 
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Fig.4 Speed correlation of Hyp M cells and Dep M cells

A.  Example of  correlation between speed and subthreshold Vm z-scored in 2 Hyp M cells (up) and 2 Dep M 
cells (down). Each point corresponds to the mean value of subthreshold Vm z-scored value in speed bins (size 
of bins: 0.05cm.s-1). B. Mean correlation of speed with subthreshold Vm z-scored for Hyp M (r =-0.46 ± 0.09 
, n=10, p= 7.54.10-4, t-test) cells and Dep M cells (r =0.27 ± 0.14 , n=6, p= 0.1, t-test). 



 
 

Two example cells are shown in Fig. 4 A (bottom) for recordings performed in a slow 177 

(maximal running speed ~8 cm.s-1) and a fast (maximal running speed ~15 cm.s-1) animal. As 178 

a population, DepM cells showed no significant correlation between Vm and speed (r: 0.27 ± 179 

0.14; n = 6, P = 0.1, one sample t-test). 180 

 181 

Opposite membrane potential modulation of bursting and regular firing CA1 PCs during 182 

movement 183 

Our initial analysis revealed that CA1 pyramidal cells can be divided into two subgroups 184 

based on their membrane potential and firing rate modulations during locomotion. A first 185 

group (HypM cells) showed a large and speed dependent hyperpolarization together with 186 

reduced variance and firing rate during locomotion while a second group showed more 187 

moderate depolarization without significant change in variance and a smaller increase in 188 

firing rate. Previous in vivo whole-cell recordings in freely moving rats exploring a new 189 

environment have revealed differences in CA1 pyramidal cell activation during locomotion 190 

between bursting and regular firing cells (Epsztein et al., 2011). We next thought to 191 

determine if different intrinsic properties could also exist between HypM and DepM CA1 192 

pyramidal cells in head-fixed mice exploring a familiar environment. We thus analyzed the 193 

response of HypM and DepM cells to depolarizing pulses of current injected via the patch 194 

pipette before exploration of the virtual environment. As in anesthetized rats, distinct 195 

bursting and regular firing behaviors could be observed among CA1 pyramidal cells recorded 196 

in awake mice (Fig. 5A). Unexpectedly, HypM cells exhibited far more bursting than DepM 197 

cells (fraction of APs in burst or bursting index, HypM: 0.79 ± 0.08, n = 10; DepM: 0.21 ± 198 

0.11, n = 6, P < 10-3, unpaired t-test; Fig. 5B). Over all recorded cells there was a significant 199 
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Fig.5 Intrinsic properties of Hyp M cells vs Dep M cells

A. Firing pattern of two Hyp M and two Dep M cells in response to depolarizing current injection. B. Bursting 
index of Hyp M versus Dep M cells (meanHyp M= 0.79 ± 0.08 , n=10, meanDep M= 0.21 ± 0.11 , n=6, p= 4.95.10-4, 
t-test). C. Correlation of the bursting index with index (r=-0.66, p=0.003). D. Vrest of Hyp M versus Dep M 
cells (meanHyp M= -65.09 ± 2.15 mV , n=10, meanDep M= -68.49 ± 3.47 mV , n=6, p= 0.39, t-test). E. Threshold 
of Hyp_M versus Dep M cells (meanHyp M= -51.99 ± 2.02 mV , n=10, meanDep M= -51.74 ± 3.42 mV , n=6, 
p=0.95, t-test). F. Thresh-Vm rest of Hyp_M versus Dep M cells (meanHyp M= 13.10 ± 1.32 mV , n=10, meanDep= 
16.74 ± 4.39 mV , n=6 , p=0.36 ,t-test). G.  Input resistance of Hyp_M versus Dep M cells (meanHyp M= 44.9 ± 
5.06 MΩ , n=10, meanDep M = 43.3 ± 3.39 MΩ , n=6, p=0.83 ,t-test).H. Rheobase of Hyp M versus Dep M cells 
(meanHyp M= 116.19 ± 87.37 pA , n=5, meanDep M = 294.33 ± 107.81 pA , n=6 , p=0.24 ,t-test).  



 
 

correlation between bursting and modulation indexes (r = - 0.66; P = 0.003; Fig. 5C). Other 200 

pre-exploration intrinsic parameters were not significantly different between HypM and 201 

DepM cells. This was the case for pre-exploration baseline membrane potential (HypM: -65.1 202 

± 2.15, n = 10; DepM: - 68.5 ± 3.47; n = 6, P = 0.39,unpaired t-test; Fig. 5D), the firing 203 

threshold (HypM: -52.0 ± 2.02, n = 10; DepM: - 51.8 ± 3.42, n = 6; P = 0.36,unpaired t-test; 204 

Fig. 5E), the difference between firing threshold and baseline Vm (HypM: 13.1 ± 1.32, n = 10; 205 

DepM: 16.75 ± 4.39, n = 6; P = 0.36, ranksum t-test; Fig. 5F), the input resistance (HypM: 206 

44.9 ± 5.06, n = 10; DepM: 43.3 ± 3.39, n = 6; P = 0.83, unpaired t-test; Fig. 5G) and the 207 

rheobase ( HypM: 116 ± 87, n = 10; DepM: 294 ± 107, n = 6; P = 0.24, unpaired t-test; Fig. 208 

5H). 209 

 210 

Heterogeneous membrane potential modulation of CA1 PCs during sharp-wave ripples 211 

Sharp waves ripple (SWRs) are transient events recorded in the local field potential of CA1 212 

during periods of immobility, slow wave sleep and anesthesia (Girardeau and Zugaro, 2011; 213 

English et al., 2014; Buzsáki, 2015; Roumis and Frank, 2015; Valero et al., 2015; Colgin, 2016; 214 

Hulse et al., 2016; Gan et al., 2017). They result from the dendritic excitation of CA1 215 

pyramidal cells dendrites by the synchronous discharge of upstream CA3 pyramidal neurons. 216 

Recently, different anatomically defined CA1 pyramidal cells were shown to be differently 217 

modulated during SWRs (Valero et al., 2015) with CA1 pyramidal cells located deep in the 218 

pyramidal cell layer (close to stratum oriens) preferentially hyperpolarized and cells located 219 

more superficially in the pyramidal cell layer (closer to stratum radiatum) preferentially 220 

depolarized. To see if similar differential modulation could be observed between HypM and 221 

DepM CA1 pyramidal cells, we analyzed intracellular Vm modulations during ripples recorded 222 
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Fig.6 - Vm modulation of Hyp M cells and Dep M cells during ripples

A. Examples of subth.Vm modulation (black trace) during a ripple (red trace) detected in LFP (blue trace). Up: 
subthreshold Vm is hyperpolarized during ripple. Down: subthreshold Vm is depolarized during ripple. B. 
Mean subthreshold Vm, associated mean LFP and subthreshold Vm normalized aligned on ripple occurence. 
Up: example of cell hyperpolarized during ripple. Down: Example of a cell depolarized during ripple. C. 
Mean delta subthreshold Vm modulation during ripple for Hyp M cells (meanHyp M= -2.35 ± 0.88 mV, n=8, p= 
0.45, ranksum) versus Dep M cells (meanDep M= 0.45 ± 0.84 mV, n=6, p= 0.61,t-test) ,(Hyp M vs Dep M, 
p=0.046, t-test). D. correlation between subthreshold Vm baseline (before ripple) and Mean delta Subth.Vm



 
 

in the LFP using a linear silicon probe. A majority of HypM cells (n = 5/8; 62.5%) were 223 

preferentially hyperpolarized during ripples with other HypM cells not significantly 224 

modulated while DepM cells showed a mixed behavior. Overall, HypM and Dep M cells were 225 

differently modulated during ripples (HypM: -2.35 ± 0.88, n = 8; DepM: 0.45 ± 0.84 mV, n = 6; 226 

P = 0.046, unpaired t-test; Fig. 6A-C). This difference could not be explained by differences in 227 

pre-ripple baseline Vm (HypM: -59.1 ± 3.36 mV, n = 8; DepM: -62.5 ± 3.78 mV, n = 6; P = 0.52, 228 

unpaired t-test; Fig. 6D). To see if the preferential hyperpolarization of HypM cells could be 229 

correlated to the position of their cell body in the CA1 pyramidal cell layer we used post-hoc 230 

revelation of biocytin filled neurons. A staining against calbindin was used to mark more 231 

superficially located CA1 pyramidal cells and determine the border between stratum 232 

pyramidale and stratum radiatum (Valero et al., 2015). The cell bodies of the 6 HypM CA1 233 

pyramidal cells successfully labeled were all 20 µm deeper that the border (mean: 39.2 ± 234 

6.26 µm, n = 6; range: 23.7 – 68.2 µm) indicating that they were preferentially located deep 235 

within the CA1 pyramidal cell layer (Valero et al., 2015). 236 

 237 

  238 
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Discussion 239 

Locomotion is a strong modulator of hippocampal network dynamics (Vanderwolf, 1969) and 240 

is important for the sparse coding of spatial information by hippocampal place cells 241 

(Rowland et al., 2011). To get a better understanding of the cellular mechanisms of 242 

hippocampal cells activation (or silence) during locomotion, we recorded the membrane 243 

potential of CA1 pyramidal cells as head-fixed mice spontaneously alternated between 244 

periods of movement and immobility during a spatial navigation task in a virtual reality 245 

environment. The Vm of most CA1 pyramidal was modulated during transitions from 246 

immobility to movement and vice versa. The majority (~2/3) of CA1 pyramidal cells were 247 

hyperpolarized during movement while the remaining cells were depolarized. 248 

Hyperpolarization of CA1 pyramidal cells during movement was of high magnitude (~2 mV) 249 

and associated with reduced Vm variance and lower firing rates. However, depolarization of 250 

CA1 pyramidal cells during movement was more moderate (~0.6 mV), not associated with 251 

reduced Vm variance and only slightly higher baseline firing rates. The proportion of 252 

hyperpolarized cells during movement (2/3) in our recordings fits well with the proportion of 253 

silent cells in a given environment estimated by extracellular as well as intracellular 254 

recordings (Thompson and Best, 1989; Wilson and McNaughton, 1993; Epsztein et al., 2011). 255 

Thus, a straightforward interpretation of our results is that locomotion-dependent 256 

hyperpolarization of a majority of CA1 pyramidal cells in a given environment allows them to 257 

stay silent in that environment. In line with this, a recent report highlighted the important 258 

role of baseline Vm in controlling place cells activation in a given environment (Lee et al., 259 

2012). In this report a slight depolarization (by a few millivolts) of the baseline Vm of silent 260 

pyramidal cells was sufficient to induce a spatially modulated bump of depolarization in 261 

these cells and convert them to place cell coding. This suggests that intrinsic properties, and 262 
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Figure  - m modulation o  Hyp  cell  and ep  cell  during initiation or op o  locomotion

A. Scatterplots and barplots of Subthreshold Vm scored  before initiation of movement (immobility ) and after 
the transition  (movement ) for all transitions of  yp  cells (up) (   . .1 1 , paired t test) and ep  cells 
(down) cells (   . .1 1 , paired t test) B. Scatterplots and barplots of requency  before initiation of movement 
(immobility ) and after the transition  (movement ) for all transitions of  yp  cells (up) (   . .1 , signed rank 
test) and ep  cells (down) (   . .1 , signed rank test)  C. Scatterplots and barplots of Subthresold Vm 
variance before initiation of movement (immobility ) and after the transition  (movement ) for all transitions of  

yp  cells (up)(   . .1 , signed rank test)  and ep  cells (down)(   . , signed rank test) 



 
 

notably voltage-gated conductance activated below the firing threshold such as INaP (Hsu et 263 

al., 2018) can rapidly convert a silent cell into a place cell. In this framework, most CA1 264 

pyramidal receive spatially modulated inputs but intrinsic conductances, probably in 265 

conjunction with specific synaptic inhibition, can gate those inputs in the majority of CA1 266 

pyramidal cells such that only a minority of them (the place cells) can respond to these 267 

inputs with spatially modulated firing. In this context, the locomotion-dependent 268 

hyperpolarization of the baseline Vm of a majority of CA1 pyramidal cells that we describe 269 

could constitute an efficient way to prevent incidental depolarization (and associated place 270 

coding) of silent pyramidal cells, thus preserving the sparse coding scheme of the 271 

hippocampus. On the other hand, the depolarization of a minority of CA1 pyramidal cells 272 

could represent a permissive state for position coding. Alternatively cells hyperpolarized 273 

during movement could represent a recently described population of cells that specifically 274 

code position during immobility (Kay et al., 2016). We think however that this possibility is 275 

unlikely given that immobility place cells represented a small minority of all CA1 pyramidal 276 

cells while HypM cells represented the majority of recorded cells in our study. Unfortunately 277 

the behavior of the mice and short duration of the recordings prevented the analysis of the 278 

spatial modulation of HypM cells’ firing. Finally, HypM cells could correspond to transitions 279 

from an internal state dominated by large irregular activities (LIA) when CA1 pyramidal cells’ 280 

Vm is on average more depolarized to theta state when CA1 pyramidal cells’ Vm is on average 281 

more hyperpolarized (Hulse et al., 2017). However, in this report the authors found no clear 282 

changes in Vm or its variability across transitions to theta state and theta periods tended to 283 

occur away from identified periods of LIA making this explanation also unlikely. The 284 

difference with our results where clear modulation in Vm and its variability (at least for HypM 285 

cells) were observed around transitions to movement (an most probably to a theta state) 286 
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Figure S3 – Behavior control

A. Mean number of reward per minute for Hyp M cells versus Dep M cells (P = 0.18, Wilcoxon ranksum test). 
B. atio of the time spent in movement on time spent in immobility for yp  cells (   . , one sample 
t-test) versus Dep M cells (P = 0.25, one sample t-test ).



 
 

could lie in the fact that our animals were actively engaged in a spatial navigation task unlike 287 

animals in the previous report (see for instance the difference in running speed values). 288 

 289 

Cellular mechanisms of locomotion-dependent bimodal modulation of CA1 pyramidal cells 290 

Vm 291 

The bimodal modulation of CA1 pyramidal cells Vm during locomotion could result from 292 

locomotion dependent modulation of the excitatory/inhibitory synaptic balance. This 293 

balance is however difficult to predict from the existing literature. The overall activity of CA1 294 

pyramidal cells in the hippocampus is reduced during movement compared to periods of 295 

quiet wakefulness or during sleep (Kay and Frank, 2017). However, the firing rate of cells 296 

active during locomotion is positively modulated by speed (McNaughton et al., 1983; Czurkó 297 

et al., 1999). The source of this modulation could be extra-hippocampal. The activity of 298 

glutamatergic cells in the medial septum is positively modulated by speed (Fuhrmann et al., 299 

2015). These cells mostly contact interneurons so they could influence pyramidal cells’ Vm 300 

through feedforward disinhibition. Recent experimental work using juxtacellular recordings 301 

followed by post-hoc identification in freely moving rat have observed that PV basket cells 302 

but not Ivy cells fire more during movement compared to immobility (Lapray et al., 2012). 303 

More recent work using two photon imaging reported that most PV-positive and SOM-304 

positive interneurons’ activity is positively modulated by speed (Arriaga and Han, 2017). This 305 

is consistent with the speed-dependent hyperpolarization of the majority of recorded CA1 306 

pyramidal cells. However, a small population of interneurons showed an opposite behavior 307 

(i.e. their activity was negatively correlated with speed) and could account for the speed 308 

dependent depolarization of a minority of recorded CA1 pyramidal neurons in our study.  309 

 310 
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Opposite modulation of bursting and regular firing cells during locomotion and functional 311 

implications for hippocampal spatial coding 312 

Intracellular recordings in vitro (Graves et al., 2012) and in vivo (Kandel and Spencer, 1961; 313 

Epsztein et al., 2011) have revealed that CA1 pyramidal cells can respond to intracellularly 314 

injected steps of current with two different firing behaviors: firing groups of action 315 

potentials with short interspike intervals, also referred to as burst firing cells or action 316 

potentials with larger inter-spike intervals also referred to as regular firing cells. In vitro, the 317 

distribution of burst firing and regular firing CA1 pyramidal cells have been shown to vary 318 

along the proximo-distal axis (Jarsky et al., 2008) and to correspond to two different classes 319 

of neurons (Graves et al., 2012). Importantly, bursting and regular firing neurons appears to 320 

be functionally different (Epsztein et al., 2011; Cembrowski et al., 2018). In freely moving 321 

rats, burst firing cells are more readily recruited for spatial coding than regular firing cells 322 

when animals explore a new environment (Epsztein et al., 2011). However, the intracellular 323 

determinants of place cells coding vary between familiar and new environment with a likely 324 

switch from intrinsic to synaptic determinants (Cohen et al., 2017). We observed a 325 

preferential locomotion dependent hyperpolarization of bursting CA1 pyramidal cells during 326 

locomotion when mice explored a familiar environment while regular firing cells were 327 

depolarized. Interestingly, the bursting index, which reflects the propensity of spikes to be 328 

fired as bursts in a given cell, correlated with the strength and sign of the modulation. If 329 

bursting cells are preferentially recruited to be active and code for position as rats moves 330 

around in a new environment, locomotion-dependent hyperpolarization could counter 331 

select them to code in a familiar environment. Future work should examine the spatial 332 

coding of burst and regular firing cells in a familiar environment as well as the locomotion-333 

dependent modulation of their Vm in a new environment.  334 



 
 

Extracellular recordings have also revealed a differential distribution of bursting and 335 

regular firing cells along the deep-superficial axis in CA1, with deep cells located close to 336 

stratum oriens preferentially firing in bursts and superficial cells located close to stratum 337 

radiatum preferentially firing regularly (Mizuseki et al., 2011). While the link between 338 

intrinsic (as determined by intracellular step current injections) and functional (as 339 

determined by extracellular recordings of spontaneous firing) bursting properties are 340 

currently unknown, it is tempting to speculate that some correspondence exists between 341 

these cell classes. Recently, deep CA1 pyramidal cells were shown to be preferentially 342 

inhibited during sharp wave ripples (Valero et al., 2015), a behavior that was also observed 343 

for HypM bursting cells in the present study whose soma were not located superficially 344 

within the CA1 pyramidal cell layer. Interestingly, a recent report have shown that deep and 345 

superficial cells are differently engaged in spatial coding depending on the type of 346 

information available to the animal (Fattahi et al., 2018). Deep cells are recruited to code 347 

positions close to external landmark cues (Geiller et al., 2017) when coding can rely on 348 

allothetic information while superficial cells are recruited to code positions away from 349 

landmarks when coding must rely on idiothetic information (Fattahi et al., 2018). The 350 

opposite membrane potential modulation during locomotion between burst firing and 351 

regular firing cells could also provide a mean to differently recruit deep and superficial cells 352 

for spatial coding depending on external cues available for self-location. 353 

 354 



 
 

Material and methods 355 

Animals 356 

All the experiments have been approved by the Institut National de la Santé et de la 357 

Recherche Médicale (INSERM), animal care and use commitee and authorized by the 358 

Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche 359 

(agreement n° 02048.02), in agreement with the directives of the European Community 360 

Council (2010/63 / EU). Data were acquired on 13 C57BL6 mice and 1 CD-1 mouse aged from 361 

five to eight weeks weighting between 18 g and 28 g at the first surgery. The mice were 362 

housed 2 or 3 per cages before the first surgery and then individually with 12h inverted 363 

light/dark cycles. Trainings and recordings occurred during the dark phase. Water and food 364 

have been provided ad libitum upstream of the surgeries. After recovery from the first 365 

surgery, the mice were restricted to 1 ml/day of water and their weight and health were 366 

monitored daily during the following experiments. 367 

 368 

Surgery 369 

A first surgery is performed to implant a fixation bar used later for the fixation of the head. 370 

The animals were anesthetized with induction of 3% isoflurane followed by an 371 

intraperitoneal injection of Ketamine (100 mg/kg) mixed with Xylazine (10 mg/kg) 372 

supplemented with subcutaneous Buprenorphine injection (0.06 mg/kg). Jeweler's screws 373 

were inserted into the skull above the cerebellum and above the olfactory bulbs to anchor 374 

dental cement. A dental cement cap was then constructed leaving two areas of the skull free 375 

to subsequently perform the craniotomies necessary for registration (in reference to 376 

Bregma: Antero-Posteriority (AP): -2mm, Medio-Laterality (ML): -2.2) for the first target 377 



 
 

necessary for intracellular recording and AP: -3mm and ML: -3.1 for the second target 378 

necessary for LFP recordings). In 4/14 mice, a LFP electrode (coated tungsten wire) was 379 

placed with an angle of 45° on z axis of an orthogonal reference frame and 45° on x axis until 380 

reaching the CA1 pyramidal layer determined by the presence of sharp wave-ripples. The 381 

electrode was then fixed with dental cement. The cement-free skull was coated with a 2% 382 

agarose layer and sealed with silicon elastomer (Kwik-Cast, World Precision Instruments). A 383 

small titanium bar (0.65 g, 12 x 6 mm) was subsequently inserted into the dental cement cap 384 

above the cerebellum. This bar is continuously present on the animals head and will serve as 385 

a point of attachment to a larger metal plate used only during training and recordings for 386 

fixing the head of the animals on the virtual reality device. 387 

 388 

Virtual reality set up 389 

A commercially available virtual reality system (Phenosys Jetball-TFT) was combined with a 390 

custom designed 3D printed concave plastic wheel (center diameter: 12.5 cm; side diameter: 391 

7.5 cm; width: 14 cm, covered with silicon-based white coating) to allow 1D movement with 392 

a 1/1 coupling between the movements of the mouse on the wheel and the movements of 393 

its avatar in the virtual reality environment. The plastic wheel was preferred to the original 394 

ball which had a more variable coupling due to its lateral rotations. The movement 395 

information is transmitted to the computer which subsequently updates the position of the 396 

avatar in the virtual environment. The wheel was surrounded by six 19-inch TFT monitors 397 

covering a 270-degree angle (Fig.S1A). The monitors were put up so that the level of mouse’s 398 

eyes corresponded to the lower third of the height of the screen. This elevation was made to 399 

take into account that the field of view of rodents is generally oriented upwards. A head 400 

fixation system (Luigs and Neumann) was located behind the animal to avoid interfering with 401 



 
 

the display of the virtual reality environment. The movement of the wheel updated the 402 

position of the mouse. The mouse could only move forward or backward but could not go 403 

back to the middle of the track (see training section). 404 

 405 

Virtual Environments 406 

The environment used for trainings (10/14 mice, 13/17 cells) and during recording sessions 407 

(14/14 mice, 17/17 cells) was a 200-cm long and 32-cm wide virtual corridor composed of 408 

four successive symmetrical and distinct patterns (respectively black dots on a white 409 

background, black and green squares, black and white strips, green crosses on a black 410 

background) with two target images at the ends (gray circles on a yellow background and 411 

triangles on a yellow background; Fig.S1B,C). Three objects were present  in the 412 

environment: a yellow origami crane (dimensions: 9 x 9 x 7 cm: position: 37 cm from the 413 

beginning of the corridor), a gray cube with a blue diamond pattern (dimensions: 5 x 5 x 5 414 

cm, position: 64 cm from the beginning of the corridor) and a tree (dimensions: 15 x 15 x 22 415 

cm, position: 175 cm from the beginning of the corridor), as well as symmetrical columns 416 

present outside the corridor (dimensions: 8 x 8 x 47 cm, positions from the beginning of the 417 

corridor: 58 and 143 cm, patterns: black rhombus on green background, black and white 418 

horizontal stripes). For five recordings, after exploration of this previous maze, mice were 419 

teleported in the same version of that maze except for objects in the environment which 420 

were removed from it. Four mice were trained in a virtual maze which was empty except a 421 

black and grey rhombus floor pattern and with a green circle place at 200 cm on the ground 422 

indicating the reward zone.  423 



 
 

Habituation and trainings 424 

The mice were first habituated to the experimenter by at least two daily manipulation 425 

sessions of at least 20 minutes which continued throughout the experiment. After a period 426 

of post-operative recovery of at least 3 days, mice were restricted to water (1 ml/day, 427 

including the amount of water taken during training) and their weight was controlled daily. 428 

Access to ad libitum water was restored if the weight of the animals decreased by less than 429 

80% of the pre-operative weight at any stage of training. Then, after 2 or 3 days of water 430 

deprivation, they were gradually trained to run in the virtual reality device. In first place, 431 

mice became familiar with the device by being head fixed on the wheel in a black virtual 432 

environment where it is possible to recover sweet water rewards (5%) of 8 μl every 50 cm. 433 

Following at least one training in the black environment, the animals were trained to run in 434 

the virtual environment described in the previous section. When an animal reaches the end 435 

of the labyrinth, a sweet water reward of 5% of 8 μl is given via an arm that unfolds and a 436 

pump controlled by a tactile licking sensor. Once the reward is taken by the animal, the arm 437 

returns to its original position and the avatar is teleported in the opposite direction until the 438 

next reward at the end of the corridor. Animals were initially trained during 10 minutes daily 439 

sessions in the environment with periods of breaks in a black environment without any task. 440 

During training, the time in the black environment was gradually increased to 60 minutes in 441 

order to better mimic the recording conditions. 442 

 443 

Recording procedures 444 

When animals reached stable behavioral performances in the training maze (at least 6 445 

training sessions and at least 1 session with 1.2 reward/minute performance), we performed 446 

intracellular recordings of hippocampal pyramidal cells as well as a recording of hippocampal 447 



 
 

field using either a wire placed during initial surgery or a linear silicon probe (A-32 Buzsaki 448 

Probe, Neuronexus) with 32 recordings channels spaced with 25 or 50 μm placed during 449 

recording day. For 2/17 recorded cells, LFP recordings were too noisy to be analyzed. The 450 

day before the recording, animals were anesthetized (induction: isoflurane 3%, maintenance 451 

with sleep mix: medetomidine (225 mg/kg), midazolam (6 mg/kg), and fentanyl (7.5 mg/kg), 452 

awaken with awake mix: atipamezole (1 mg/kg), flumazenil (600 mg/kg), and naloxone (180 453 

mg/kg)) and craniotomies were performed. Craniotomies were covered with agarose (~ 3% 454 

in saline) and then sealed with silicon elastomer (Kwik-Cast, World Precision Instruments). 455 

On the day of recording, the back of the silicon probe was covered with a thin layer of a red 456 

fluorescent dye (DiI, Life Technologies) so that the recording location was evaluated post-457 

hoc histologically. The silicon probe was then descended in the brain with an angle of 45° on 458 

the z axis of an orthogonal reference frame and 45° on the x axis while the animal could 459 

move freely on the wheel with the screens displaying a black environment. The correct 460 

positioning of the probe in the pyramidal cell layer CA1 was verified by the presence of 461 

sharp-wave ripples during the stop of the animal on several channels. From the depth of 462 

CA1, the probe was then lowered with an additional 600-1100 μm depth in order to reach 463 

other structures such as the dentate gyrus and CA3. After positioning the silicon probe, the 464 

intracellular recordings were performed.  465 

Patch pipettes were made and visually checked the same morning of recording sessions. The 466 

average resistance of the pipettes was between 5 and 8 MOhm and was filled with an 467 

intracellular solution containing (in mM) K-gluconate: 135, HEPES: 10, Na2-phosphocreatine: 468 

10, KCl: 4, MgATP: 4, and Na3GTP: 0.3 (pH adjusted to 7.2), plus biocytin (0.05%) to allow the 469 

revelation of the recorded cells. The very first pipette of a recording session was filled with 470 

an extracellular medium (Ringer) and descended above the hippocampus to estimate the 471 



 
 

depth of the CA1 layer (based on observation in the signal "sharp-wave ripples" during 472 

immobility). Once the CA1 depth was estimated, other pipettes were lowered into a voltage 473 

clamp configuration with a pulse of 10 mV at 20 Hz and a high pressure (> 400 mmpA) to 474 

reach arround -100 μm ahead the estimated depth of CA1. The pressure of the pipettes was 475 

then decreased to ~30 mmPA to allow clamping of the cells. If a recording pipette was 476 

clogged during the descent, it was replaced. Once the GΩ seal was obtained, a cell was 477 

opened by a negative pressure deflection to go into full cell configuration and the recording 478 

was set in a current clamp configuration. A discharge pattern was executed (current steps 479 

starting from -400 pA with an increment of 50 pA) upstream of each record in the virtual 480 

environment. Once the discharge pattern was performed, the virtual environment described 481 

previously was displayed and animals went back and forth. For 9/17 recordings, 482 

hyperpolarizing steps of current were injected (-100 pA) every 40 s during exploration. In 483 

case of failure of GΩ-seal or loss of the cell, the pipette was changed and the procedure was 484 

repeated. 485 

 486 

Data acquisition 487 

The position of the animal in the virtual environment was digitized by the computer 488 

controlling the virtual reality (Phenosys) and sent to a digital - analogue card (0-4.5V, NI USB-489 

6008 National Instrument Map) connected to a specialized acquisition card for intracellular 490 

recordings (molecular device, Digidata 1550A) and also connected to an external analog card 491 

(I / O card, Open Ephys) of a 256-channel acquisition card (Open Ephys) specialized in multi-492 

channel probe recording. 493 



 
 

The Open Ephys system and linear silicon probe recordings were not available during the 494 

first recordings present in this study so initial recordings (4/14 mice, 6/17 recorded cells) 495 

were carried out on continuous signals acquired on the molecular device card, Digidata 496 

1550A with a frequency of acquisition of 20 kHz. For other recordings (10/14 mice, 11/17 497 

recorded cells), electrophysiological signals were acquired on Open Ephys card at an 498 

acquisition frequency of 25 kHz (Open Ephys, Intan Technologies, RHD2132 amplifier with a 499 

RHD2000 USB card).  500 

 501 

Histological revelation, labelling and reconstruction:  502 

Biocytin revelation: After patch recording sessions, all animals were perfused with 4% PFA 503 

and brains were collected to put in a 4% PFA solution during 24h - 48h (depending on state 504 

of perfusion), then transferred in a 1X PBS solution before being sliced with 50-100 µm 505 

thickness. All animals received protocol of biocytin revelation. Biocytin was revealed by an 506 

incubation of streptavidin coupled with an Alexa 594 fluorophore (10/14 animals) or coupled 507 

with cyanin 3 (4/10 animals) at 1/1000 concentration in mix of 1X PBS, 0.3% triton and 2% 508 

Normal Goat Serum (NGS) (in order to permeabilize membranes and reduces nonspecific 509 

liaisons) under agitation at 4°C protected from light during 48h-72h. Slices were then 510 

washed during 10 minutes 3 times under agitation protected from light at 4°C with 1X PBS. 511 

Localization of labelled cells was determined with an Olympus SZX 16 stereomicroscope. 512 

Slice within the soma of labeled cell, as well as 2 slices before and 2 slices after, were 513 

identified and received calbindin positive labeling protocol (12/14 animals, 14/17 cells).  514 

Calbindin labelling: Interest slices were incubated with a mix of 1X PBS, 0.3% triton and 7% 515 

NGS,  during 2h at 4°C protected from light. Then, slices were incubated and agitated during 516 



 
 

24h at 4°C protected from light with a primary rabbit antibody anti-calbin at 1/1000 in a mix 517 

of 1X  PBS, 0.3% triton, 2% NGS added with streptavidin coupled with a fluorophore at 518 

1/1000 (Alexa 594 or cyanine 3) in order to maintain labeling of biocytin. After 3 washes of 519 

10 min in a mix of 1X PBS and triton 0.3%, slices were then incubated and agitated during 520 

24h at 4°C protected from light with a secondary donkey antibody anti-rabbit coupled with 521 

Alexa 488 fluorophore at 1/1000 in mix of 1X  PBS, 0.3% triton, 2% NGS added with 522 

streptavidin coupled with a fluorophore at 1/1000 (Alexa 594 or cyanine 3). Finally, slices 523 

were washed during 10min 3 times in a mix of 1X PBS and 0.3% triton with agitation at 4°C 524 

protected from light and then 2 more washes with only 1X PBS in the same condition. Slices 525 

were then mounted between blades and coverslips using Vectashield (containing DAPI) and 526 

then sealed with uncolored nail polish. 527 

Microscope & reconstruction: 6 brains were acquired using Leica SP5X streptal microscope in 528 

order to reconstruct labelled cells. Acquisition was made with a resolution of 2048 x 2048 529 

using a x40 lens and done with stacks 0.46 µm of thickness. 2 fully labelled neurons were 530 

reconstructed thanks to Neurolucida® software (Fig. S4). These two neurons were also 531 

acquired with a x10 lens for a wide view and x40 for an isolated view of the neuron using a 532 

Zeiss LSM 800 microscope. 533 

 534 

Data Analysis 535 

Analyzes were performed by custom developed programs written in MATLAB (MathWorks). 536 

17 cells were recorded with duration from 1 to 23 min in the maze (mean: 8 min 25 s ± 1 min 537 

34 s). Animals performed at least one lap in the environment (mean: 6.82 ± 1.3). 538 



 
 

Intrinsic properties: Intrinsic properties features comes from pattern discharge executed 539 

before exploration of the environment. The resting membrane potential of the cells was 540 

determined as the average of the first 15 milliseconds of the recording. Series and the input 541 

resistances were calculated by fitting a linear curve on all the hyperpolarizing and 542 

depolarizing current steps excluding steps with action potentials. The discharge threshold 543 

has been recovered on the first action potential emitted by the cell in response to a 544 

minimum current. It was defined as the value of the membrane potential where the 545 

derivative of the signal exceeded 10 mV.s-1. The spike amplitude was calculated as the 546 

difference between peak of this first action potential and the threshold. The Rheobase was 547 

calculated by fitting a linear regression curve on the firing frequency depending on steps of 548 

current. The value taken was the theoretical minimal injection of current needed to evoke 549 

one spike. Rheobase values were then validated manually if aberrant values were found by 550 

the fit (11/17 values kept).  The bursting index was calculated on the first current step with 551 

at least 5 action potentials (AP) and by calculating the ratio of the number of action potential 552 

discharging in bursts (PA with an inter-potential interval less than 10 ms) over the total 553 

number of action potential present during the pulse.  554 

 555 

Subthreshold Vm: Subthreshold Vm has been determined using the following steps. First, a 556 

window of stable Vm were selected on recorded cells. Artifacts (aberrant loss of signal) were 557 

manually selected and removed by linearizing the Vm between edges (9/17 recordings). 558 

Influence of series resistance on Vm was automatically corrected following the Ohm law U = 559 

Rs.I, based on series resistance values taken from intrinsic properties. Action potentials from 560 

Vm were detected automatically using a high pass filter (100 Hz) and an adjustable threshold 561 



 
 

equal to 4 times the Vm standard deviation (s.d.). Good detection of spikes was then checked 562 

manually. Edges of spikes were defined as 2 ms before and 8 ms after action potential peak. 563 

Complex spikes from Vm were detected using different filters and thresholds. A vector was 564 

computed in order to detect slow component of a complex spike. This vector corresponds to 565 

a band pass filtered Vm (0.5-20 Hz), which positive values were squared. The final vector was 566 

z-scored. Putative indexes of complex spike were detected using 2 thresholds. A first 567 

threshold was equal to 10 (value of z-score) and then extended using a lower threshold 568 

equal to 5 when the difference between both threshold indexes did not exceed 30 ms. Short 569 

detected events inferior to 30 ms were then removed. Next, edges of putative events were 570 

asymmetrically extended by 25 ms before and 4 ms after putative complex spikes. Finally, all 571 

putative complex spikes edges were checked and manually corrected if needed. Spikes and 572 

complex spikes were removed by linearizing the Vm between edges of events. Small Vm drift 573 

was compensated using a low pass filter (0.1 Hz) in order to realign Vm. Hyperpolarizing steps 574 

of current were automatically detected on the current trace and removed from the Vm trace 575 

by linearizing. Current trace was first filtered at 1 Hz, then indexes were found by using a 576 

threshold equal to 5 times the standard deviation of the current trace. Only periods < 200 577 

ms were included. Indexes separated by less than 40 ms were merged. Finally indexes were 578 

extended with 10 ms before and 40 ms after edges of detected periods.  579 

 580 

Locomotion/immobility periods: To detect locomotion and immobility periods, the velocity 581 

vector was calculated on the signal position in the environment (6/17 recordings) or, when 582 

available, directly on the signal of the motion sensor downsampled at 100 Hz and then 583 

smoothed (11/17 recordings). The speed corresponds to the derivative of the smoothed 584 



 
 

position vector then smoothed again with a half-width Gaussian of 0.5 s. Because the reward 585 

system freezes the virtual environment in the reward zone but did not physically stop the 586 

wheel on which the animal is walking, rewards zone were excluded from the analysis when 587 

the wheel movement signal was not available. Putative periods of locomotion and 588 

immobility were detected by applying a speed threshold of 0.5 cm.s-1. Then, periods 589 

separated by less than 0.5 s have been merged. Finally, only periods greater than or equal to 590 

2 s have been preserved, others were unlabeled. Transitions periods were defined as periods 591 

centered on the index for which the animal went from immobility to locomotion or vice 592 

versa. Transitions had a total duration of 4 s (2 s immobility and 2 s locomotion). 593 

 594 

Subthreshold Vm features during Locomotion/Immobility: Mean subthreshold Vm, 595 

subthreshold Vm variance and mean spontaneous firing rate were calculated for each 596 

locomotion/immobility period. To be able to compare the Vm of different neurons, the Z-597 

score was computed on the subthreshold Vm.  Intracellular spectrogram was computed by 598 

using a time-frequency decomposition with complex Morlet wavelets with central 599 

frequencies from 0 to 40 Hz in 0.2 Hz steps on a downsampled signal (250 Hz). Power values 600 

in a given frequency range were normalized by the squared root of the frequency. Then 601 

mean power values were calculated during immobility and locomotion periods. For 602 

scatterplots in Fig.1 and Fig.2, only successive periods of immobility and movement were 603 

considered in order to be able to plot values face to face in scatter plots. For the 604 

supplementary figure 3, scatter plots during transitions periods come from values between -605 

2 s and -1 s versus values between +1 s and +2 s (0 s being the center of the transition). 606 

 607 



 
 

Modulation index computation: Cells were classified as Depolarized (Dep M) or 608 

hyperpolarized (Hyp M) during locomotion depending on a subthreshold Vm modulation 609 

index. This index was calculated by counting for each period of locomotion occurring before 610 

or after a given period of immobility the percentage of Vm values higher than the median of 611 

the Vm during the immobility period. 750 ms before and after each locomotion/immmobility 612 

was removed to compute this index. The percentage has been rescaled to get an index from 613 

-1 to 1 used to classify DepM and HypM cells.  614 

 615 

Speed correlation: Z-score Subthreshold Vm trace was filtered with a lowpass filter at 5Hz, 616 

then downsampled at 100Hz and smoothed with a half-width Gaussian of 1 sec. Next, for 617 

each neuron a correlation coefficient was computed by calculating the correlation 618 

coefficient between averaged Z-score Subth. Vm values and Speed vector binned in 0.05 619 

cm.s-1 bins containing at least 4 values. For each neuron a mean coefficient correlation was 620 

also calculated based on the mean of correlation coefficient during each moving periods.  621 

 622 

Ripples detection: Ripples were detected on the CA1 LFP signal when available (15/17 623 

recordings) during immobility. To detect ripples, LFP signal was filtered between 100Hz 624 

and 300Hz, then squared and smoothed with an half Gaussian of 10 ms and finally z-scored. 625 

Putative indexes of ripples were detected using 2 thresholds. A first threshold was equal to 5 626 

times the s.d. of the signal and then extended using a lower threshold equal to 2 times the 627 

signal s.d. when the difference between both threshold indexes did not exceed 18 ms. Then 628 

putative ripples periods were merged if they were separated by an amount of time inferior 629 

to 30 ms. Next, periods of ripples were extended by 5 ms in each direction and then, a time 630 



 
 

restriction was applied in order to conserve only putative periods of at least 25 ms. Finally, 631 

putative periods of ripples were then checked manually and time of occurrence of ripple was 632 

taken as the index of maximum of signal in the ripple period. 633 

 634 

Ripples modulation features computation:  Subthreshold Vm modulation by ripples was 635 

computed by using a shuffling method repeated 1000 times. At each iteration, a randomized 636 

vector was calculated by shuffling the subthreshold Vm values within a time window from 2 637 

times the length of the ripple before its start to the end of the ripple. Then the number of 638 

times where subthreshold Vm was superior or inferior of randomized vector was counted. If 639 

the subthreshold Vm is superior of inferior to 95% of the 1000 randomized vectors for 10% 640 

of the ripple period duration, then the modulation of the Vm by the ripple was considered as 641 

significant. Baseline used to calculate DeltaVm modulation during ripple was calculated as 642 

the mean of Subthreshold Vm within a time window from 2 times the length of ripple to its 643 

start. Delta Vm was computed as the maximum or minimum significant subthreshold Vm 644 

value minus the Baseline. If two significant Vm modulations were present in one ripple 645 

period, the first one occurring was taken to calculate the DeltaVm.  646 

 647 

Statistical analysis: All statistical analyses were conducted using Matlab codes (MathWorks). 648 

For each distribution, a Lilliefors goodness-of-fit test was used to verify if the data were 649 

normally distributed and a Levene test was used to assess for equal variance. If normality or 650 

equal variance were not verified, we used the Wilcoxon rank sum test otherwise the Student 651 

t-test was used. For paired test, normality was verified by Lilliefors goodness-of-fit test. If 652 



 
 

normality was not verified, we used the Wilcoxon signed rank test otherwise the Student 653 

paired t-test.  In figure or text, all results were given with means ± the s.e.m..  654 



 
 

References 655 

Albergaria C, Silva NT, Pritchett DL, Carey MR (2018) Locomotor activity modulates associative 656 
learning in mouse cerebellum. Nat Neurosci 21:725-735. 657 
 658 
Arriaga M, Han EB (2017) Dedicated Hippocampal Inhibitory Networks for Locomotion and 659 
Immobility. J Neurosci 37:9222–9238. 660 
 661 
Arroyo S, Bennett C, Hestrin S (2018) Correlation of Synaptic Inputs in the Visual Cortex of Awake, 662 
Behaving Mice. Neuron 99:1289–1301. 663 
 664 
Bennett C, Arroyo S, Hestrin S (2013) Subthreshold mechanisms underlying state-dependent 665 
modulation of visual responses. Neuron 80:350–357. 666 
 667 
Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) 668 
Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 669 
18:1133–1142. 670 
 671 
Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. 672 
Neuroscience. 31:551-570. 673 
 674 
Buzsáki G (2015) Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 675 
planning. Hippocampus 25:1073–1188. 676 
 677 
Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the 678 
hippocampus. Science 256:1025-1027. 679 
 680 
Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N 681 
(2018) Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell 682 
Classes. Cell 173:1280–1292. 683 
 684 
Cohen JD, Bolstad M, Lee AK (2017) Experience-dependent shaping of hippocampal CA1 intracellular 685 
activity in novel and familiar environments. Elife 6:1–27. 686 
 687 
Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17:239–249. 688 
 689 
Crochet S, Petersen CCH (2006) Correlating whisker behavior with membrane potential in barrel 690 
cortex of awake mice. Nat Neurosci. 9:608-610. 691 
 692 
Czurkó A, Hirase H, Csicsvari J, Buzsáki G (1999) Sustained activation of hippocampal pyramidal cells 693 
by ‘space clamping’in a running wheel. Eur J Neurosci 11:344–352. 694 
 695 
English DF, Peyrache A, Stark E, Roux L, Vallentin D, Long MA, Buzsáki G (2014) Excitation and 696 
Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving 697 
Mice. J Neurosci 34:16509–16517. 698 
 699 
Epsztein J, Brecht M, Lee AK (2011) Intracellular Determinants of Hippocampal CA1 Place and Silent 700 
Cell Activity in a Novel Environment. Neuron 70:109–120. 701 
 702 
Epsztein J, Lee AK, Chorev E, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell 703 
activity during spatial exploration. Science 327:474–477. 704 



 
 

 705 
Fattahi M, Sharif F, Geiller T, Royer S (2018) Differential Representation of Landmark and Self-Motion 706 
Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks 707 
during Septal Inactivation. J Neurosci 38:6766–6778. 708 
 709 
Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells 710 
during the awake state. Nature 440:680-683. 711 
 712 
Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann 713 
M, Remy S (2015) Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal 714 
Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron 86:1253–1264. 715 
 716 
Gan J, Weng S ming, Pernía-Andrade AJ, Csicsvari J, Jonas P (2017) Phase-Locked Inhibition, but Not 717 
Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo. Neuron 93:308–314. 718 
 719 
Geiller T, Fattahi M, Choi JS, Royer S (2017) Place cells are more strongly tied to landmarks in deep 720 
than in superficial CA1. Nat Commun 8:14531. 721 
 722 
Girardeau G, Zugaro M (2011) Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 723 
21:452–459. 724 
 725 
Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N (2012) Hippocampal Pyramidal 726 
Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors. 727 
Neuron 76:776–789. 728 
 729 
Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC (2017) Inhibitory suppression of 730 
heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nat Neurosci 20:417–731 
426. 732 
 733 
Gupta AS, van der Meer MAA, Touretzky DS, Redish AD (2010) Hippocampal Replay Is Not a Simple 734 
Function of Experience. Neuron 65:695-705. 735 
 736 
Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place 737 
cells during virtual navigation. Nature 461:941–946. 738 
 739 
Hsu CL, Zhao X, Milstein AD, Spruston N (2018) Persistent Sodium Current Mediates the Steep 740 
Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. Neuron 99:147–162. 741 
 742 
Hulse BK, Lubenov E V., Siapas AG (2017) Brain State Dependence of Hippocampal Subthreshold 743 
Activity in Awake Mice. Cell Rep 18:136–147. 744 
 745 
Hulse BK, Moreaux LC, Lubenov E V., Siapas AG (2016) Membrane Potential Dynamics of CA1 746 
Pyramidal Neurons during Hippocampal Ripples in Awake Mice. Neuron 89:800–813. 747 
 748 
Jarsky T, Mady R, Kennedy B, Spruston N (2008) Distribution of bursting neurons in the CA1 region 749 
and the subiculum of the rat hippocampus. J Comp Neurol 506:535–547. 750 
 751 
Kandel ER, Spencer WA (1961) Electrophysiology of hippocampal neurons: II. After-potentials and 752 
repetitive firing. J Neurophysiol 24:243–259. 753 
 754 
Kay K, Frank LM (2018) Three brain states in the hippocampus and beyond. Hippocampus. In press. 755 
 756 



 
 

Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM (2016) A hippocampal network for spatial 757 
coding during immobility and sleep. Nature 531:185–190. 758 
 759 
Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, Hartwich K, Borhegyi Z, Somogyi P, 760 
Klausberger T (2012) Behavior-dependent specialization of identified hippocampal interneurons. Nat 761 
Neurosci 15:1265–1271. 762 
 763 
Lee D, Lin BJ, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipulation of 764 
excitability during behavior. Science 337:849–853. 765 
 766 
McGinley MJ, David S V., McCormick DA (2015) Cortical Membrane Potential Signature of Optimal 767 
States for Sensory Signal Detection. Neuron 87:179-192. 768 
 769 
McNaughton BL, Barnes CA, O’Keefe J (1983) The contributions of position, direction, and velocity to 770 
single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 52:41-49. 771 
 772 
Mizuseki K, Diba K, Pastalkova E, Buzsáki G (2011) Hippocampal CA1 pyramidal cells form functionally 773 
distinct sublayers. Nat Neurosci 14:1174–1183. 774 
 775 
Moser EI, Moser M-B, McNaughton BL (2017) Spatial representation in the hippocampal formation: a 776 
history. Nat Neurosci 20:1448–1464. 777 
 778 
Niell CM, Stryker MP (2010) Modulation of Visual Responses by Behavioral State in Mouse Visual 779 
Cortex. Neuron 65:472-479. 780 
 781 
O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit 782 
activity in the freely-moving rat. Brain Res 34:171–175. 783 
 784 
O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. London: Oxford University Press. 785 
 786 
Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered 787 
goals. Nature 497:74–79. 788 
 789 
Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state-dependent gain 790 
modulation in visual cortex. Nat Neurosci 16:1331–1339. 791 
 792 
Roumis DK, Frank LM (2015) Hippocampal sharp-wave ripples in waking and sleeping states. Curr 793 
Opin Neurobiol 35:6–12. 794 
 795 
Rowland DC, Yanovich Y, Kentros CG (2011) A stable hippocampal representation of a space requires 796 
its direct experience. Proc Natl Acad Sci 108:14654–14658. 797 
 798 
Thompson LT, Best PJ (1989) Place Cells and Silent Cells in the Hippocampus Rats of. J Neurosci 799 
9:2382–2390. 800 
 801 
Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, Gomez-Dominguez D, Bellistri E, 802 
De La Prida LM (2015) Determinants of different deep and superficial CA1 pyramidal cell dynamics 803 
during sharp-wave ripples. Nat Neurosci 18:1281–1290. 804 
 805 
Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. 806 
Electroencephalogr Clin Neurophysiol. 26:407-418. 807 
 808 



 
 

Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015) Arousal and Locomotion Make Distinct 809 
Contributions to Cortical Activity Patterns and Visual Encoding. Neuron 86:740–754. 810 
 811 
Wilson M, McNaughton B (1993) Dynamics of the hippocampal ensemble code for space. Science 812 
(80- ) 261:1055–1058. 813 
 814 



colophon

This document generated using a slight modification of the template
classicthesis developed by André Miede and Ivo Pletikosić2. The
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