Modélisation et optimisation d'un rotor à pales flexibles
Auteur / Autrice : | Eduardo Duran-Venegas |
Direction : | Stéphane Le Dizès, Christophe Eloy |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences pour l'ingénieur |
Date : | Soutenance le 05/06/2019 |
Etablissement(s) : | Aix-Marseille |
Ecole(s) doctorale(s) : | École Doctorale Sciences pour l'ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille) |
Partenaire(s) de recherche : | Laboratoire : Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE) (Marseille) |
Jury : | Président / Présidente : Sabine Ortiz Clerc |
Examinateurs / Examinatrices : Luis Parras Anguita, Ivan Delbende | |
Rapporteurs / Rapporteuses : Philippe Chatelain, François Gallaire |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Historiquement, les rotors ont été développés pour la propulsion et la génération d’énergie. Pendant des années, grands efforts de recherche ont été fournis pour les éoliennes et les hélicoptères. Or, des nouvelles applications comme les drones nécessitent une recherche plus approfondie. La flexibilité du rotor et les conditions de fonctionnement particulières constituent un défi pour l'optimisation de leur design. Dans cette thèse, on propose un modèle fluide-structure qui prend en compte la flexibilité des pales dans des conditions de fonctionnement non-conventionnelles. Le modèle est suffisamment simple et robuste pour la réalisation d'études paramétriques extensives. Il comprend des modèles pour le sillage et la structure flexible du rotor. Deux modèles du sillage sont considérés: un modèle classique de Joukowski et un modèle généralisé. Dans le modèle classique, deux vortex sont émis par pale, l’un sur la pointe et l’autre sur l’axe. Dans le modèle généralisé, le tourbillon axial est décalé par rapport au centre. Une analyse de stabilité est réalisée pour les solutions dérivées avec le modèle classique. La nature convective/absolue de l’instabilité est étudiée pour différentes conditions de fonctionnement. Les solutions stationnaires du sillage sont utilisées pour calculer le champ de vitesse induit dans le plan rotor. Ainsi, à partir de la loi de Kutta-Joukowski et de la théorie des éléments de pale (BET), on peux déterminer les charges aérodynamiques exercés sur les pales. Le couplage du rotor avec son sillage est alors implémenté pour une configuration rigide. Finalement, la flexibilité de la pale est prise en compte à l’aide d’un modèle de poutre élastique