Thèse soutenue

Optimisation des techniques de compression d'images fixes et de vidéo en vue de la caractérisation des matériaux : applications à la mécanique

FR  |  
EN
Auteur / Autrice : Tarek Saad Omar Eseholi
Direction : Patrick CorlayFrançois-Xavier Coudoux
Type : Thèse de doctorat
Discipline(s) : Électronique. Acoustique et télécommunications
Date : Soutenance le 17/12/2018
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
Communauté d'Universités et Etablissements (ComUE) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Yannis Pousset
Examinateurs / Examinatrices : Patrick Corlay, François-Xavier Coudoux, Pierre-Emmanuel Mazeran, Maxence Bigerelle, Anne-Sophie Descamps, Delphine Notta-Cuvier
Rapporteurs / Rapporteuses : Pierre-Emmanuel Mazeran

Résumé

FR  |  
EN

Cette thèse porte sur l’optimisation des techniques de compression d'images fixes et de vidéos en vue de la caractérisation des matériaux pour des applications dans le domaine de la mécanique, et s’inscrit dans le cadre du projet de recherche MEgABIt (MEchAnic Big Images Technology) soutenu par l’Université Polytechnique Hauts-de-France. L’objectif scientifique du projet MEgABIt est d’investiguer dans l’aptitude à compresser de gros volumes de flux de données issues d’instrumentation mécanique de déformations à grands volumes tant spatiaux que fréquentiels. Nous proposons de concevoir des algorithmes originaux de traitement dans l’espace compressé afin de rendre possible au niveau calculatoire l’évaluation des paramètres mécaniques, tout en préservant le maximum d’informations fournis par les systèmes d’acquisitions (imagerie à grande vitesse, tomographie 3D). La compression pertinente de la mesure de déformation des matériaux en haute définition et en grande dynamique doit permettre le calcul optimal de paramètres morpho-mécaniques sans entraîner la perte des caractéristiques essentielles du contenu des images de surface mécaniques, ce qui pourrait conduire à une analyse ou une classification erronée. Dans cette thèse, nous utilisons le standard HEVC (High Efficiency Video Coding) à la pointe des technologies de compression actuelles avant l'analyse, la classification ou le traitement permettant l'évaluation des paramètres mécaniques. Nous avons tout d’abord quantifié l’impact de la compression des séquences vidéos issues d’une caméra ultra-rapide. Les résultats expérimentaux obtenus ont montré que des taux de compression allant jusque 100 :1 pouvaient être appliqués sans dégradation significative de la réponse mécanique de surface du matériau mesurée par l’outil d’analyse VIC-2D. Finalement, nous avons développé une méthode de classification originale dans le domaine compressé d’une base d’images de topographie de surface. Le descripteur d'image topographique est obtenu à partir des modes de prédiction calculés par la prédiction intra-image appliquée lors de la compression sans pertes HEVC des images. La machine à vecteurs de support (SVM) a également été introduite pour renforcer les performances du système proposé. Les résultats expérimentaux montrent que le classificateur dans le domaine compressé est robuste pour la classification de nos six catégories de topographies mécaniques différentes basées sur des méthodologies d'analyse simples ou multi-échelles, pour des taux de compression sans perte obtenus allant jusque 6: 1 en fonction de la complexité de l'image. Nous avons également évalué les effets des types de filtrage de surface (filtres passe-haut, passe-bas et passe-bande) et de l'échelle d'analyse sur l'efficacité du classifieur proposé. La grande échelle des composantes haute fréquence du profil de surface est la mieux appropriée pour classer notre base d’images topographiques avec une précision atteignant 96%.