Thèse soutenue

Étude théorique et numérique des équations non-linéaires de Sobolev

FR  |  
EN
Auteur / Autrice : Fatiha Bekkouche
Direction : Serge NicaiseWided Chikouche
Type : Thèse de doctorat
Discipline(s) : Mathématiques. Mathématiques appliquées
Date : Soutenance le 22/06/2018
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques et leurs applications de Valenciennes (2006-2021)
Communauté d'Universités et Etablissements (ComUE) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Colette De Coster
Examinateurs / Examinatrices : Serge Nicaise, Wided Chikouche, Cherif Amrouche, Stéphane Maingot
Rapporteurs / Rapporteuses : Cherif Amrouche, Stéphane Maingot

Résumé

FR  |  
EN

L'objectif de la thèse est l'étude mathématique et l'analyse numérique du problème non linéaire de Sobolev. Un premier chapitre est consacré à l'analyse a priori pour le problème de Sobolev où on utilise des méthodes de semi-discrétisation explicite en temps. Des estimations d'erreurs ont été obtenues assurant que les schémas numériques utilisés convergent lorsque le pas de discrétisation en temps et le pas de discrétisation en espace tendent vers zéro. Dans le second chapitre, on s'intéresse au problème de Sobolev singulièrement perturbé. En vue de la stabilité des schémas numériques, on utilise dans cette partie des méthodes numériques implicites (la méthode d'Euler et la méthode de Crank- Nicolson) pour discrétiser le problème par rapport au temps. Dans le troisième chapitre, on présente des applications et des illustrations où on utilise le logiciel "FreeFem++". Dans le dernier chapitre, on considère une équation de type Sobolev et on s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des éléments finis conforme en espace et un schéma d'Euler implicite en temps. La borne supérieure est globale en espace et en temps et permet le contrôle effectif de l'erreur globale. A la fin du chapitre, on propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques.