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Résumé

Le développement de la fabrication additive permet d’élaborer des pièces de forme

extrêmement complexes, en particulier des structures alvéolaires ou ”lattices”, où l’allègement

est recherché. Toutefois, cette technologie, en très forte croissance dans de nombreux secteurs

d’activités, n’est pas encore totalement mature, ce qui ne facilite pas les corrélations entre les

mesures expérimentales et les simulations déterministes. Afin de prendre en compte les variations

de comportement, les approches multiparamétriques sont, de nos jours, des solutions pour tendre

vers des conceptions fiables et robustes.

L’objectif de cette thèse est d’intégrer des incertitudes matérielles et géométriques, quantifiées

expérimentalement, dans des analyses de flambement. Pour y parvenir, nous avons, dans un pre-

mier temps, évalué différentes méthodes de substitution, basées sur des régressions et corrélations,

et différentes réductions de modèles afin de réduire les temps de calcul prohibitifs. Les projec-

tions utilisent des modes issus soit de la décomposition orthogonale aux valeurs propres, soit de

développements homotopiques ou encore des développements de Taylor. Dans un second temps,

le modèle mathématique, ainsi créé, est exploité dans des analyses ensemblistes et probabilistes

pour estimer les évolutions de la charge critique de flambement de structures lattices.

Mots Clés

Flambement - Modèles de substitution - Modèles d’ordre réduit - Techniques de perturbation -

Développement homotopique - Techniques de projection - Développement de Taylor - Incertitudes

- Ensembles flous - Intervalles - Probabilité - Fabrication additive - Structure lattice
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Abstract

The development of additive manufacturing allows structures with highly complex shapes to

be produced. Complex lattice shapes are particularly interesting in the context of lightweight

structures. However, although the use of this technology is growing in numerous engineering

domains, this one is not enough matured and the correlations between the experimental data and

deterministic simulations are not obvious. To take into account observed variations of behavior,

multiparametric approaches are nowadays efficient solutions to tend to robust and reliable designs.

The aim of this thesis is to integrate material and geometric uncertainty, experimentally

quantified, in buckling analyses. To achieve this objective, different surrogate models, based on

regression and correlation techniques as well as different reduced order models have been first

evaluated to reduce the prohibitive computational time. The selected projections rely on modes

calculated either from Proper Orthogonal Decomposition, from homotopy developments or from

Taylor series expansion. Second, the proposed mathematical model is integrated in fuzzy and

probabilistic analyses to estimate the evolution of the critical buckling load for lattice structures.

Keywords

Buckling - Surrogate models - Reduced order models - Perturbation techniques - Homotopy

development - Projection technique - Taylor series expansion - Uncertainty - Fuzzy sets - Intervals

- Probability - Additive manufacturing - Lattice structure
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Introduction

1 Context and objectives of thesis

Additive Manufacturing (AM), also commonly known as 3D printing, is a manufacturing

process for building almost any physical solid part from its three-dimensional digital model.

Nowadays, AM technology has a very fast growing market capability mostly in the aerospace,

automotive, healthcare, and consumer products sectors to build 3D complex parts. In this context,

the products are built-up by direct deposition of successive controlled thin layers of melted metal

on top of each other considering different materials, such as for example titanium, carbon fiber

or fiberglass. Thus, this technology facilitates the realization of complex lightweight structures,

such as lattice structures which are interesting for energy absorption problematics. These last

ones are defined with the aspect ratio, the unit-cell size and shape and can have dimensions up

to nanometer.

Although the manufacturing process is more and more well managed with for example the

Electron beam melting (EBM) process, some geometric and material manufacturing variability are

detected. They are generally due to the built-part orientation, the layer thickness and the melted

pool depth. The manufactured structure presents high variability in strut size and roughness and

so it is necessary to define an effective strut diameter in comparison to the CAD diameter. In the

current work, we focus our discussion on the case of the linear buckling problem under compression

loading by considering both experimental and numerical ways. To improve the predictivity of

numerical simulations for lattice structures, it is necessary to integrate the observed variability

in the solving algorithm by performing specific uncertainty propagation methods.

Indeed, to take into account these uncertainties and tend to reliable and robust predictions, it

is necessary to generate multiple numerical simulations by performing sensitivity analyses, designs

of experiments, non-deterministic studies or even reliable and robust optimizations. The objective

is to simulate the evolution of mechanical responses (uncertainty propagation step) as a function

of input parameter variations (uncertainty modeling step) and to detect failures and performance

reductions of products (uncertainty management step). Nevertheless, whatever the theory used

to model uncertainty, it is important to maintain the computational time as low as possible and

define efficient numerical strategies with the help of surrogate or reduced order models.

In this context, the objective of the thesis is to replace the original buckling problem by a

suitable approximation or to directly reduce the size of the original problem. Although many

works have already been performed in this domain, the efficiency of the approximations is very

dependent of the mathematical nature of the studied problem through the definition of input

parameters and evolution of output solutions. Thus, the application of the approximation tech-

niques in uncertainty propagation methods for studying the uncertain critical buckling loads of
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lattice structures request specific research investigations. Accordingly, the aim of this thesis is

to integrate material and geometric uncertainty, experimentally quantified, in uncertain buckling

analysis of lattice structures, produced by additive manufacturing.

More precisely, this thesis investigates different approximation techniques compatible with

both uncertainty propagation methods and buckling analysis. A state of the art allows first to

classify the different approximation techniques. It is followed, for the first time, by a comparison

with a same general numerical framework to address an assessment of advantages and drawbacks

and finally supply the more efficient numerical method. Next, in a second part, lattice structures

and additive manufacturing are studied experimentally and numerically in a way to perform

correlation considering uncertainty inherent to the process.

2 Organization of this report

The report is organized in two parts, respectively defined with five and two chapters. The first

part is dedicated to the evaluation and the coupling of metamodels and reduced order models by

considering a same numerical framework. The aim is first, to analyze the role of key parameters

for each method and second, to quantify their effect on the quality of approximation of output

variables. The current simulations concern the linear buckling problem and in particular the

calculation of the buckling load and associated mode. A numerical strategy coupling a metamodel

and a reduced order model is then proposed and so tested.

The first chapter summarizes the main steps relative to the numerical solving of a determin-

istic linear buckling problem and presents the studied structure and the numerical benchmark.

In this context, a multiparametric analysis is performed considering modifications of material

and geometric properties. In the second, third and fourth chapters, different numerical meth-

ods (metamodels, reduced order models, projection) based on specific samplings and different

techniques (regression, correlation, decomposition, perturbation, derivatives) are first compared.

Second, new numerical methods coupling metamodels and reduced order models are proposed

and compared in the fifth chapter.

In the second part of this report, the integration of the proposed approximation in uncertainty

propagation method is discussed. The objective is to study the evolution of uncertain buckling

loads as a function of uncertainty, identified on material and geometric parameters, for two lattice

structures. Uncertainty is mainly due to the additive manufacturing process and is modeled either

by the fuzzy sets theory or by the probabilistic theory. A correlation between uncertain numerical

data and experimental results is finally proposed.

The sixth chapter is dedicated to the presentation of the two studied lattice structures, defined

13
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by additive manufacturing, and the quantification of the variability by experimentations. More-

over, quasi static tests are performed to identify the experimental buckling loads of each lattice

structure. Next, finite element models of lattice structures are proposed and some deterministic

buckling simulations are compared to experimental results. The seventh chapter discusses of un-

certainty propagation in numerical simulations by considering two uncertain modeling theories,

the probabilistic and the fuzzy sets ones. The proposed approximation is successively integrated

in Monte Carlo Simulations (MCS), Zadeh’s Extension Principle (ZEP) and optimization tech-

nique. Uncertain numerical solutions can then be compared to experimental results in term of

buckling loads.

Finally, a general conclusion closes this report and provides some perspectives for future works.

14
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Chapter 1. Theoretical backgrounds

1 Introduction

When designing structures, it is necessary to consider several factors to establish design cri-

teria. Stability is one of those factors which the engineer must take into consideration, especially

for structures under compression loading. The instability of a structure can be defined as the

consequence of a sudden geometric configuration change due to an increase of loads to a critical

level, which generally leads to the damage of the structure (Figure 1.1).

(a) (b)

Figure 1.1 – Buckling damage of : a) an engine connecting rod b) a vinification vat due to wine
fermentation.

Passing the critical level, the structure undergoes a significant and a prompt deformation which

allows it to resist again to the applied loads, but in a totally different geometric configuration

than the original undeformed shape.

Instabilities can be classified into two main types: bifurcations and limit points (or snap

through). The so-called Euler beams considered straight behave as bifurcations. These are

characterized by the appearance of a secondary branch on the load-displacement curve, which is

discontinuous with respect to the primary branch as indicated in Fig 1.2. In the case of Figure

1.2a, where the axial load P is a function of the lateral displacement d of the free end of the

column, we note that, if we consider the column perfectly straight (without imperfection), then

there will be no transverse displacement before buckling (theoretical blue curve). In this case, we

talk about buckling without initial displacements also called EULER buckling.

In the case of Fig 1.2b, blistering buckling of the structure occurs after a non-negligible

displacement. In this case, we talk about buckling with initial displacements also called DUPUIS

Buckling.

18



Chapter 1. Theoretical backgrounds

(a)

(b)

Figure 1.2 – Buckling types : a) bifurcation of a column b) limit points or snap through.

It is therefore clear that the stability of a structure must be studied taking into account

geometric nonlinearities. But it is also possible to estimate the critical loads by performing a

simplified study. This estimate will be more or less precise depending on the type of instability

and the assumptions used in the simplified model. We talk here about eigenvalue analysis, which

consists in solving a problem with eigenvalues around a point of equilibrium of the structure at

a given load level.

It should be noted that a stability study via eigenvalue calculation is generally limited to the

elastic case. We will limit the developments to this case in this thesis.
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2 Linear buckling analysis

2.1 Elastic stability based on the potential energy

Suppose we can estimate the potential energy Π of a structure, as a function of the dis-

placement field U. Let’s develop the functional Π(U) in Taylor series around solution state U0,

gives

Π(U0 + δU) = Π(U0) + δΠ(U0, δU) + δ2Π(U0, δU) + .... (1.1)

where δU is a perturbation of the displacement field around the point of equilibrium U0. The

term δΠ(U0, δU) is zero since the structure is under equilibrium, and if we neglect higher terms,

we obtain:

∆Π = Π(U0 + δU)−Π(U0) ≈ δ2Π(U0, δU) (1.2)

(a) (b)

(c)

Figure 1.3 – Definition of Equilibrium states.

This equation can be interpreted as follows. If ∆Π is greater than zero, then the potential

energy for the displacement field U0 + δU will be higher than the calculated for the field U0.

Hence, the structure will be stable, because in order to go from the state U0 to the state U0 +δU

it is necessary to supply energy (Fig 1.3a).

Contrarily, if the potential energy for the field of displacement U0 + δU is less than the one

calculated for the field U0, then ∆Π will be smaller than zero. So the structure will have tendency
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to restore energy and therefore it will be unstable (Fig 1.3b). In the light of the previous remarks,

it is clear that the limit of moving from the stable state to the unstable one corresponds to the

case ∆Π = 0 as indicated in figure 1.3c.

Thus, from the second variation of the potential energy, it is possible to characterize the

majority of the instabilities by using equation 1.2 (δ2Π = 0).

2.2 Formulation of the eigenvalue problem and linearization

Let consider the classical form of the internal elastic strain energy of a structure stated as

Πint =
1

2

∫
V

ε : σdV (1.3)

where V is the volume of the undeformed structure, σ is the internal symmetric stress tensor

and ε is the Green Lagrange symmetric strain tensor, which can be split into a linear part

εl = εl(U) and a quadratic one εnl = εnl(U
2), and hence we can write ε = εl + εnl.

The second variation of the internal strain energy functional Eq. 1.3 leads to:

δ2Πint =

∫
V

(
δεl : δσ + δεnl : δσ + δ2εnl : σ

)
dV (1.4)

In Eq. 1.4, δεnl = δεnl(U, δU) is a linear function of the displacements, while δ2εnl(δU
2)

is constant. The assumption of a linear elastic behavior of the structure can be expressed by

introducing the elastic isotropic material tensor H with:

σ = H εl (1.5)

Finally the expression of the second variation of the internal strain energy functional takes

the following form:

δ2Πint =

∫
V

(
δεl : (H δεl) + δεl : (H δεnl) +

δεnl : (H δεl) + δ2εnl : σ
)
dV (1.6)

It has to be noticed that in Eq. 1.6, the contribution of δεnl : (H δεnl) has been neglected,

since we assume that strains induced in the structure during buckling will remain small.

Let consider now a structure under a compressive load F0 at its equilibrium state given by a

displacement vector U0 and a stress state σ0. If we assume that the perturbed unstable solution
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can be expressed as U = λU0, with λ a constant real factor, then we can have for the perturbed

state:

δεnl = λ δεnl0

σ = λ σ0 (1.7)

where δεnl0 = δεnl0(U0, δU) and σ0 is the stress tensor at the initial stable state before

buckling. Substituting now Eq. 1.7 into Eq. 1.6, one can obtain:

δ2Πint =

∫
V

(
δεl : (H δεl) +

λ
(
δεl : (H δεnl0) + δεnl0 : (H δεl) + δ2εnl : σ0

))
dV (1.8)

For structures under pressure loading p which follows the normals to the deformed structure,

it is important to consider the variation of the external energy which can be stated as:

δΠext =

∫
A

p n · δUdA (1.9)

where n = n(U) are the normals to the deformed surface A. The second variation of the

external energy functional Eq. 1.9 leads to:

δ2Πext =

∫
A

p δn · δUdA =

∫
A

λ p δn0 · δUdA (1.10)

with n0 is the normal to the initial state surface before buckling.

By considering the critical equilibrium state of a structure, we can write

δ2Π = δ2Πint − δ2Πext = 0 ∀ δU 6= 0 (1.11)

Finally the variational form of equilibrium is stated as:

∫
V

δεl : (H δεl) dV = −λ
(∫

V

(
δεl : (H δεnl0) + δεnl0 : (H δεl) + δ2εnl : σ0

)
dV

−
∫
A

p δn0 · δUdA
)

∀ δU 6= 0 (1.12)
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Eq. 1.12 represents a linear eigenvalue problem, for which the first set of solution (λ1,U1) will

represent respectively, the critical load factor (as Fcr = λ1 F0) and the associated buckling mode

shape of the structure.

2.3 Finite element discretization

Generally the displacement-based formulation of the Finite Element (FE) method when ap-

plied for the discretization of a structure using any kind of finite element model such as 1D rod,

2D plate, or 3D brick, will result in the following general approximation form of the displacement

vector U:

U =


UX

UY

UZ

 =
nne∑
i=1


Ni UXi

Ni UY i

Ni UZi

 (1.13)

with UX , UY , UZ the three cartesian components of the displacement vector U, Ni is the shape

function at node i, UXi, UY i, UZi are the nodal displacement components at node i and nne number

of nodes per element.

Eq. 1.13 can be rewritten in a condensed form as follows:

U = N Un and δU = N δUn (1.14)

where N3×3nne the FE approximation matrix of size ndim× nne× ndim, with ndim number

of dimension (1, 2 or 3) and Un the nodal displacement vector of dimension nne× ndim.

Once the displacement field is approximated, the next step is to express the Green Lagrange

strain tensor ε in terms of nodal displacements vector Un, this is stated as

ε = εl + εnl =
1

2

(
∇UT +∇U

)
+

1

2
∇UT∇U (1.15)

where ∇U is the displacement gradient matrix. By using the engineering notation, one can

derive the expression of the linear strain vector as follows

εl = {UX,X , UY,Y , UZ,Z , UX,Y + UY,X , UX,Z + UZ,X , UY,Z + UZ,Y }T (1.16)

The nonlinear part of the strain vector is
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εnl =



0.5
(
U2
X,X + U2

Y,X + U2
Z,X

)
0.5
(
U2
X,Y + U2

Y,Y + U2
Z,Y

)
0.5
(
U2
X,Z + U2

Y,Z + U2
Z,Z

)
UX,XUX,Y + UY,XUY,Y + UZ,XUZ,Y

UX,XUX,Z + UY,XUY,Z + UZ,XUZ,Z

UX,YUX,Z + UY,YUY,Z + UZ,YUZ,Z


(1.17)

Based on the expressions of linear and nonlinear strains, their variations δεl and δεnl can be

written in a condensed matrix form, as follows

δεl = Bl δUn

δεnl = Bnl δUn or δεnl0 = Bnl0 δUn

(1.18)

with Bl the constant strain approximation matrix, Bnl = Bnl(U) or Bnl0 = Bnl(U0) is the

nonlinear strain approximation matrix which is function of the initial displacement.

The contracted tensor product δ2εnl : σ0 can be rewritten as a function of the variation of

nodal displacement vector δUn as follows:

δ2εnl : σ0 = δUT
n BT

g S0 Bg δUn (1.19)

where S0 = S0(σ0) is an initial stress matrix, and Bg a geometric constant matrix. The last

term concerning the normals first variation δn0 with the respect to the displacements, which can

be approximated using the FE, as:

δn0 = G δUn (1.20)

Finally by using Eqs.1.18-1.20, then the linear eigenvalue problem Eq. 1.12 reads:

δUT
n

∫
V

BT
l H BldV δUn = −δUT

nλ

(∫
V

(
BT
l H Bnl0 + BT

nl0 H Bl + BT
g S0 Bg

)
dV −∫

A

p GT NdA

)
δUn (1.21)

which can be written in a condensed form:

Kl δUn = −λ
(
Ku + Kσ −Kλ

)
δUn (1.22)
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where Kl, Ku, Kσ and Kλ are respectively the linear stiffness matrix, the initial displacement

matrix, the geometric matrix and the follower force matrix. These matrices are defined by:

Kl =
∫
V

BT
l H BldV

Ku =
∫
V

(
BT
l H Bnl0 + BT

nl0 H Bl

)
dV

Kσ =
∫
V

BT
g S0 BgdV

Kλ =
∫
A

p GT NdA

(1.23)

In the case of constant compressive loads (no follower forces such as pressure), Kλ is zero.

Also, in the case of bifurcation-type buckling problems, the initial displacement matrix Ku may

be neglected, Eq. 1.22 simplifies to the so-called EULER buckling problem, stated as:

Kl δUn = −λ Kσ δUn (1.24)

For the remaining manuscript we will focus on the EULER buckling and therefore Eq. 1.24

will constitute our state problem. Three types of FE models have been developed during our

research investigation. A 2-node 3D rod element, a 2-node 3D Timoshenko beam element and an

8-node 3D brick element as shown in Fig 1.4.

(a) (b) (c)

Figure 1.4 – Finite element models developed during the thesis: a) rod b) beam c) brick.

2.4 Computational procedure

The general procedure for buckling simulation of a structure under compressive load is as

described in Figure 1.5.
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1. Start by meshing the structure.

2. Assign physical properties, apply boundary conditions

and the compressive load F0.

3. Proceed with the FE assembly to build the global linear

stiffness matrix Kl and the global external force

vector F0.

4. Solve the linear static system Kl U0 = F0.

5. Proceed with the FE assembly to build the global

matrices Kσ, Ku and Kλ.

6. Solve the eigenvalue problem :

Kl z = −λ
(
Ku + Kσ − Kλ

)
z and determine the solution

λcr = λmin and the corresponding eigenmode zmin.

7. Post-process the critical buckling load Fcr = λcr F0.

8. Post-process the critical buckling mode shape using

displacement vector Ucr = z.

Figure 1.5 – Computational procedure for linear buckling analysis.

In the following chapters, we will consider the vector s which aggregates both the eigenvector

z and the buckling load factor λcr, such as:

s =

{
z

λcr

}
(1.25)

3 Multiparametric analysis

3.1 Numerical model description

In the sequel we will present the academic numerical application, which will serve as a bench-

mark for validation of different methods. The application consist in a two-bar truss under com-

pression as described in Fig 1.6. The two-bar structure is pined at both ends whereas an external

vertical compressive load F is applied at the top-center of the structure.

The geometric and material parameters of the two-bar structure are summarized in Table 1.1.

In order to evaluate the efficiency of different variability techniques, the two-bar structure is

modeled using a 3D mesh based on brick elements as shown in Fig 1.7. The resulting FE mesh

corresponds to 4× 4× 40 bricks for each side which results in a total of 1280 bricks.

For simplification reasons, a boundary condition UZ = 0 is imposed on all nodes in order to

reduce the solution to a 2D plane case problem.
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Figure 1.6 – Two-bars under compression: problem definition.

Data Value

Length L [m] 1

Width of section b [m] 0.1

Height of section h [m] 0.1

Angle α [◦] 15

Young’s modulus E [GPa] 210

Poisson’s ratio ν 0.3

External load F [kN] 1000

Table 1.1 – Geometric and material characteristics.

Figure 1.7 – Two-bars under compression: 3D finite element mesh.

Considering at first the deterministic geometric and material characteristics, the static com-

pressive load allow a maximal static deflection at the center of the structure of Umax = 4.176mm

as depicted in Fig 1.8.

A linear buckling analysis, allowed to retrieve a first critical load factor λcr = 11.09 which led

to a buckling load Fcr = 11090kN . The first buckling mode shape is depicted in Fig 1.9.

Fig 1.10 shows the first four buckling mode shapes. As one can observe, only even mode

shapes (second and the fourth) are symmetric.
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Figure 1.8 – Two-bars under compression: static compressive deflection.

Figure 1.9 – Two-bars under compression: First buckling mode.

3.2 Response surface definition

In order to validate the performances of newly developed alternative mathematical models

in the present thesis, variations on four geometric and material parameters have been studied.

Namely the Young’s modulus E, the inclination angle α and the two dimensions of the cross

section (height h and width b). The limits of variations of the four parameters are summarized

in Table 1.2.

Parameters Lower bound Upper bound

Young’s Modulus E [GPa] 189 231

Angle α [◦] 10.5 19.5

Width of section b [m] 0.09 0.11

Height of section h [m] 0.09 0.11

Table 1.2 – Inferior and superior bound of parameters.

To study the effects of each parameter on the critical buckling load, a full factorial DOE

was performed considering seven levels of responses per factor, which led to 2401 samples. The

aim here is to generate a significant sets of samples in order to discuss about the associated

computational time of numerical methods. Two response surfaces representing the critical load

were generated and studied. The first one was defined as a function of Young’s modulus E and
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(a) (b)

(c) (d)

Figure 1.10 – Two bars under compression: a) first mode λcr = 11.09, b) second mode λcr = 24.64, c)
third mode λcr = 39.59, d) fourth mode λcr = 42.61.

the inclination angle α as indicated in Fig 1.11a, while the second one was defined in function of

the cross section dimensions (height h and width b) as reported in Fig 1.11b.

First, we observe that the dimensions section b and h have larger effects on the buckling

load factor compared to the effects of the Young’s modulus and the angle. Indeed, the maximal

variation on output data for the first response surface is close to 25% whereas, for the second

response surface, almost 40% is observed for only 10% of variations imposed on input parameters.

Second, we naturally detect a linear behavior of critical load as a function of the Young’s modulus.

For the three other parameters, the behavior is rather quadratic.

As the computational time relative to the evaluation of one sample of parameters is close to

3s, the total time for the multiparametric analysis is close to 2h for a finite element model with

only 6075 dof (or 4030 dof active). This application shows clearly the necessity to develop an

alternative mathematical model to facilitate the integration of multiparametric analysis in design

step and consider larger finite element models.
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Figure 1.11 – Critical load response surface : (a) function of the Young’s modulus and the angle,
(b) function of the cross section (width and height).
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1 Introduction

Metamodels and Reduced Order Models (ROM) have largely been integrated these last years

in advanced simulations, such as the Design Of Experiments (DOE), the parametric optimization

or the uncertainty propagation. The main aim is to reduce the computational cost of simulations,

which rely on a multiparametric analysis. Indeed, the original finite element problem must be

solved several times for different values of input parameters. Thus, the integration of metamodels

and reduced order models allow here to replace the original problem by a suitable approximation

or to directly reduce the size of the original problem. To achieve this objective, many methods

and algorithms have been developed and applied in multiple scientific domains.

Obviously, it is rather difficult to propose a full overview considering the large number of

publications. However, the main works about the metamodels discussed on methods based on re-

gression and/or correlations models, such as polynomial approximations or Response Surface

Method (RSM) [Myers et al., 2009], Radial Basis Functions (RBF) [Baxter, 1992] or Kriging

[Sakata et al., 2003, Wei et al., 2004, Kaymaz, 2005, Wang et al., 2013]. The idea is to build

functions alternative to classical numerical simulations from only a set of specific samples of a

DOE. Neural networks [Haykin, 1999] have been introduced in this context too. The main prob-

lem, relative to metamodels approach, is to identify the necessary number of samples to build the

alternative models with accuracy. Indeed, if only few samples are available, the prediction capa-

bility of resulting approximated models would be insufficient. On the contrary, ill-conditioning

and expensive cost of additional computations can be observed with large samples.

In parallel, reduced order models, such as Proper Orthogonal Decomposition (POD)

[Ryckelynck, 2005, Yvonnet et al., 2007, David et al., 2012], Proper Generalized Decomposition

(PGD) [Chinesta et al., 2010, Nouy, 2010, Ladevèze and Chamoin, 2011, David et al., 2012] or

more recently Hyperreduction [Ryckelynck, 2005, Rutzmoser and Rixen, 2017], have been inves-

tigated. The general idea is to approximate a higher dimension system by another one of much

lower dimension. Indeed, PGD method has been introduced by Ladevèze [Ladevèze, 1999] and

called radial approximation in the Large Time INcrement (LATIN) method framework. Contrary

to POD, the PGD is based on a separated representation of the variables and takes directly the

nature of the problem into account. In the case of POD, an optimal basis is built considering

proper orthogonal modes extracted from a correlation matrix, composed of different snapshots of

numerical simulations or experiments.

This chapter is dedicated to the evaluation of the performance of quadratic regression, RBF,

Kriging metamodels and ROM-POD considering a same numerical framework. The objective

here is to test these methods in term of precision and computational time for a multi-parametric
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linear buckling problem with material and geometric parameters variations. Finally, considering

the advantages and drawbacks of these methods, a new method, coupling ROM-POD and Kriging,

will be proposed.

33



Chapter 2. Metamodels and reduced order models

2 Metamodel descriptions

A metamodel is an approximation of a system response build from data available for limited

number of selected snapshots or samples. These last years, metamodels have been considered

as valuable tools for investigating multiparametric analysis for a wide range of engineering ap-

plications. In this section, the main equations governing the definition of quadratic polynomial

model, Radial Basis Function, Kriging and Proper Orthogonal Decomposition are resumed. The

objective is to highlight the key parameters associated to each technique, which could affect the

quality of the approximation and the associated computational time.

Let’s consider ns snapshots to define the metamodels. The ith sample is defined from a vector

of np design variables, noted pi = [p1 ... pnp ]. The matrix, noted P, aggregates all the vectors

pi such as the size is equal to [ns × np]. If the design variables are normalized, the vector and

matrix of parameters are respectively noted p̂i = [p̂1 ... p̂np ] and P̂. Moreover, for each sample,

a buckling problem is solved using the procedure described in Section 2.4 of Chapter 1 and the

output eigensolution vector s(pi) (aggregation of eigenvalue and eigenvector) is calculated. The

jth studied component of this vector is noted sj(pi) with j = 1...(ndof + 1) whereas the vector sj

and the matrix S respectively contains all the output results of the jth studied component and

the output results for all the components and all the snapshots.

All variables described above are used to build the metamodel in a phase which is generally

called the offline step. In the following, the vector noted p represents a set of parameters for a

new evaluation of the problem and then correspond to the online step.

2.1 Quadratic model

The first approximation classically used in engineering to characterize the behavior of a me-

chanical solution as a function of input parameters is based on a polynomial model with or without

cross terms. Indeed, this model is easy to implement and only requires the calculation of un-

known coefficients associated to each order. For the present applications, a quadratic model with

a complete basis is considered. This choice is also in adequation with the evolution of buckling

loads reported in Section 3.2 of Chapter 1.

The general form of the jth studied component of output vector sj(p) for a parameter vector

p is :

sj(p) = a0 +

np∑
k=1

akp̂k +

np∑
k=1

np∑
l=1

aklp̂kp̂l (2.1)

where a0, ak and akl are the unknown coefficients to be determined by using a least squares
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Correlation functions R(θ, d)

Linear max{0, 1− θ|d|}
Exponential exp(−θ|d|)

Gaussian exp(−θd2)

Table 2.1 – Classical correlation functions.

fitting technique. Thus, the minimal number of snapshots must be equal to the number of

unknown coefficients.

2.2 Radial Basis Functions

Radial Basis Function (RBF), originally proposed by Hardy [Hardy, 1971], has been developed

for scattered multivariate data interpolation [Buhmann, 2004]. This method relies on linear

combinations of a radially symmetric function based on specific metric to approximate response

functions.

The RBF regression model relative to the approximation of a component of eigensolution

vector sj(p) for a parameter vector p is expressed as follows:

sj(p) =
ns∑
i=1

wiR(θ, d) (2.2)

where d =‖ p̂ − p̂i ‖ is the radial distance from p̂ to p̂i. wi is the weighted factor of the ith

basis function.

The correlation function R(θ, d) can be given by different forms as shown in Table 2.1. The

variable θ is a user defined scaling parameter. In the present application, it is fixed to the average

distance of studied samples.

The unknown interpolation coefficients wi can be computed by solving the following system

of linear equations:


R11 R12 · · · R1ns

R21 R22 · · · R2ns

...
...

. . .
...

Rns1 Rns2 · · · Rnsns



w1

w2

...

wns

 =


sj(p1)

sj(p2)
...

sj(pns
)

 (2.3)

where Rij = R(θ, ‖ p̂j − p̂i ‖)

35



Chapter 2. Metamodels and reduced order models

2.3 Kriging

Kriging is an interpolation method useful for replacing expensive high dimensional model with

computationally efficient approximations of nonlinear functions [Sacks et al., 1989].

The approximation of the jth component of eigensolution sj(p) can be written as the sum of

a regression model and a random contribution:

sj(p) =

nf∑
i=1

βifi(p) +W (p) = f(p)Tβ +W (p) (2.4)

where fi(p), i = 1...nf are monomial basis functions (constant, linear or quadratic terms)

weighted by regression parameters βi. W (p) is a realization of a normally distributed random

process defined with zero mean value and a covariance function, such as:

E[W (p1)W (p2)] = σ2R(θ,p1,p2) (2.5)

where E[.] is the expectation operator, σ2 is the process variance and θ > 0 a scaling vector,

as previously defined for RBF.

The correlation model R(θ,p1,p2) is a monotone function depending on the distance of two

known samples p1 and p2 and is here defined as a product of stationary one-dimensional corre-

lations (Table 2.1). The correlation function is equal to 1 if the points are identical and 0 for

infinitely distant points and so uncorrelated.

R(θ,p1,p2) =

np∏
j=1

R(θj,p1,j − p2,j)
(2.6)

with p1,j and p2,j are respectively the jth parameter of samples p1 and p2.

Considering an unbiased linear predictor, Eq. 2.4 can be rewritten as follows:

sj(p) = f(p)T β̂ + r(p)T γ̂ (2.7)

where β̂ = (FTR−1F)−1FTR−1Y is the usual generalized least square estimate of β and

γ̂ = R−1(Y − Fβ̂). To obtain further details about the mathematical developments, the reader

can refer to the following reference [Lophaven et al., 2002].

First, the vector of regression functions f(p) and the vector of correlation r(p) evaluated for

a untried set of parameters p are expressed as follows:
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f(p) =


f1(p)

...

fnf
(p)

 (2.8)

r(p) =


R(θ,p1,p)

...

R(θ,pns
,p)

 (2.9)

Second, the matrix of regression functions F and the matrix of correlation R evaluated from

the different snapshots pi, i = 1...ns are defined by:

F =


f1(p1) f2(p1) · · · fnf

(p1)

f1(p2) f2(p2) · · · fnf
(p2)

...
...

. . .
...

f1(pns
) f2(pns

) · · · fnf
(pns

)

 (2.10)

R =


R11 R12 · · · R1ns

R21 R22 · · · R2ns

...
...

. . .
...

Rns1 Rns2 · · · Rnsns

 (2.11)

where Rij = R(θ,pi,pj)

The associated optimal variance σ2 is obtained by the function:

σ2 =
1

ns
(Y− Fβ̂)TR−1(Y− Fβ̂) (2.12)

The parameters β̂ and γ̂ depend on the scaling parameters vector θ. An optimal choice, noted

θ?, is determined as the solution of an optimization problem.

θ? = argmin
θ

(det(R)
1
ns σ2) (2.13)

where det(R) is the determinant of R. This equation corresponds to a maximum likelihood

estimation.
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2.4 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) method, also denoted as the Karhunen-Loeve de-

composition, allows to replace the original high-dimensional problem by a low-dimensional ap-

proximation by building an optimal linear basis through experimental or numerical data, which

describes the full-system behavior. In this section, we focus our discussion on the snapshot form

of POD proposed by Sirovich [Sirovich, 1987].

To define the POD model, a snapshot matrix S, as defined for the previous methods, is

considered. The approximation of the eigensolution s(p) can be defined as a mean contribution

obtained from the data sets S̄ and a fluctuating contribution, described by a linear combination

of nm POD modes Ψk and associated POD coefficients ak, such as:

sj(p) = S̄ +
nm∑
k=1

akΨk (2.14)

with nm the number of POD modes.

The POD basis Ψk of order nm is the orthonormal set which minimizes the sum of squared

projection errors over all the orthonormal sets of the subspace composed of the solutions s(pi).

POD modes Ψk can be calculated by solving a generalized eigenvalue problem defined as follows:

Q
(
S− S̄

) (
S− S̄

)T
QΨk = λkQΨk (2.15)

where Q is a symmetric positive definite matrix, such as Qij =
∫

Ω
ξiξj dΩ with ξi is the ith

shape function associated to the finite element model.

Considering a Choleski decomposition of matrix Q = LTL, the generalized eigenvalue problem

is transformed into a symmetric ordinary eigenvalue problem

YYTΦk = λkΦk (2.16)

with Φk = LΨk and Y = L
(
S− S̄

)
. The size of the problem to be solved is directly linked

to the number of studied components of eigensolution vector. To reduce the computational time,

the eigenvalue problem can be defined with YTY matrix instead of YYT . These two problems

have the same eigenvalues and their eigenvectors are related by simple relationships. Moreover,

to reduce the size of the studied problem, only POD modes associated to a high eigenvalue

participation are retained in the approximation. Thus, POD approximation is efficient if we have

nm << ndof .

As soon as the POD basis is obtained, each POD coefficient ak, k = 1...nm can be defined
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with the following scalar product for all the snapshots pi, i = 1...ns:

ak(pi) =< s(pi),Ψk > (2.17)

The final step needs to efficiently link the parameter space and the POD coefficients space. A

solution, based on a kriging technique, is given in reference [Hamdaoui et al., 2014].

3 Reduced order model with POD modes

3.1 Projection technique

Let us now consider an eigensolution approximation using a projection of the equilibrium

equations onto a subspace spanned by the columns of a rectangular projection basis T. Such

projection methods have already been applied to approximate data from dynamic systems. The

approximate modes of the model, projected on the basis T, are given by z = Tq, where q is the

eigenvector of the reduced problem as expressed in Eq. 2.18.

([
TTKlT

]
+ λcr

[
TTKσT

])
q = 0 (2.18)

In this section, we propose to build the projection basis T by using the different POD modes

Ψk.

T = [Ψ1 ... Ψnm ] (2.19)

The size of this projection matrix is [ndof × nm] while the reduced problem is [nm × nm].

3.2 Calculation of POD coefficients with Kriging

With the projection technique, a large amount of computational time is devoted to the as-

sembly of the stiffness matrices Kl and Kσ (Eq. 2.18). In a way to avoid this step for a new set

of parameters (during the online step), we propose here to link the space of parameters and the

space of participation factors q with a kriging technique. Indeed, the participation parameters q

can be seen as POD coefficients calculated with Eq. 2.17.

The proposed method relies on 4 steps.

Firstly, the POD modes Ψ1, ...Ψnm are determined according to a set of snapshots P, as

exposed in Section 2.3, to build the projection matrix T (Eq. 2.19).
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Secondly, the reduced linear eigenvalue problem, defined by Eq. 2.18, is solved for each snap-

shot and the participation parameters q(pi) are identified. The minimal number of snapshots

must be equal to the number of unknowns used to define the second order regression part of

kriging.

Thirdly, a new normalisation for modes, defined by Eq. 2.20, is chosen. The objective is to

be able to approximate the buckling load factor without the calculation of modified geometric

stiffness matrix.

(Tq(pi))
TKσ(Tq(pi)) = λcr(pi) (2.20)

This new normalisation modifies the definition of participation factors for each snapshot. We

obtain q?:

q?(pi) =
q(pi)

√
λcr(pi)√

zT (pi)z(pi)
(2.21)

In the fourth step, we aggregate all the participation factors q?(pi) corresponding to all the

snapshots in a matrix Q?(pi), whose size is [ns× (n+ 1)] and we link the two space of parameters

by a kriging technique to calculate q?(p) for a new sample p.

Finally, an approximation of the mode z(p) is obtained by the following equation:

z(p) = Tq?(p) (2.22)

The approximation of buckling load factor λcr is then calculated using:

λcr(p) = (Tq?(p))T (Tq?(p)) (2.23)
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4 Numerical applications: buckling load evaluation of a

modified structure

This section is devoted to the evaluation of the methods presented in the previous sections

thanks to the test case described in Chapter 1. In this study, the finite element model is supposed

to be imperfect with variations on its material and geometric parameters, such as the Young’s

modulus, the angle value and the two dimensions of the cross section. We globally focus our

discussion on the maximal errors of the critical load and associated mode shape, calculated with

the norm error err(zapp,zref ) and Modal Assurance Criterion (MAC) MAC(zapp,zref ). The associated

formula are recalled in Eqs. 2.24 and 2.25.

MAC(zapp,zref ) =
(zTappzref )2

(zTappzapp)(z
T
refzref )

(2.24)

err(zapp,zref ) =
‖ zapp − zref ‖
‖ zref ‖

(2.25)

where zapp and zref are the approximated and the reference solution sets, calculated with

the Sorensen algorithm [C. Sorensen, 1990]. As described in Section 3.2, a discretization of 7

values for each input parameter, namely 2401 samples, were used a first for defining the reference

solutions. A threshold on the maximal error was fixed at 1% to evaluate the efficiency of the

methods. Moreover, to compare all the methods in the same framework, the snapshots or training

samples were generated using a DOE based on a Latin Hypercube Sampling (LHS) algorithm.

The calculations were performed ten times to estimate the influence of samples position in the

design space on the approximation and the same sets were used for all the comparisons.

In the next sections, six methods were tested. The five first ones, namely Quadratic model,

RBF, Kriging, POD and ROM-POD, have already been investigated in several domains by dif-

ferent authors whereas the last one ROM-POD-Kriging, relying on both projection, POD and

Kriging, is here proposed.

4.1 Case 1: Quadratic model

For this numerical application, a full quadratic regression model has been chosen to approxi-

mate the behaviour of eigensolution, presented in Fig. 2.2. As the coefficients of each monomial

are identified by solving of linear system considering results of several snapshots, the key param-

eters of this method is the sample data set, namely the position of different samples in the design

space and the number of snapshots. Obviously, the minimal size of snapshot set must be superior
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or equal to the number of unknown coefficients.

The errors are presented in Fig. 2.1 as a function of sample data size. Indeed, we consider

different calculations by successively increasing the number of samples, from 8 to 350 samples.

Moreover, to test the dependency to snapshots position in the parameter space, the error graph

integrates the results of ten different generations. The minimal and maximal errors are represented

by markers around the mean value. The first graphic integrates only two parameters, namely

Young’s modulus E and angle α, for which the behavior of the studied output solution is rather

linear, whereas the second case takes into account the four parameters E,α, b and h including

more sensitive geometric parameters.
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Figure 2.1 – Evolution of maximal errors on buckling load for quadratic model as a function of
sample data size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

For both cases, the error rapidly tends to a limit, namely 0.2% for two parameters and 2%

for four parameters, with globally a low dispersion as a function of the set of snapshots. The

studied method is efficient for the case with two parameters, for which the behavior is rather

linear or quadratic, but shows some limitations if the section parameters are added. In this case,

the evolution of parameters is not really quadratic but slightly nonlinear leading to some errors

mainly at the bounds of parameters, as shown in Fig. 2.2. Note that these figures highlight the

evolution of buckling loads and errors as a function of two parameters while the two others are

fixed to the nominal values.

About the buckling modes, the maximal norm error can reach 100% with a MAC close to 0.1.

Once lower and upper bounds of input parameters are used, the level of error increases seriously

because the convergence radius of approximation is too low.

On the first hand, the main time consuming step is due to the offline step relative to the solving
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Figure 2.2 – Response surface and associated errors on buckling load for quadratic model with 4
parameters and 350 samples (a,b) parameters E and α, (c,d) parameters b and h.

of ns full buckling problems corresponding to the ns snapshots. Indeed, 100 snapshots were here

necessary to tend to the best level of errors. On the other hand, the calculation of unknown

coefficients of the regression, relying on a linear system to be solved whose size is [ns × nc], is

not time consuming. The same observation can be performed for the online step, where the

approximations were obtained with a matrix vector product. The size of this matrix product is

depending on the number of studied output data no and the number of unknown coefficients nc.

In conclusion, this method is not efficient in terms of precision and computational time as

soon as parameters dependency becomes highly nonlinear.
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Maximal errors [%]

Correlation model Linear Exponential Gaussian

20.18 0.89 0.09

Table 2.2 – Maximal errors on critical buckling load as a function of correlation model for RBF.

4.2 Case 2: Radial Basis Functions

RBF depends both on a correlation model and on the definition of input sample data. Let’s

consider a large sample data size, namely 500 pseudo random values, and study the evolution

of errors as a function of correlation model. Linear, exponential and Gaussian functions were

successively considered. The maximal buckling load errors are summarized in Table 2.2.

A linear model, giving an error over 20%, is clearly not sufficient. The exponential and

Gaussian models led to a good approximation of the buckling load factor with a maximal error

of 0.89% and 0.09% respectively. However, the approximation of the associated mode shape with

futher precision was more difficult. Indeed, some MAC can be close to 0.5 and the norm error of

the order of 200% with poor approximations for specific vector components.

Considering a Gaussian correlation model, we investigated the effect of the number of samples

in the offline phase on quality of the online step (Fig. 2.3).
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Figure 2.3 – Evolution of maximal errors on buckling load for RBF as a function of sample data
size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

We noticed that the maximal errors on critical buckling load are clearly lower than quadratic

model even if a small number of snapshots is considered. Indeed, for the first test case with 2

parameters, the maximal error is less than 0.1% once 10 samples were chosen. From 20 samples,
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the level of errors does not change significantly and is globally constant. However for the second

test case with 4 parameters, the maximal error decreases up to 100 samples and increases next

with an oscillatory behavior. The same behavior was observed for the error variation, particularly

beyond 300 samples. It was observed also, that the introduction of a large sample size does not

improve the precision of results and can tend to a less efficient approximation. This observation

was confirmed with the eigenvectors, for which the maximal error can reach 200% with a MAC

of 0.5. As presented in Fig. 2.4, the quality of the approximation of critical buckling load is

homogeneous for all the design spaces with very low level of errors when 50 samples are used.
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Figure 2.4 – Response surface and associated errors of buckling load for RBF model with 4
parameters and 50 samples (a,b) parameters E and α, (c,d) parameters b and h.

Regarding the computational time, one can address the same conclusion as previously. The

main time consuming step is due to the offline step relative to the generation of snapshots. We

noticed that the number of snapshots necessary to supply an approximation error up to 1%
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Maximal errors [%]

Correlation model Linear Exponential Gaussian
Regression model

Zero order polynomial 102.75 29.50 12.47
First order polynomial 25.59 8.14 5.89

Second order polynomial 1.86 1.25 0.76

Table 2.3 – Maximal errors on critical buckling load as a function of regression and correlation
models for Kriging.

is clearly lower than for quadratic regression, either 50 snapshots. The times for respectively

calculating the weights of correlation functions and the approximations during the online step

was not important. As previously, these two steps rely on the solving of a linear system of size

[ns × ns] and a matrix product depending to the number of studied output data no and the

number of weights ns.

In conclusion, the use of a low number of snapshots is very interesting to provide a good

approximation. Nevertheless, the level of approximation is not homogeneous with the respect of

studied solutions, such as buckling load or the elements of mode. The matter does not ensure the

use of the present method with a high degree of confidence.

4.3 Case 3: Kriging

As exposed in Section 2.3, the accuracy of kriging depends simultaneously on the regression,

the correlation models and the definition of input sample data. We propose to successively analyze

the effects of these parameters on the approximated solutions by considering, as for RBF, the

same 500 random snapshots. In the following, three different orders (zero, first and second) and

three correlation functions (linear, exponential and Gaussian) were respectively chosen for the

regression and correlation models. The results of simulations are summarized in Table 2.3 in

terms of maximal buckling load errors.

We observe a high sensitivity of the approximation quality to the model regression order.

Indeed, whatever the nature of correlation function was chosen, the errors were lower than to 2%

for a second order polynomial. For zero and first orders, the level of error was significantly higher.

The maximal error was beyond to 5% for the best case. On the other hand, considering a second

order polynomial, the effect of correlation function was less important. The maximal errors vary

between 0.76% and 1.86%. The linear correlation model was not sufficiently accurate whereas

Gaussian correlation model implied interesting error levels. The same behavior was observed for

the mode shape with respect to the correlation model. Although the MAC was closed to 0.95,
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the norm error was slightly higher with respectively 30.28%, 28.95% and 15.65% for the linear,

exponential and Gaussian correlation models respectively. In conclusion, second order polynomial

regression and Gaussian correlation models were chosen for the following numerical tests.

The results of maximal errors and associated variations for buckling load factor are presented

in Figure 2.5 considering the cases with 2 and 4 parameters.
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Figure 2.5 – Evolution of maximal errors on buckling load for Kriging as a function of sample
data size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

First of all, we observe for the two cases a decrease of both the maximal error levels and

associated variations when the number of samples increases. In the first case, the error was very

low even if a low number of samples is used. The maximal errors and associated variation are

respectively near to 0.6% and 1% for 8 samples. These two data tend to 10−4% for 350 samples.

However, when four material and geometric parameters were considered, the level of errors and

variations are clearly higher and can reach more than 5% for 15 samples. Moreover, the decrease

of errors as a function of the number of samples is slower. To obtain a maximal error inferior

to 1%, 350 samples were here necessary. The observed errors tend to 0.6% with a very small

variation of errors (less than 0.1%). In addition, the norm error for eigenvectors is close to 40%

with a MAC close to 0.95. This second investigation highlights that the precision of data is

directly linked to the nature and the number of input parameters. Finally, to achieve a good

precision with kriging is enough complex although the behavior of the critical load is not highly

non linear. The behavior of buckling load is rather well characterized, as it is confirmed in Fig. 2.6

by observing the response surfaces and associated errors, for all the input variable parameters.

As for RBF, the quality of the approximation about buckling loads is homogeneous for all the

design space with very low level of errors when 350 samples are used.
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Figure 2.6 – Response surface and associated errors on buckling load for Kriging with 4 parameters
and 350 samples (a,b) parameters E and α, (c,d) parameters b and h.

We have highlighted that the threshold of 1% can be achieved when a large number of snap-

shots was integrated in the simulation, namely 350 snapshots. Kriging seems to be less efficient

than RBF, defined with only correlation functions, to approximate with precision the buckling

load. Nevertheless, it is important to note that the buckling modes are well characterized (MAC

close to 0.95 with a norm error equal to 40%) on the contrary to RBF or Quadratic regression.

The computational time of this method depends again on the number of snapshots needed in

the offline step and so on the solving of ns full buckling problems. Moreover, the calculation of

optimal parameters β̂ and γ̂ depends on matricial operations and on the solving of some linear

systems of reduced size, equivalent to the regression method for β̂, and an optimization problem

for θ?. These steps are not time consuming if a low number of output variables are studied.

Nevertheless, the associated time can rapidly increase as soon as all the degrees of freedom of the
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Number of POD modes

1 2 3 4 5 6

Eigenvalue participation [%] 99.8 0.17 0.005 1.4 10−6 4.9 10−7 3.3 10−8

Maximal errors [%] 0.85 0.58 0.55 0.52 0.52 0.52

Table 2.4 – Maximal errors on critical buckling load as a function of the number of POD modes.

eigenvector are investigated. In this application, the online time is globally equivalent to one full

buckling calculation.

In conclusion, the decrease of the error is globally low when the number of input parameters

increases. Moreover, the global level of approximation is rather better than RBF method, but

remains unsatisfactory for the eigenvector. In addition to the time dedicated to offline step, the

online step is clearly dependent on the output data to be approximated and can be significant.

4.4 Case 4: POD-Kriging

The accuracy of POD method depends on the number of selected modes useful for the approx-

imation and on the definition of input sample data, both for the determination of POD modes

and for the definition of kriging, as detailed in Section 2.4.

First of all, we consider 500 random values to define the reference snapshots set and built

the POD modes. The evolution of POD eigenvalue participation and the maximal buckling load

errors as a function of the number of POD modes are summarized in Table 2.4.

In the present case, we can approximate the buckling load factor with a low number of POD

modes. We observe in Table 2.4 a low evolution of the error as a function of the number of modes.

Indeed, as soon as four modes are selected, the level of errors is stable at 0.52%.

Considering now 4 POD modes, we study the evolution of maximal buckling loads as a function

of sample size. The results for POD-Kriging are drawn in Fig 2.7.

The observed errors for POD-Kriging are very closed to those obtained for Kriging only.

Indeed, the lowest maximal errors are respectively for the two numerical tests around 10−4%

and 0.6%. The response surfaces, presented Fig. 2.8 for 350 samples, confirm the observed trend,

namely a good characterization of the global behavior with irreducible errors. The main difference

with Kriging only is associated to the level of errors for eigenvectors, which is close to 10% with

a MAC of 0.99. The integration in a correlation matrix of different eigenmodes corresponding to

the snapshots and the interpolation of POD coefficients allowed improving mainly the quality of

the approximation for the eigenmodes.

As previously, the same trends were observed for the computational time. The main time
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Figure 2.7 – Evolution of maximal errors on buckling load for POD-Kriging as a function of
sample data size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

consuming part of the offline step was due to the calculation of reference problems according to the

number of snapshots ns. In addition, the time dedicated to the eigenvalue problem, always during

the offline step, is not really important as the size of the correlation matrix is dependent of the ns

snapshots. Finally, Kriging method was used to approximate only some POD coefficients. During

the online step, only some matricial operations were used without increasing the computational

time.

In conclusion, this method supplies the best compromise between precision/time in comparison

to the previous ones as soon as the eigensolutions are investigated. If the study is limited to the

buckling load, no improvement was detected and RBF or Kriging alone could be used.

4.5 Case 5: ROM-POD

This section is dedicated to the calculation of the approximation of eigensolutions by consid-

ering POD modes in a projection matrix. Considering the results of the previous section, four

POD modes are sufficient to obtain a good approximation. The evolution of maximal buckling

loads was studied as a function of sample size and the results for ROM-POD method were drawn

in Fig 2.9.

First of all, the maximal error for the buckling load was up to 1% for the two test cases

regardless the number of snapshots. When two parameters were considered, the error was constant

and close to 10−4%. This level of error was previously found for 350 samples whereas the ROM-

POD requires only 8 samples. Moreover, the variation of errors was near null. For four parameters,
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Figure 2.8 – Response surface and associated errors on buckling load for POD-Kriging with 4
parameters and 350 samples (a,b) parameters E and α, (c,d) parameters b and h.

the error was close to 10−2%. This level was never obtained in the previous simulations excepted

for RBF. In addition, the norm error for eigenvectors was up to 0.5% with a MAC of 1. The

behavior of buckling load was captured accurately, as it is confirmed in Fig. 2.10 by observing

the response surfaces and associated errors.

Using the POD modes in a projection basis was very efficient in term of precision. The level

of errors and the associated variations were undoubtedly low. However, this method implies very

large computational time because the modified stiffness matrices must be assembled for each new

input parameter vector. The computational time was then globally the same as the reference

solution. Thus, this method cannot be used in its standard form.
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Figure 2.9 – Evolution of maximal errors on buckling load for ROM-POD as a function of sample
data size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

4.6 Case 6: ROM-POD-Kriging

The proposed method ROM-POD-Kriging, exposed in Section 3.2, relies as for the two previ-

ous methods on the number of selected modes and on the definition of input sample data. Four

POD modes were always considered for the numerical application and the maximal errors and

associated variations for the critical buckling load are presented in Figure 2.5.

For the two applications, the level of errors was higher than for ROM-POD but was however

interesting. Indeed, we observed for the two cases a decrease of both the maximal error levels

and associated variations when the number of samples increases. For two parameters, the error

was around 10−1% for all the sample size and always less than the threshold of 1%.

When four parameters were considered, the level of errors and variations were closed to kriging

one but presenting a better convergence rate. Indeed, only 35 samples were necessary to obtain

a maximal error inferior to 1%. Fig. 2.6 shows that the behavior of buckling load is rather well

characterized for all the design space. With 350 samples, the error can be close to 10−1% without

variations of error due to the random generation. In addition, the error norm for eigenvectors is

close to 1% with a MAC of 1.

This method supplies interesting results for the approximation of the critical buckling load

factor and associated buckling mode. Indeed, POD method requires 350 samples whereas ROM-

POD-Kriging uses only 35 snapshots for the same level of precision. In addition, the computa-

tional time was less important than for the previous methods only based on POD modes. The

consuming time offline step was always relative to the calculation of reference solutions for the
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Figure 2.10 – Response surface and associated errors on buckling load for ROM-POD with 4
parameters and 15 samples (a,b) parameters E and α, (c,d) parameters b and h.

ns snapshots. As the participation factors were calculated with the same stiffness matrices, the

additional time is only relative to the solving of ns reduced buckling problems. This last step

is not time consuming. The same assessment can be performed for the kriging interpolation of

participation factors for new input data during the online step.

In conclusion, ROM-POD-Kriging method seems to be a best comprise between ROM-POD,

which is very precise, and POD or Kriging alone.
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Figure 2.11 – Evolution of maximal errors on buckling load for ROM-POD-Kriging as a function
of sample data size (a) two input parameters E and α, (b) four input parameters E, α, b and h.

5 Assessment of results

In this section, an assessment of the different methods tested with a same benchmark is given.

First of all, if two parameters, whatever they are, are considered all the method allows ob-

taining interesting and acceptable results. Indeed, the main differences between the different

approximations appears when more parameters are managed. For the case of four parameters,

Fig. 2.13 summarizes the maximal error on the critical loads and the needed computational time

as a function of the finite element size by considering the optimal key parameters for each method.

The best precise method is obviously the ROM-POD method for which the level of error

is close to 10−4%. Nevertheless, the associated CPU time is comparable to the reference one,

that naturally excludes this numerical method. The Quadratic regression method supplies a

poor level of precision in comparison to the other methods. Although the gain factor is near

equal to six, this method can not be selected. The other methods, namely RBF, Kriging, POD

and ROM-POD-Kriging, globally propose a same level of precision between 0.5% and 1% for

the buckling load factor. Concerning the buckling mode, RBF is clearly less precise than the

three other methods. About the computational time, Kriging and POD requires the same

computational time, the gain factor is close to six as for the Quadratic regression. Finally, RBF

and ROM-POD-Kriging allow to reduce the CPU time with a factor close to 72. Considering all

the comparisons, the proposed ROM-POD-Kriging method supplies a good compromise between

the precision for both buckling load factor and buckling mode and the computational time.
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Figure 2.12 – Response surface and associated errors on buckling load for ROM-POD-Kriging
with 4 parameters and 35 samples (a,b) parameters E and α, (c,d) parameters b and h.

This chapter has allowed to compare different metamodels or coupling of metamodels in the

case of the approximation of linear buckling solutions and draw some advantages and drawbacks

about each metamodel. Finally, the ROM-POD-Kriging method has been proposed.
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Figure 2.13 – (a) Evolution of maximal errors on buckling load and (b) of the computational time
as a function of number of degrees of freedom for 4 variables parameters.
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1 Introduction

In addition to metamodels and ROM discussed in Chapter 2, a multiparametric problem can be

addressed with reanalysis techniques. The main idea of this kind of methods is to perform only a

nominal calculation of the full problem and to re-utilize previous results to evaluate the perturbed

solutions. Each new sample is then considered as a perturbation of the nominal problem.

These approaches have an intrusive character as they required an adaptation of the equations

for each studied problem. Different numerical reanalysis techniques have already been devel-

oped, such as Combined Approximation (CA) [Kirsch and Bogomolni, 2004, Kirsch et al., 2006,

Kirsch and Bogomolni, 2007], perturbation and series development [He, 1999, Rong et al., 2003,

Massa et al., 2004, Sliva et al., 2010], Padé approximants [Damil et al., 1999, Yang et al., 2001,

Duigou et al., 2003, Massa et al., 2008b, Massa et al., 2009a] or different adhoc projections

[Balmès, 1996, Bouazzouni et al., 1997, Corus et al., 2006, Boyaval et al., 2009, Nouy, 2010]. The

spectrum of development and application is relatively large in static, modal and dynamic. Indeed,

Lallemand et al [Lallemand et al., 1999] utilized Neumann series expansion to treat eigenvalue

problems including fuzzy parameters. Massa et al [Massa et al., 2006, Massa et al., 2008a] inte-

grated series development and Padé approximations in fuzzy static and modal problems. Qiu and

Elishakoff [Qiu and Elishakoff, 1998] propagated uncertainty with combination of the perturba-

tion technique and interval mathematics to determine the region of static response surface. Chen

et al [Chen et al., 2014] employed first-order series to study the exterior acoustic field prediction

with interval and random variables.

For the solving of multiparametric linear eigenvalue problem, several developments based

on homotopy perturbation and projection technique [Massa et al., 2011b, Massa et al., 2015b,

Massa et al., 2016] have already been successfully applied for vibration problems, where modifi-

cations are integrated in mass and stiffness matrices. In this chapter, the performance of these

reanalysis techniques, such as modal stability, series development, Padé approximations, homo-

topy developments or residue iteration, are evaluated for the case of modified linear buckling

problems with the numerical framework used in Chapter 2. In the present case, the material and

geometric parameters variations are already integrated in linear and geometric stiffness matrices.

After identifying the advantages and drawbacks of these methods, a new method, coupling high

order perturbed modes, projection and Kriging, will be exposed.

58



Chapter 3. Perturbation and homotopy developments

2 Perturbed linear buckling analysis

2.1 Nominal case

Let consider a nominal linear buckling problem described in a finite element context corre-

sponding to a nominal set of parameters noted p(0) = [p
(0)
1 ... p

(0)
np ]. This problem is numerically

solved considering three main steps. The first one is the solving of a system of linear equations

considering the nominal linear stiffness matrix K
(0)
l and the external load Fext to obtain a nominal

displacement vector U(0):

K
(0)
l U(0) = Fext (3.1)

The second step is dedicated to the assembling of the nominal geometric stiffness matrix K(0)
σ

by considering the nominal stress state σ(0), calculated with the nominal displacement vector

U(0).

The last step is relative to the calculation of the nominal buckling load factor λ
(0)
cr by solving

of a linear eigenvalue problem considering the nominal linear and geometric stiffness matrices.

(
K

(0)
l + λ(0)

cr K(0)
σ

)
z(0) = 0 (3.2)

where λ
(0)
cr is the nominal minimum positive eigenvalue of Eq 3.2, z(0) is a non-zero vector

which denotes the nominal eigenvector reflecting the structural buckling shape. The nominal

critical buckling load F(0)
cr can be obtained by multiplying the initial external load Fext by the

nominal buckling load factor λ
(0)
cr .

F(0)
cr = λ(0)

cr Fext (3.3)

These two eigensolutions z(0) and λ
(0)
cr are aggregated in a vector s(0), such as:

s(0) =

[
z(0)

λ
(0)
cr

]
(3.4)

2.2 Perturbed case

Let consider now some modified input parameters p(m) = [p
(m)
1 ... p

(m)
np ] which define the

modified model problem. In this section, the exponent (m) refers to the modified state whereas

the exponent (0) identifies the previous nominal one.

The equations associated to the modified buckling problem are summarized as follows:
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K
(m)
l U(m) = Fext (3.5)

(
K

(m)
l + λ(m)

cr K(m)
σ

)
z(m) = 0 (3.6)

s(m) =

[
z(m)

λ
(m)
cr

]
(3.7)

where K
(m)
l , K(m)

σ , U(m), λ
(m)
cr and z(m) are respectively the modified linear and geometric

stiffness matrices, the modified displacement, the modified buckling load factor and the modified

eigenvector.

3 Perturbation techniques

The perturbation techniques can be independently applied for the different steps of calculation

procedure, namely for the modified linear static step and/or for the modified eigenvalue problem.

The different technical solutions are exposed in the next subsections.

3.1 Modal stability method

The modal stability method, proposed by Lardeur [Arnoult et al., 2011], has been applied

to different applications domains [Druesne et al., 2014, Druesne et al., 2016] and integrated in

uncertainty propagation method in the case of modified linear eigenvalue problem. This method

relies on the assumption that the mode shapes of the structure are assumed to be weakly sensitive

to variations of the input parameters.

The modified eigenvector z(m) can be expressed as the nominal contribution z(0), defined by

the Eq. 3.2, and a perturbed vector, noted ∆z:

z(m) = z(0) + ∆z (3.8)

Considering the expression of the Rayleigh quotient, classically used in modal analysis, for the

modified eigenvalue problem and Eq. 3.8, we can derive the expression of the modified buckling

load factor λ
(m)
cr :

λ(m)
cr = −(z(0) + ∆z)TK

(m)
l (z(0) + ∆z)

(z(0) + ∆z)TK(m)
σ (z(0) + ∆z)

(3.9)
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Therefore, according to the modal stability assumption, the modified eigenvector z(m) is as-

sumed to be equal to the nominal vector z(0). Eq. 3.9 is then reduced to:

λ(m)
cr = −z(0)TK

(m)
l z(0)

z(0)TK(m)
σ z(0)

(3.10)

Thus, the perturbations are only present on the two stiffness matrices, which can be calculated

for each parametric modifications. To reduce the computational time, the authors propose to

replace the numerator and denominator of this fraction by using equivalent energies to avoid the

assembling step of modified matrices. In our numerical applications, only Eq. 3.10 will be used

to test the efficiency of this kind of approximation.

3.2 Homotopy developments

On the contrary to the previous section, the aim is here to take into account the contribution

associated to the eigenvector perturbation ∆z in the case of eigenvalue problem, by identifying

some high order vectors. The following techniques can be applied both for modified system of

linear equations and for modified linear eigenvalue problem.

3.2.1 System of linear equations

The integration of perturbations in the linear stiffness matrix K
(m)
l , useful to apply Eq. 3.5

governing a linear static problem, inevitably imply the modification of nodal displacements vector

U(m), stress state of the studied structure σ(m) and so the geometric stiffness matrix K(m)
σ . Thus,

for each perturbation, it is necessary to update the geometric stiffness matrix to determine the

associated global level of perturbation.

The homotopy perturbation technique expresses a non-linear problem as a set of linear prob-

lems, by defining a convergent series solution. The technique consists in introducing an additional

unknown parameter ε to highlight the non-linearity. At the end of the formulation, this parameter

is set to 1 in order to evaluate the perturbed problem. In the present case, the non-linearity is

relative to the introduced perturbations on finite element matrices.

The modified linear stiffness matrix K
(m)
l can be expressed as nominal contribution K

(0)
l and

a perturbation ∆Kl such as:

K
(m)
l = K

(0)
l + ε∆Kl (3.11)

The modified displacement vector U(m) is developed as a series considering a nominal dis-
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placement vector U(0) and different perturbed high order vectors U(j), such as:

U(m) = U(0) + εU(1) + ...+ ε(n)U(n) (3.12)

where n is the order of truncation of the series.

After having introduced Eqs 3.11 and 3.12 in Eq. 3.5, we obtain:

(K
(0)
l + ε∆K)(U(0) + ε(1)U(1) + ...+ ε(n)U(n)) = Fext (3.13)

We can identify the nominal displacement vector and perturbed vectors by considering each

order of parameter ε. For the nominal displacement solution U(0), we detect the equation relative

to the nominal static problem, already exposed in Section 2.1 by Eq 3.1.

The perturbed vectors U(j) are then calculated by considering the following recursive equation:

K
(0)
l U(j) = −∆KU(j−1) (3.14)

3.2.2 Linear eigenvalue problem

For the modified linear eigenvalue problem, the eigensolutions λ(m) and z(m) are expressed, as

previously, in series expansion with respect to the homotopy parameter ε, respectively by Eq. 3.15

and 3.16.

λ(m)
cr = λ(0)

cr + ελ(1)
cr + ...+ ε(n)λ(n)

cr (3.15)

z(m) = z(0) + εz(1) + ...+ ε(n)z(n) (3.16)

Unlike the modal stability method, the aim is here to take into account some modifications on

mode shape between the nominal and perturbed state by integrating higher order contributions

z(j)

Moreover, the matrices K
(m)
l and K(m)

σ (Eq. 3.11 and 3.17) are decomposed into matrices K
(0)
l

and K(0)
σ , associated to an initial eigenvalue problem, and perturbed matrices ∆Kl and ∆Kσ,

which include all the modifications identified on the material and geometric parameters.

K(m)
σ = K(0)

σ + ε∆Kσ (3.17)

In complement to the modified eigenvalue problem, a normalization equation, relative to

modified data, is added.
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z(m)TK(m)
σ z(m) = 1 (3.18)

By introducing Eq. 3.11, Eq. 3.15 to 3.17 in Eq. 3.6 and 3.18, it is possible to identify the

perturbed eigensolutions by considering each order of parameter ε.

((K
(0)
l + ε∆Kl) + (λ(0)

cr + ελ(1)
cr + ...+ ε(n)λ(n)

cr )(K(0)
σ + ε∆Kσ))

(z(0) + εz(1) + ...+ ε(n)z(n)) = 0 (3.19)

(z(0) + εz(1) + ... + ε(n)z(n))T (K(0)
σ + ε∆Kσ)(z(0) + εz(1) + ... + ε(n)z(n)) = 1 (3.20)

For 0-order, we obtain the nominal eigenvalue problem, already defined by Eq. 3.2, and associated

nominal normalization equation (Eq. 3.21).

z(0)TK(0)
σ z(0) = 1 (3.21)

For the jth order, the high order perturbed eigensolutions are calculated with the following

linear system of equations, depending on nominal characteristics and different perturbations:

K∗(0)s(j) = F∗(j−1,...,0) (3.22)

with

K∗(0) =

[
K

(0)
l + λ

(0)
cr K(0)

σ K(0)
σ z(0)

z(0)TK(0)
σ 0

]
(3.23)

s(j) =

[
z(j)

λ
(j)
cr

]
(3.24)

F∗(j−1,...,0) =


−
(

∆Klz
(j−1) +

j−1∑
k=0

λ
(k)
cr ∆Kσz

(j−k−1) +
j−1∑
k=1

λ
(k)
cr K(0)

σ z(j−k)

)
−0.5

(
j−1∑
k=0

z(k)T∆Kσz
(j−k−1) +

j−1∑
k=1

z(k)TK(0)
σ z(j−k)

)
 (3.25)

These high order perturbed vectors s(j) can then be integrated in different approximations

such as series, Padé approximants or projection techniques, exposed in the next sections.
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3.2.3 Approximation with series and Padé approximants

Considering the developments exposed in Section 3.2, the modified static displacement U(m)

can be approximated at first by Eq. 3.12 to calculate the modified geometric stiffness matrix

K(m)
σ . Second, considering the perturbations on stiffness matrices, the modified critical buckling

load λ
(m)
cr is approximated by a series described by Eq. 3.15. This solution, already discussed

in several papers [Massa et al., 2008b, Massa et al., 2009b, Massa et al., 2011a], can be efficient

when the level of variations of studied solutions is very low and the behavior is clearly linear.

For a more general case, more robust techniques must be considered for integrating significant

perturbations on material and geometric parameters.

For instance, Padé approximants, have been already used in other numerical methods such as

Asymptotic Numerical Method to extend the convergence of the developement, are considered to

determine the modified studied solutions as U(m), z(m) or λ
(m)
cr . Thus, the series can be replaced

by a rational fraction function. In the present case, we consider Padé approximants with a fixed

denominator. In the case of displacement vector, we obtain:

U(m) = U(0) + ε

(
Dn−2(ε)

Dn−1(ε)

)
U(1) + ...+ ε(n−1)

(
D0(ε)

Dn−1(ε)

)
U(n−1) (3.26)

where (Dj(ε))j=0...n−1 are polynomials of degree j with real coefficients dj, such as Dj(ε) =

d0 +εd1 + ...+ε(j)dj. The coefficients dj are identified using an iterative Gram-Schmidt algorithm,

recalled in reference [Massa et al., 2008b].

The same procedure can be applied for the critical buckling load λ
(m)
cr and associated mode

z(m).

3.3 Projection techniques

3.3.1 Reduced problems

As in section 3.1, another possibility to calculate modified solutions is to consider a projection

of the equilibrium equations onto a subspace spanned by the columns of a rectangular projection

bases. In the present case, two projections matrices, noted TU and Tz, are respectively considered

for the static and linear eigenvalue problems. Thus, the different steps of a buckling problem can

be respectively rewritten considering reduced finite element matrices as follows:

[
TT
UKlTU

]
qU = TT

UFext (3.27)
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U = TUqU (3.28)

([
TT
z KlTz

]
+ λcr

[
TT
z KσTz

])
qz = 0 (3.29)

z = Tzqz (3.30)

where qU and qz are respectively the reduced vector of displacement and mode shape.

The next sections are dedicated to the definition of the reduction matrices TU and Tz.

3.3.2 Perturbation projection matrix

Firstly, the matrices TU and Tz can be directly composed on nominal data and associated

perturbed vectors [Massa et al., 2008a, Massa et al., 2011b, Do et al., 2016], such as:

TU = [U(0) U(1) ... U(n)] (3.31)

Tz = [z(0) z(1) ... z(n)] (3.32)

The projection bases, whose size is [ndof × (n+ 1)] with n << ndof , are orthonormalized with

the iterative Gram Schmidt algorithm. This projection technique allows to decrease the size of

the initial problem to the number of retained projection vectors , thus reducing the CPU time

required to solve the modified problems, namely [(n+1)×(n+1)]. Combination of the homotopy

development in perturbation technique or Homotopy Perturbation and Projection, is named HPP

method. This method will be consider in the next section.

3.3.3 Residue iteration

Secondly, Balmes [Bobillot and Balmès, 2002] proposes a reanalysis technique, based on an

error control and an enrichment mechanism, compatible with the static and eigenvalue problems.

The first step is to start this numerical strategy with the projection matrices, TU and Tz,

respectively initialized to the nominal data U(0), z(0) and λ
(0)
cr to calculate a first approximation

of studied modified solutions, using Eqs. 3.27 and 3.29.

Next, load residuals, RL(U(m)) and RL(λ
(m)
cr , z(m)), are calculated with the first approximated

solutions for each problem, such as:

65



Chapter 3. Perturbation and homotopy developments

RL(U(m)) = K
(m)
l U(m) − Fext (3.33)

RL(λ(m)
cr , z(m)) =

(
K

(m)
l + λ(m)

cr K(m)
σ

)
z(m) (3.34)

where U(m) and z(m) are calculated with Eqs. 3.28 and 3.30.

To enrich each projection basis, we define displacement residuals using the inverse of nominal

linear stiffness matrix K
(0)
l and the load residuals:

RD(U(m)) =
[
K

(0)
l

]−1

RL(U(m)) (3.35)

RD(λ(m)
cr , z(m)) =

[
K

(0)
l

]−1

RL(λ(m)
cr , z(m)) (3.36)

Finally, the projection bases TU and Tz are expressed at the jth iteration with displacement

residuals as follows:

T
(j+1)
U =

[
T

(j)
U RD(U(m))

]
(3.37)

T(j+1)
z =

[
T(j)
z RD(λ(m)

cr , z(m))(j)
]

(3.38)

The number of used residuals, noted nR, is comparable to the order of high order perturbed

vectors, described in the previous section, and can be controlled using a relative error, as proposed

by the authors in [Bobillot and Balmès, 2002]. The size of the reduced matrices is so [(nR + 1)×
(nR + 1)].

3.3.4 Fixed projection basis

Considering Eqs. 3.31 and 3.32, we have seen that it is possible to define a reduced projec-

tion space, which allows to calculate the modified buckling load factor as a function of input

parameters variations. With this strategy, the computational time is naturally reduced through a

classical calculation because only one factorisation of a reference nominal matrices K
(0)
l and K∗(0)

is necessary (Eqs. 3.14 and 3.22). However, the gain factor remains limited due to the calculation

of the necessary high order perturbed vectors for each new modifications and to orthonormalise

the projection matrix for each new modified problem. To avoid these limitations, we propose here

to build a projection basis compatible with a set of modifications representing the studied design

space rather than only one modification [Massa et al., 2017, Do et al., 2017].
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Considering the kth modified input parameter p
(m)
k , used to define the modified linear and

geometric stiffness matrices, this one can be decomposed as a nominal part and a perturbation

multiplied by the homotopy parameter ε:, such as:

p
(m)
k = p

(0)
k + ε∆pk (3.39)

Each modified parameter p
(m)
k generate some perturbations on stiffness matrices, noted

∆Kl(p
(m)
k ) and ∆Kσ(p

(m)
k ), such as:

Kl(p
(m)
k ) = K

(0)
l + ε∆Kl(p

(m)
k ) (3.40)

Kσ(p
(m)
k ) = K(0)

σ + ε∆Kσ(p
(m)
k ) (3.41)

Next, it is so possible to perform a homotopy development for each parameter p
(m)
k and to

calculate the associated high-order perturbed vectors.

As the homotopy development is efficient for a range of values defined around the nominal

calculation along the parameter direction pk according to the homotopy parameter ε, only one

value of parameter pk is necessary to characterize the high-order vectors per parameter direc-

tion. In practice, only the minimal and/or maximal bound of variations of parameter pk will be

considered to calculate the high order vectors.

To build the projection matrices, we propose here to concatenate data identified for all the

parameter directions pk and suppress the possible collinear vectors during the orthonormalization

step. Moreover, the nominal part is always fixed in the definition of the projection basis whatever

the modification is introduced.

The projection bases are so defined as follows:

TU(p1, ..., pnp) = [U(0) U(1)
p1

... U(n)
p1

... U(1)
pnp

... U(n)
pnp

] (3.42)

Tz(p1, ..., pnp) = [z(0) z(1)
p1

... z(n)
p1

... z(1)
pnp

... z(n)
pnp

] (3.43)

The maximal size of the reduced matrices is [(np× n+ 1)× (np× n+ 1)] because the number

of collinear vectors is dependent on the studied problem.

3.4 Coupling of homotopy developments and kriging

The method, proposed in Section 3.3, allows to reduce the size of problems to be solved

and so the associated computational time, but requires the calculation of modified matrices for
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each new samples. To improve the previous proposal, we propose here to couple the homotopy

developments for the linear eigenvalue problem and kriging techniques, exposed in Section 2.3 for

POD modes.

As previously, the proposed method relies on 4 steps.

Firstly, the projection basis Tz(p1, ..., pnp) (Eq. 3.43) is built with high order perturbed vectors

per parameter direction p
(m)
k .

Secondly, the reduced linear eigenvalue problem, defined by Eq. 3.29 is solved for each snapshot

and the variable qz(pi) is identified. The variable qz(pi) can be seen as a participation factor

variable which traduces the participation of each high order perturbed modes to calculate the

associated modified solutions. The minimal number of snapshots must be equal to the number of

unknowns used to define the second order regression part of kriging. The snapshots are generated

by a LHS algorithm as previously.

Thirdly, the normalisation equation Eq. 3.18 associated to the modified eigenvalue problem,

is changed such as:

(Tzqz(pi))
TK(m)

σ (Tzqz(pi)) = λ(m)
cr (pi) (3.44)

The objective is to be able to approximate the modified buckling load factor without the

knowledge of the modified geometric stiffness matrix. This new normalisation implies the defini-

tion of new participation factor q?z(pi) for each snapshot, such as:

q?z(pi) =
qz(pi)

√
λ

(m)
cr (pi)√

z(m)T (pi)z
(m)(pi)

(3.45)

In the fourth step, we aggregate all the participation factors q?z(pi) corresponding to all the

snapshots in a matrix Q?
z(pi), whose size is [ns× (n+1)] and we link the two space of paramaters

by a kriging technique to calculate q?z(p) for a new sample p.

Finally, an approximation of the mode z(p) is obtained by the following equation:

z(p) = Tzq
?
z(p) (3.46)

The approximation of buckling load factor λcr is so calculated:

λ(m)
cr (p) = (Tzq

?
z(p))T (Tzq

?
z(p)) (3.47)
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4 Numerical applications: buckling load evaluation of a

modified structure

For this numerical section, only the case with four parameters is here considered because we

have shown in chapter 2 that the case with two parameters is not discriminant to test the efficiency

of the different methods in the same condition. The same numerical framework is considered by

keeping the same random snapshots and the other key parameters.

4.1 Case 1: Modal Stability

On the contrary to previous exposed methods, modal stability method is not dependent on

specific parameters. Only the nominal eigenvector and matrices perturbation are considered. To

test the efficiency of this method, specifically dedicated to the eigenvalue problem, the linear

static step is calculated with the reference way to avoid the introduction of errors.

The response surfaces and associated errors are presented in Fig. 3.1 for the two sets of

parameters, namely for Young’s modulus and angle, and width and height geometric parameters.

In Fig. 3.1, we can shown that the error for the approximation of buckling load is enough low

for Young’s modulus and width of section. On the contrary, the level of errors increases seriously

and can achieve 100% for parameters, such as angle or height of the section. In this last case,

the perturbations introduced in geometric parameters and so in geometric stiffness matrix do not

allow to verify the assumption of stability. Indeed, a MAC of 0.9 with a norm variation of 35%

is observed between two reference configurations.

This method, which has already successfully applied to approximate the first mode shapes in

modified modal analysis, cannot be considered as an suitable alternative to the reference method

for the reanalysis of modified buckling problems with topological parameters.
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Figure 3.1 – Response surface and associated errors on buckling load for Modal Stability (a,b)
parameters E and α, (c,d) parameters b and h.

4.2 Case 2: Series and Padé approximants

The approximation of buckling load factor with series or Padé approximants is conditioned

with the order of truncation n, as detailed in Section 3.2. Thus, we first study this effect on the

evaluation of buckling load by successively applying series or Padé approximants both for the

reanalysis of the static solution and the eigenvalue problem. The maximal errors on the buckling

loads with series and Padé are respectively exposed in Tables 3.1 and 3.2.

Globally, the quality of the approximation is clearly poor. The least maximal error, equal to

11%, is observed for the seventh order for each approximation. Moreover, when we study the

first row of Table 3.1, which is dedicated to the reanalysis of the static step and a calculation of

70



Chapter 3. Perturbation and homotopy developments

Maximal errors Static step

on buckling load [%] Reference Order 1 Order 3 Order 5 Order 7

Eigenvalue problem

Reference - 5 74 98 101
Order 1 76 111 235 1137 1506
Order 3 51 17 14 24 2611
Order 5 48 967 558 155 70
Order 7 42 57 41 25 11

Table 3.1 – Maximal errors on buckling load as a function of order of truncation for series.

Maximal errors Static step

on buckling load [%] Reference Order 1 Order 3 Order 5 Order 7

Eigenvalue problem

Reference - 57 32 18 0.81
Order 1 1644 1415 1085 1653 1445
Order 3 232 215 53 456 167
Order 5 4 2904 641 29 3.50
Order 7 0.07 1954 18 21 0.68

Table 3.2 – Maximal errors on buckling load as a function of order of truncation for Padé.

the critical load factor with the reference method, a divergence of the series is highlighted. For

a first column, associated to the calculation of the static step with the reference method and the

reanalysis of the critical load factor, a slow convergence of the series is detected. In conclusion,

a direct operating of the high order solutions in a series is not enough sufficient to answer to our

problematic.

To improve the efficiency of the approximation, we introduce the high order data in rational

fractions. As it can be seen in Table 3.2, the results are of better quality. First, each approximation

is convergent independently. Indeed, we observe, respectively in the first row and column of the

Table, some errors of 0.81% for a seventh order for static step and 0.07% for a seventh order

for eigenvalue reanalysis. By combining the two approximations, a maximal error of 0.68% is

obtained for the buckling load factor.

However, we observe that the level of errors is in general very high when the two approxima-

tions are used together. Only a seventh order of truncation can be chosen in the present case. In

this case, the MAC value is close to 0.9 with an error of 30%. The results are in line with already

published results which discuss of the optimal order of truncation with Padé approximants. The

order of truncation is obviously dependent of the studied problem but must generally be high.

This choice is unfortunately incompatible with the researched strategy which is to reduce the

computational time too. Indeed, the use of Padé approximants requires the same computational

time as the reference method.

71



Chapter 3. Perturbation and homotopy developments

Maximal errors Static step

on buckling load [%] Reference Order 1 Order 3 Order 5 Order 7

Eigenvalue problem

Reference - 9.4 3.44 0.21 0.08
Order 1 10.70 37.60 14.60 10.90 10.70
Order 3 0.03 9.20 3.48 0.24 0.05
Order 5 0.004 9.23 3.45 0.22 0.08
Order 7 0.004 9.20 3.46 0.22 0.08

Table 3.3 – Maximal errors on buckling load as a function of order of truncation for perturbation
projection.

In conclusion, the use of perturbations in series or in Padé approximants is not efficient either

for the precision, or for the computational time. The nature of these mathematical functions

does not allow to get a rapid convergence. To achieve our objectives, a discussion of projection

techniques, where high order solutions can be introduced in projection matrix, is proposed in the

next section.

4.3 Case 3: Projection technique with HPP modes

This section is dedicated to the evaluation of the capability of projection techniques with HPP

modes. First, the maximal errors for approximation of buckling load factor is exposed in Table

3.3 as a function of the orders of truncation for both static and eigenvalue problems.

Considering the same high order solutions, as in previous section, we globally obtain interesting

levels of errors with a best convergence of each approximation. Indeed, for the static step, the

errors are close to 3.44% for an order 3 and 0.21% for an order 5. This result is better than with

Padé approximants. Moreover, a maximal error of 0.03% is detected only for an order 3 in the

case of eigenvalue problem. The use of high order solutions as a projection space clearly improve

the quality of the approximation.

After coupling the two projection techniques, the maximal errors of buckling load factors are

inferior to 1% as soon as an fifth order is chosen for static step and a third order for eigenvalue

problem. In addition, the MAC is equal to 1 for all the configurations with a norm error inferior

to 0.5%. This approximation is very efficient to investigate both eigenvalue and eigenvector. It

is important to note that the main sensitive step is not the eigenvalue problem which can appear

more complicated as static one but rather the approximation of the linear static problem with large

precision. Indeed, a poor approximation of displacements introduces an error in the geometric

stiffness matrix and the associated perturbation is not well quantified. About the computational

time, as the modified stiffness matrices are necessary for each modified set of input parameters,
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Maximal errors Static step

on buckling load [%] Reference Order 1 Order 3 Order 5 Order 7

Eigenvalue problem

Reference - 9.20 3.20 0.19 0.08
Order 1 9.50 10.20 13.50 9 8
Order 3 0.03 8.10 3.50 0.22 0.05
Order 5 0.004 7.90 3.20 0.19 0.04
Order 7 0.003 7.80 3.10 0.18 0.04

Table 3.4 – Maximal errors on buckling load as a function of number of residue for Residue
iteration projection.

the computational gain factor is not significant. The CPU time is globally equal to the reference

one.

4.4 Case 4: Residue iteration

Another solution is to use the Residue iteration projection to improve step by step the quality

of approximation by successively increasing the size of the projection matrix. Classically, a

convergence criterion is used to stop the calculation and obtain with precision the researched

solution. In this section, we rather consider the size of projection matrix and so the number of

introduced residue as criterion in order to directly compare the efficiency with previously proposed

method. A residue is so equivalent to the order of truncation because each method requires the

solving of a system of linear equations to calculate the needed data. The maximal errors on

buckling load as a function of number of residue is presented in Table 3.4.

First, the behavior of this method is very close to that observed for the projection with HPP

modes. Indeed, with 5 residues for the static problem and 3 residues for the eigenvalue one, the

maximal errors can reach 0.22%. In the previous case, we have highlighted that an order 5 and an

order 3, respectively for the static and the eigenvalue problems, was a good choice. We observe

the same convergence too. For the buckling mode, the results are very precise too with a MAC

equal to one and a norm errors inferior to 1%.

About the computational time, the observations are the same as for the projection with HPP

modes. As the orders of truncation are lower than for Padé approximants, we observe a decrease

of the computational time of 15% for each studied samples. The cost associated to the building

of the projection matrices and the solving of the reduced problems are less time consuming as the

reference method. However, this reduction is not significant because the projection matrix must

be updated for each new perturbation.
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4.5 Case 5: ROM-HPP method

The proposed method ROM-HPP relies on the high order perturbed vectors calculated per

direction of parameters for both the static and eigenvalue problems. First, the maximal errors of

buckling loads approximation are investigated as a function of the order of truncation for each

problem. The results are described in Fig. 3.2.
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Figure 3.2 – Evolution of the maximal errors as a function of the order of approximation.

First of all, the convergence of error is clearly different between static and eigenvalue problems.

As already observed in the previous section, the static problem requires an 23th order to guarantee

the maximal error inferior to 1%. The static step is clearly the most important step to maintain

the level of error for the global calculation. Indeed, an third order is sufficient for the eigenvalue

problem to obtain the targeted threshold. Considering this development in the two projection

matrices, it is possible to approximate with success the response surfaces of buckling load as a

function of the different parameter, as shown in Fig. 3.3.

With this proposed method, the objective of precision is achieved both for the buckling load

and the associated mode. For the last case, the MAC is equal to 0.99 with an error of 2%.

Nevertheless, Figure 3.3 show clearly that the approximation of the buckling loads as a function

of angle and height section parameters is a little more difficult in comparison to Young’s modulus

or width section.

About the computational time, the assessment is obviously less interesting because it is nec-

essary to obtain the modified matrices for each new sample, as for the ROM-POD method, even

if the matrix projection is fixed.
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Figure 3.3 – Response surface and associated errors on buckling load for ROM-HPP method with
respectively a 23th and a 3rd order for static and eigenvalue problems (a,b) parameters E and α,
(c,d) parameters b and h.

4.6 Case 6: ROM-HPP-Kriging method

This section is dedicated to ROM-HPP-Kriging method, which is comparable to the proposed

method ROM-POD-Kriging, exposed in the chapter 2. This new method depends on the same

key parameters, namely the number of modes of the projection matrix, defined as a function of

the order of truncation, and on the definition of input sample data.

First, the maximal errors of buckling loads approximation are investigated as a function of

the order of truncation for each problem. The results are described in Fig. 3.4.

To tend to the targeted threshold, an third order is sufficient to define the projection matrix

by considering perturbed modes per parameter direction. In the present case by considering 4

parameters and a third order, the number of modes is equal to 13. However, this number of
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Figure 3.4 – Evolution of the maximal errors as a function of the order of approximation.

modes does not significantly influence the computational time of this step because the size of

reduced buckling problems is [13× 13]. Concerning the snapshots sets for kriging, the results are

presented in Fig. 3.5.
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Figure 3.5 – Evolution of the maximal errors as a function of the sample data size.

We observe that the maximal errors are inferior to 1% as soon as 25 snapshots are considered.

If more snapshots are taken into account, the mean error become stable. However, an increase

of the error variation is observed. This approximation is rather efficient to investigate both the
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buckling loads, as shown in Fig. 3.6, and the associated modes, where the MAC is equal to 0.99

with a norm error inferior to 1%.
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Figure 3.6 – Response surface and associated errors on buckling load for ROM-HPP-Kriging
method with 25 samples (a,b) parameters E and α, (c,d) parameters b and h.

Finally, the computational time is less important than for the previous methods based on

HPP modes. The time consuming offline step is relative to the calculation of reference solutions

for the ns snapshots. The time relative to the solving of ns reduced buckling problems and the

definition of kriging are not time consuming. The same remark can be formulated for the online

step about the calculation of participation factors for new input data.

In conclusion, ROM-HPP-Kriging method is the best comprise to approximate eigensolutions

when perturbations techniques are considered.
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5 Assessment of results

This chapter has allowed to test several methods relying on perturbations and projection

techniques for the same numerical benchmark. First, we have shown that the Modal Stability

assumption cannot be considered for buckling problems. The perturbations observed on geometric

stiffness matrices do not allow to verify this assumption. Second, the techniques based on Series or

Padé approximants have a low convergence radius or requires very high order of developments. In

this last case, the computational gain is not interesting. Third, the projection techniques, based

either on HPP modes or on residues, are very precise for approximating both the critical buckling

loads and associated buckling modes. The cost associated to the building of the projection

matrices and the solving of the reduced problems are less time consuming as the reference method.

However, this reduction is not significant to be used in multiparametric analyses. Only the ROM-

HPP-Kriging method supplies the compromise in terms of precision and computational gain.

Indeed, Fig. 3.7 summarizes the maximal error on the critical loads and the needed computational

time as a function of the finite element size by considering the optimal key parameters for HPP,

ROM-HPP and ROM-HPP-Kriging. The results relative to the kriging method, exposed in

chapter 2, are also added on the figure.
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Figure 3.7 – (a) Evolution of maximal errors on buckling load (b) and of the computational time
as a function of number of degrees of freedom.

ROM-HPP-Kriging allows to reduce the CPU time with a factor close to 74 in comparison

to the reference. For recall, the direct use of Kriging gives only a decrease of a factor 7. This

computational gain is even more interesting if we consider that the precision is inferior to the

threshold of 1% whatever the number of degrees of freedom considered for the numerical model.
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1 Introduction

Another way to approximate the modified buckling loads and the associated eigenmodes

in a multiparametric linear buckling problems is to calculate the derivatives of eigensolutions

and perform Taylor series expansion or projection techniques based on eigenmodes deriva-

tives. In the litterature, several works, mainly for the case of uncertainty propagation,

have already integrated these techniques. Concerning probabilistic uncertainty propagation

method, Taylor series expansion [Benfratello and Muscolino, 1998, Chakraborty and Dey, 1998,

Nieuwenhof and Coyette, 2002, Falsone and Ferro, 2005] have been considered with the aim to

substitute the equations of numerical model and the random functions by the mathematic develop-

ments to quantify the first statistical moments (mean, variance) of output solutions [Sudret, 2007].

Massa et al [Massa et al., 2006, Massa et al., 2008b] integrated Taylor series development in the

case of a fuzzy modelisation of the variability for static and modal problems. Qiu and El-

ishakoff [Qiu and Elishakoff, 1998] propagated uncertainty with combination of the series ex-

pansion and interval mathematics to determine the region of static response surface. Chen et al

[Chen et al., 2014] employed first-order Taylor series to study the exterior acoustic field predic-

tion with interval and random variables. Hong et al [Hong et al., 2011] proposed the multiple-

component parametric reduced-order models for predicting the vibration response of complex

structures with parametric variability in multiple components. In this case, the modified compo-

nent matrix was described by the Taylor series development. All these methods are dependent

on the validity of Taylor series expansion and have been mainly applied for linear static and dy-

namic problems [Handa and Andersson, 1981, Liu et al., 1986, Shinozuka and Yamazaki, 1988]

with low output dispersions around the nominal values as shown by Ghanem and Spanos

[Ghanem and Spanos, 1991b].

To improve the domain of validity of the approximation and the quality of the approximation,

Massa et al [Massa et al., 2011b] proposed to integrate derivatives of eigenvectors in a projection

matrix and solve some reduced linear eigenvalue problems in vibration instead of directly using

Taylor series expansion. In this chapter, a comparison of different developments, based on deriva-

tives and Taylor series expansion, is firstly proposed using the previous numerical framework.

The aim is to analyze the possibility of extension of previous works, performed in vibration, to

the domain of linear buckling.

In addition, as a key step of this strategy is the calculation of derivatives of linear and geometric

stiffness matrices, we propose to investigate the approximation of these finite element matrices

to obtain a parametric description of the studied problem by using a set of snapshots. Finally, a

numerical strategy, comparable to those proposed in the previous chapters, is proposed coupling
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metamodels, projection techniques and eigenderivatives.
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2 Decomposition of finite element matrices

2.1 General form

In this chapter, we assume that a decomposition of finite element matrices Kl(p) and Kσ(p)

as a function of parameters functions (Equations 4.1 and 4.2) is available considering the following

form:

Kl(p) =

nf∑
k=1

fk(p)Klk (4.1)

Kσ(p) =

nf∑
k=1

fk(p)Kσk (4.2)

where fk(p), k = 1...nf are monomial basis functions (constant, linear or quadratic terms) as

used in kriging method. Klk and Kσk are constant matrices including the coefficients of regression.

2.2 Approximation of stiffness terms

To perform multiparametric analyses, it is interesting to have a model description of finite

element matrices in terms of input parameters p to describe the evolution from the initial model

as a linear combination, as described in Eqs. 4.1 and 4.2. The nonlinear behavior of parameters

is thus included in monomial basis functions.

This decomposition is easily performed for specific parameters of linear stiffness matrix, such

as Young’s modulus or density, possible for a thickness of a plate by decomposing the mem-

brane and bending properties and the coupling effects but not directly available for topological

modifications, for example, which modify the coordinates of nodes. For the geometric stiffness

matrix, this decomposition is not directly possible whatever the parameter is studied because of

the dependency on the strain field.

Instead of using snapshots to directly define the approximation method as in chapters 2 and 3,

we propose here to approximate the non null terms of the stiffness matrices using the regression

technique, presented in section 2.1 of chapter 2. The order of approximation can be chosen

parameter by parameter. For example, a first order is considered for Young’s modulus or density

whereas a third or fourth order is selected for geometric modifications. To calculate the unknown

coefficients of the regression, a set of snapshots is considered as for the metamodels in chapter 2.

For the linear stiffness matrix, the computational time relative to model description can be

reduced by considering some family of elements defined with the same geometric properties.
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In this case, the parametric analysis can be performed for one elementary stiffness matrix and

extended for the other ones. On the contrary, no specific improvement can be performed for the

geometric stiffness matrix.

3 Taylor series expansion

3.1 Approximation of eigensolutions

In this section, we kept the same exponents (0) and (m) for respectively referencing the nominal

and modified state as in chapter 3. Let’s consider a Taylor series expansion of eigensolutions s(m),

described Eq. 4.3:

s(m) = s(0)+ε

np∑
k1=1

∂s(0)

∂pk1
(p

(m)
k1
−p(0)

k1
)+

ε2

2

np∑
k1=1

np∑
k2=1

[
∂2s(0)

∂pk1pk2
(p

(m)
k1
−p(0)

k1
)(p

(m)
k2
−p(0)

k2
)+...+Rn(p1, ..., pnp)]

(4.3)

with, for example, for the first order:

∂s(0)

∂pk
=


∂z(0)

∂pk
∂λ

(0)
cr

∂pk

 (4.4)

Rn(p1, ..., pnp) is a residual at the order n. A homotopy parameter ε is introduced for each order

of the expansion as in Chapter 3. If ε is equal to zero, Eq. 4.3 defines the nominal eigensolution.

For ε equal to one, we obtain a Taylor series expansion of the variable s(m). This variable will

be used in a next section to identify the high order perturbed eigensolutions, already defined in

Chapter 3.

3.2 Calculation of derivatives

The eigensolutions derivatives depend on the derivatives of the nominal finite element stiffness

matrices, which can be written as follows by considering the form proposed in Eqs. 4.1 and 4.2:

∂Kl

∂pk
=

nf∑
k=1

∂fk(p
(0))

∂pk
Klk (4.5)
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∂Kσ

∂pk
=

nf∑
k=1

∂fk(p
(0))

∂pk
Kσk (4.6)

The calculation of nth derivative of eigensolutions
∂ns(0)

∂pnk
according to pnk is performed with a

method comparable to the calculation of high order perturbed vectors (Section 3.2 in chapter 3)

and requires the solving of a linear system for each order of derivatives:

K∗(0)
∂ns(0)

∂pnk
=
∂nF(0)

∂pnk
(4.7)

For a first order, the vector
∂F(0)

∂pk
is given for example by :

∂F(0)

∂pk
=


−

∂Kl

∂pk
z(0) +

∂Kσ

∂pk
z(0)λ

(0)
cr


−0.5

z(0)T
∂Kσ

∂pk
z(0)



 (4.8)

4 Reduced order model with high order derivatives

4.1 Reduced order model definition

Considering the specific form of finite element matrices, the reduced eigenvalue problem can

be defined as follows:(
nf∑
k=1

fk(p)
[
TT
z KlkTz

]
+ λcr

nf∑
k=1

fk(p)
[
TT
z KσkTz

])
qz = 0 (4.9)

with TT
z KlkTz and TT

z KσkTz are reduced constant matrices calculated only one time during

the offline step.

4.2 Derivatives in projection matrix

Considering the reduced eigenvalue problem, described in Eq. 4.9, the projection basis can

be defined with the nominal eigenvector and the associated high order eigenvector derivatives

truncated at the order n, such as:
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Tz =

z(0) · · ·
∂z(0)

∂pk
· · ·

∂nz(0)

∂pnk

 (4.10)

with k = 1 · · ·np. The size of this projection matrix is [ndof × (nd + 1)] with nd the number

of derivatives whereas the reduced problem is [(nd + 1)× (nd + 1)].

4.3 Calculation of perturbed modes with derivatives

Directly collecting all the eigenvector derivatives in the projection basis Tz is not advantageous

since the number of parameters is high for a truncation order n. To control the size of the basis

and reduce the CPU time, we proposed to express the high-order terms in terms of eigensolution

derivatives in order to maintain the reduced basis at the same size as of the ROM-HPP method,

described in chapter 3.

After developing Eq. 4.3 for buckling mode and reorganizing with respect to the different

orders of ε, we can identify a link between eigenvector derivatives and high order eigenvectors.

For the two first orders, we have:

s(1) =

np∑
k1=1

∂s(0)

∂pk1
(p

(m)
k1
− p(0)

k1
) (4.11)

s(2) =
1

2!

np∑
k1=1

np∑
k2=1

[
∂2s(0)

∂pk1pk2
(p

(m)
k1
− p(0)

k1
)(p

(m)
k2
− p(0)

k2
)] (4.12)

These data are integrated in the projection matrix Tz as explained in Eq. 4.10. As a reminder,

the maximal size of the projection matrix is [ndof × (np× n+ 1)] whereas the reduced problem is

[(np × n+ 1)× (np × n+ 1)].

4.4 Coupling of high order derivatives with kriging

In this section, the same strategy, already used with success in sections 3.2 of chapter 2

and 3.4 of chapter 3, is considered for the case of eigenderivatives. The space of parameters

and the space of participation factors are linked with a kriging technique to calculate qz(p) for

a new sample p. In the present case, the projection basis T can be composed either by the

derivatives of eigenvectors (Section 4.2), either by the high order perturbed eigenvectors defined

with eigenvectors derivatives (Section 4.3).
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The two proposed methods, respectively named ROM-Taylor-Kriging and ROM-Taylor-HPP-

Kriging, can be sum up for the offline step as follows :

� Calculation of reference solutions corresponding to snapshots,

� Determination of the stiffness matrices approximation,

� Determination of eigenvector derivatives for the nominal set of parameters,

� Generation of the projection basis with eigenvector derivatives for ROM-Taylor-Kriging and

with high order perturbed eigenvectors (build through eigenvector derivatives) for ROM-

Taylor-HPP-Kriging,

� Calculation of reduced buckling problem and determination of participation factors for ns

snapshots,

� Introduction of a new normalization for modes and update of participation factors.

For the online step, we have:

� Approximation of buckling load factors with kriging for a new set of parameters as a function

of updated participation factors.
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5 Numerical applications: buckling load evaluation of a

modified structure

5.1 Finite element matrices approximation

Before evaluating the efficiency of the different approximation methods, this section is dedi-

cated to the validation of the stiffness matrices approximation. In the present application, four

parameters are considered as variable, namely the Young’s modulus, the angle value and the two

dimensions of the structure section.

For the Young’s modulus, the order of truncation is naturally fixed to one whereas a third

or fourth order is chosen for the other geometric parameters. The same numerical framework is

considered concerning the random snapshots. As the determination of regression coefficients relies

on the knowledge of reference solutions of a set of snapshot, the maximal errors on buckling loads

are drawn in Fig. 4.1, respectively for a third and fourth order of truncation for the geometric

parameters. The approximated solutions are calculated with the parametric stiffness matrices

and a standard Sorensen algorithm.
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Figure 4.1 – Evolution of the maximal errors on buckling load as a function of the sample data
size and the order of truncation.

For a third order, we observe that the maximal errors are always superior to the threshold of

1% whatever the number of snapshots used. On the contrary, the maximal errors are inferior to

1% for a fourth order as soon as the number of snapshots is superior to 60. These results confirm

the non linear behavior of the critical load as a function of geometric parameters of the structure.
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Considering this decomposition of matrices, the next sections are dedicated to test the effi-

ciency of the different methods based on eigensolutions derivatives.

5.2 Case 1: Taylor expansion series

The approximation of buckling load factor with Taylor expansion series is dependent on the

order of truncation n, as detailed in Section 3. To study the effect of this parameter, the maximal

errors on the buckling loads are exposed in Fig. 4.2 for a first, second and third order.
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Figure 4.2 – Evolution of the maximal errors for Taylor expansion series as a function of the order
of truncation.

First of all, we observe a decrease of the error for a second and a third order in comparison

to the first one. Nevertheless, the errors remain high with a level of error close to 10%. The

associated modes are badly calculated too with a norm error superior to 250% and some MAC

inferior to 0.2. The convergence radius of this approximation is clearly too low as soon as the

bounds of input parameters are considered (Fig. 4.3). The behavior is globally comparable to the

series developments, exposed in chapter 3.

Even if the computational time is very low (only some matricial operations), this kind of

approximation is not compatible with a multiparametric analysis for buckling.
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Figure 4.3 – Response surface and associated errors on buckling load for Taylor expansion series
(a,b) parameters E and α, (c,d) parameters b and h.

5.3 Cases 2 & 3: ROM-Taylor and ROM-Taylor-HPP

This section discusses of the efficiency of two methods ROM-Taylor and ROM-Taylor-HPP,

which depends as previously of the order of truncation. Three orders of truncation are tested to

approximate the eigensolutions and the results presented in Fig. 4.4.

Whatever the order of approximation is chosen, the maximal errors on buckling loads are

inferior to 1% for the two methods. The quality of approximation is high for both critical loads

and associated modes for the two projections with only a first order, as shown in Figs. 4.5 and

4.6. Moreover, the norm error for modes is inferior to 1% with a MAC equal to 1.

About the computational time, the gain factors can be rather interesting. After calculating the

approximation of matrices with ns snapshots and the derivatives for a nominal set of parameters
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Figure 4.4 – Evolution of the maximal errors for ROM-Taylor as a function of the order of
approximation.

during the offline step, the online step relies, for each new input set, on the assembling of reduced

matrices (already stored in disk during the offline step) and on the calculation of a reduced

buckling problem. Thus, the more the number of degrees of freedom increases, the more the gain

factor increases too. The effective gain factor will be presented in Section 6.
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Figure 4.5 – Response surface and associated errors on buckling load for ROM-Taylor (a,b)
parameters E and α, (c,d) parameters b and h.

5.4 Cases 4 & 5: ROM-Taylor-Kriging and ROM-Taylor-HPP-

Kriging

To avoid calculating the reduced buckling problem for each new set of input parameter in

ROM-Taylor and ROM-Taylor-HPP methods, we have proposed to interpolate the participation

factors by kriging. The two proposed methods ROM-Taylor-Kriging and ROM-Taylor-HPP-

Kriging obviously depend on the order of approximation and on the number of snapshots.

As previously, a first order is sufficient to obtain a maximal error inferior to 1% as described

in Fig. 4.7. However, we observe that ROM-Taylor-HPP-Kriging is not enough robust as soon as

the order of truncation increases.

About the sample data size, the use of thirty snapshots (Fig. 4.8) allows to guarantee an
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Figure 4.6 – Response surface and associated errors on buckling load for ROM-Taylor-HPP (a)
parameters E and α, (b) parameters b and h.

acceptable level of error for the buckling loads (Fig. 4.9) in the case of ROM-Taylor-Kriging and

ROM-Taylor-HPP-Kriging methods. Nevertheless, the evolution of ROM-Taylor-HPP-Kriging is

less stable than ROM-Taylor-Kriging as a function of the sample data size.

For the buckling modes, the assessment is the same as the previous section for ROM-Taylor-

Kriging method because the norm error is inferior to 2% with a MAC of 0.99.
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Figure 4.7 – Evolution of the maximal errors on buckling load for ROM-Taylor-Kriging and
ROM-Taylor-HPP-Kriging as a function of the order of approximation.
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Figure 4.8 – Evolution of the maximal errors on buckling load for ROM-Taylor-Kriging as a
function of the sample data size.

In conclusion of this section, ROM-Taylor-Kriging method seems to be more efficient than

ROM-Taylor-HPP-Kriging method in term of global behavior as a function of key parameters

(order of truncation, sample data size). The updating of the projection basis and the calculation

of participation factor for each new sample do not guarantee a good behavior.
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Figure 4.9 – Response surface and associated errors on buckling load for ROM-Taylor-Kriging
(a,b) parameters E and α, (c,d) parameters b and h.

6 Assessment of results

In this section, we have highlighted that methods, based on derivatives, can be a possible

alternative to the reference method to perform a multiparametric buckling analysis. The main

condition for the success is to built a suitable approximation of finite element matrices compatible

with the behavior of each input parameter.

Except for a direct approximation with Taylor expansion series, the other proposals supply

efficient results as summarized in Fig. 4.10. Indeed, the level of precision verifies the threshold

fixed at the beginning of this benchmark both for buckling loads and associated modes. Only the

ROM-Taylor-HPP-Kriging method exceeds the threshold for the largest finite element model.

Moreover, the computational gain is of the order of 36 for ROM-Taylor, ROM-Taylor-HPP,
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ROM-Taylor-HPP-Kriging and 39 for ROM-Taylor-Kriging. Indeed, as soon as the parametric

description of finite element matrices are available, the calculation of the other steps are not

clearly time consuming. The integration of Kriging interpolation do not supply a additional

reduction of computational time as in previous chapters.
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Figure 4.10 – (a) Evolution of maximal errors on buckling load (b) and of the computational time
as a function of number of degrees of freedom.

For the following chapter, ROM-Taylor-HPP-Kriging method will not select because we have

shown that the behavior is not always stable.
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The three previous chapters have allowed to propose a new strategy to build a reduced order

model relying on the interpolation of participation factors with Kriging. These participation

factors are respectively associated to POD modes in Chapter 2, HPP modes in Chapter 3 and

eigenvectors derivatives in Chapter 4. Three methods, named ROM-POD-Kriging, ROM-HPP-

Kriging and ROM-Taylor-Kriging, have been proposed. The obtained results in the case of four

parameters are summarized Fig. 5.1 in term of precision and computational time.
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Figure 5.1 – (a) Evolution of maximal errors on buckling load (b) and of the computational time
as a function of number of degrees of freedom.

The level of precision is globally comparable for the three methods. The maximal errors of the

critical loads are always inferior to the threshold of 1% with a MAC close to 1 for the associated

eigenvectors. About the computational time, ROM-POD-Kriging and ROM-HPP-Kriging supply

the best gain factor in comparison to ROM-Taylor-Kriging. Indeed, the number of snapshots

necessary to build the approximation of matrices is superior to the two other ones. The number

of snapshots is respectively equal to 35, 25 and 60 for ROM-POD-Kriging, ROM-HPP-Kriging

and ROM-Taylor-Kriging methods in Table 5.1. The CPU gain factor will be more important as

soon as the number of degrees of freedom increases.

In conclusion, ROM-HPP-Kriging method, summarized in Fig. 5.2, is the best compromise to

be used in multiparametric analyses.
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Offline calculation Online calculation Total Reduced

Method Samples Offline Output Online time [s] time
time [s] number time [s]

Reference - - 2401 196720 196720 -
Kriging 350 28394 2401 18 28412 7

ROM-POD-Kriging 35 2682 2401 55 2737 72
ROM-HPP-Kriging 25 2614 2401 53 2667 74
ROM-Taylor-Kriging 60 5020 2401 55 5075 39

Table 5.1 – Decomposition of CPU times for Kriging and ROMs with 48598 dof.

Nominal calculation of a 
full linear buckling problem

Calculation of HPP modes 
per parameter direction

Definition of projection 
matrix by concatenation of 

HPP modes

Suppression of collinear 
vectors of projection matrix

Calculation of reduced 
linear buckling problem 

Determination of 
participation factors

Integration of a new 
normalization

Determination of modified 
buckling loads and 
associated modes

Calculation of updated 
participation factors 

Kriging interpolation for a 
new set of parameters

OFFLINE STEP ONLINE STEP

Generation of snapshots 
with Latin Hypercube 

Sampling

Figure 5.2 – Main steps of ROM-HPP-Kriging method.
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1 Introduction

Additive Manufacturing (AM), also commonly known as 3D printing, is a manufacturing

process for building almost any physical solid part from its three-dimensional digital model. In

AM, 3D complex parts are built-up by direct deposition of successive controlled thin layers of

melted metal on top of each other.

In its early days, AM was mainly used for rapid prototyping [Wohlers et al., 2014], but quickly

manufacturers discovered the potential of this new manufacturing process. AM was mostly

plebiscited (and still) by industrials of strategic sectors such as defense industry, aerospace and

aeronautics mainly for lightweight capabilities of the produced parts. However, in the recent

years, numerous industrial sectors such as automotive, medical, building,... have started to use

AM, because it enables the creation of innovative shapes which were not feasible before, using

the standard manufacturing processes. Some of the most used materials for these demanding

applications, such as Inconel 718 and Titanium Ti6Al4V, can be printed in 3D.

Nowadays, AM technology has a very fast growing market capability mostly in the aerospace,

automotive, healthcare, and consumer products sectors. According to the annual report on

Additive Manufacturing Technology by Wohlers [Wohlers et al., 2016], the AM industry grew by

25.9% to $5.16 billion in 2015. The annual growth rate for the previous three years (2012-2014)

was 33.8% and by 2021, the market is expected to grow to more than $26 billion. According to

Frost & Sullivan Institute in their report of 2015 [www.frost.com], the aerospace, automotive, and

medical industries are expected to account for 51% of the AM market by 2025. Figure 6.1 shows

the future of Additive Manufacturing with a schematic of revenue generation in manufacturing

sectors for the period of 2015-2025.

Figure 6.1 – Additive Manufacturing market potential according to the Frost & Sullivan Institute
[www.frost.com].
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As reported by recent publications [Javaid and Haleem, 2017], [Brandicourt et al., 2017],

[Berretta et al., 2018] and [Bose et al., 2018] with its capability of producing complex shapes and

lightweight parts, metal AM is becoming highly suited to the production of medical implants,

orthopaedics and dental devices in titanium, providing innovative healthcare solutions (Figure

6.2).

Figure 6.2 – Additive Manufacturing for healthcare solutions [www.healthtrustpg.com],
[Bin and Min, 2010], [Berretta et al., 2018].

More recently, researchers have found ways to print composite materials, such as carbon

fiber and fiberglass, which improve the durability and the strength of 3D-printed products. For

instance, [Compton and Lewis, 2014] discovered a new epoxy-based ink which enables 3D printing

of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber

reinforcement to create hierarchical structures inspired by balsa wood (Figure 6.3 left and center).

Engineers from 3Dynamic Systems company in UK have harnessed a new type of ceramic

matrix composites (CMC) technology. The printing filament is made from suspending fine ceramic

micro fibers in a thermoplastic polymer that is stable up to 325◦C. This is then printed to form a

3D aerospace component structure which is then heat treated in a furnace to 1450◦C, transforming

it into a CMC component (Figure 6.3 right).

Figure 6.3 – 3D printing of lightweight cellular composites (left and center) [Compton and Lewis, 2014].
3D Printed CMC turbine blade after processing in a 1450C furnace (right) [www.compositesworld.com].

Among lightweight structures obtained by AM, cellular or 3D lattice structures are probably

106

www.healthtrustpg.com
www.compositesworld.com


Chapter 6. Uncertainty quantification of 3D printed lattice structures under compressive loading

the most interesting, mainly for their lightweight characteristics and energy absorption in spe-

cific applications such as impact protection. [Gordon, 2008] studied the mechanical properties of

lattice structures under compressive loading. The author used analytical models to predict the

properties of the strength based on the critical inelastic buckling stress of an elementary cell of the

whole lattice. [Campanelli et al., 2014] investigated titanium alloy Ti6Al4V lattice structures for

the production of lightweight components. Compression tests were carried out in order to evalu-

ate the mechanical strength and the energy absorbed. [Choy et al., 2017] and [Sing et al., 2018]

studied Ti6Al4V lattice structures made of different unit cell geometries which were fabricated

by AM. Designs were compared in different geometrical orientations and different densities for

investigation of deformation behavior and compressive properties (Figure 6.4).

Figure 6.4 – Ti6Al4V made lattice structures produced by AM and their behavior was studied under
compression [Choy et al., 2017], [Sing et al., 2018].

[Sercombe et al., 2015] studied the failure mechanisms of porous scaffold structures obtained

by AM. Lattice structures made of Ti6Al4V were tested under interrupted compression and ana-

lyzed by X-Ray Micro Tomography to study the deformation and failure of the scaffolds. Authors

concluded that failure was observed in areas that exhibit the greatest tensile stress, while the onset

of the commonly observed layered failure occurred afterwards. Paulose et al. [Paulose et al., 2015]

investigated the design of 3D printed lattice structures to test a new mechanical material that can

be manipulated at strategic points for possible use as an insulator for frames as a start. Authors

were able to introduce controlled imperfections in some areas of the 3D lattice to let them buckle

in a controlled manner allowing the deformed structure to morph into a specific shape due to

an increase in temperature or stresses (see Figure 6.5). The authors demonstrate the effective-

ness of the topological design through analytical and numerical calculations as well as buckling

experiments performed on two and three-dimensional metamaterials built out of stacked kagome

lattices.

In 2016 [Kaur et al., 2017] made a literature survey about recent developments in AM of small-

scale 3D lattice structures with dimensions that span to nanometers. They highlight the advantage

of well-defined architecture and small-scale size effect towards a unique class of materials with
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(a) (b)

Figure 6.5 – Controlled buckling of a 3D printed lattice structure : a) Top view of the sample un-
der compression where controlled buckling zone is highlighted with red dots. b) Side view along the
compression axis at 20% of compression [Paulose et al., 2015].

supreme mechanical strength at ultra-low densities.

More recently [Chen et al., 2018] investigated the compressive performance of a hierarchical

lattice structure created by replacing cell walls in regular honeycombs with triangular lattice

configurations. They found that hierarchical lattice honeycombs exhibit a progressive failure

mode, along with improved stiffness and energy absorption under uniaxial compression. They

reported also that high energy dissipation and shape integrity was noticed at large imposed

strains. One can observe clearly from Figure 6.6, that lattice honeycombs with different densities

undergo at first a linear buckling with a clearly identified first critical load before collapsing under

higher loading pressure (Figure 6.6).

Therefore, it appears that a linear buckling analysis could be an important task as a first

attempt, to characterize the first critical buckling load, at the preliminary design stage of such

complex 3D lattice structures obtained by AM. This matter will be the subject of the present

chapter, where two lattice structures (see Figure 6.7) made by AM and supplied by the G-SCOP

laboratory (www.g-scop.grenoble-inp.fr) at Grenoble Alpes University will be studied and

the variability of some geometrical and material parameters will be investigated.

2 Brief description of additive manufacturing process

AM process begins with a CAD model exported to the AM machine in a STL file format.

The AM machine slices the CAD model into a finite number of layers, according to the desired

precision. Nowadays, a large variety of AM processes exists and unfortunately still no standard-

ization norm in this fabrication process contrarily to conventional manufacturing processes. The

108

www.g-scop.grenoble-inp.fr


Chapter 6. Uncertainty quantification of 3D printed lattice structures under compressive loading

Figure 6.6 – Stress-strain response of lattice honeycombs under compression with different relative
densities, respectively. [Chen et al., 2018]. The lattice undergoes buckling with a clearly identified first
critical load before collapsing.

(a) (b)

Figure 6.7 – Studied 3D lattice structures made of AM, produced by the G-SCOP laboratory at Greno-
ble. a) First model of cylindrical shape b) Second model of cubic shape.

two commonly used AM processes are :

— Powder Bed Fusion (PBF): where thermal energy from an electron beam or a laser,

repeatedly fuses thin layers of a powder bed and gradually produces solid parts. Different

techniques exist among, Electron Beam Melting, Selective Laser Melting and Selective Laser

Sintering. A wide range of materials can be used in this process, such as metals (stainless

steel 316L), polymers and super-alloys (Ti6Al4V, Inconel 718/625, aluminum Al–Si–10–

Mg).

— Material Extrusion (ME) : where beads of thermoplastic filament are molten using a

controlled heating power, then extruded and selectively distributed through a nozzle. The
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technique used here is the Fused Deposition Modeling, and used material are limited to

polymers and thermoplastics.

The 3D lattice structures (Figure 6.7) studied in this thesis were obtained using the Electron

Beam Melting technique, therefore we will limit description only to this AM process.

2.1 Electron beam melting (EBM)

Electron beam melting (EBM) is an advanced AM process in which metal powder bed is fused

by a concentrated beam of electrons heated using a controlled energy [Murr, 2015]. Production

in a vacuum chamber allows that electrons don’t collide with gas molecules and also prevent

oxidation which can compromise reactive materials such as titanium [Galati and Iuliano, 2018].

EBM is generally used to produce components for several industrial sectors such as aerospace,

automotive and medical industry.

The principle of EBM process is presented in its simplest scheme in Figure 6.8. The electron

beam is generated by filaments of tungsten or tantalum at high temperature up to 2500°C. It

is accelerated and concentrated by an electromagnetic lens (focus lens), then it is deflected to a

position on a work table (start plate) by deflection lens. Deflection lenses serve to direct electron

beam and are controlled by the software of the machine. Each new layer of powder in the hopper

is supplied to the work table by a metal rake. Metal powder melting is presented and the shape

layer of the part is defined by CAD model in the program of the machine. The work table will

move after each finished layer of the part.

Once a part has been produced, the build wrapper is removed together with other attached

objects from the loose powder. Powder clinging to the part and remaining in internal cavities is

cleaned and blasted away. Post-processing techniques, like hot isostatic pressing may be employed

to release residual stresses and improve mechanical properties. In some cases, machining may be

used to achieve required tolerances. Electro-polishing is also often used to improve the final

surface quality of the part.

2.2 Compatible materials with EBM process

Strategic industrial sectors such as defense and aerospace have been for a very long time

attracted by lightweight materials for their higher strength and corrosion resistance such as Ti-

tanium [Campanelli et al., 2014]. It has been reported from several research papers such as

[Castellanos et al., 2017], [Galati and Iuliano, 2018] that lightweight Ti6Al4V parts obtained by

AM have high performances in strength and durability, a serious benefit in applications where
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Figure 6.8 – Principle of Electron beam melting on an Arcam machine [Galati and Iuliano, 2018].

weight saving is critical.

In medical industry, biocompatibility of titanium alloy [Sidambe, 2014] permits the production

of sophisticated healthcare solutions by means of AM process such as prosthesis, orthopedics and

dental implants made of Ti6Al4V.

The mechanical properties of the standard titanium alloy parts made using the EBM process

are summarized in (Table 6.1). The Arcam Titanium Ti6Al4V (Grade 5) [Arcam, 2017b] powder

has a particle size between 45 and 100 microns. This limit on the minimum particle size ensures

safe handling of the powder.

Ti6Al4V ELI (Grade 23) [Arcam, 2017a] is very similar to its parent Ti6Al4V (Grade 5),

except that it contains reduced levels of oxygen, nitrogen, carbon and iron. ELI is short for Extra

Low Interstitials, and these lower interstitials provide improved ductility and better fracture

toughness for the Ti6Al4V ELI material. It is typically used for biomedical implants, cryogenic

applications and offshore equipments. The Arcam Titanium Ti6Al4V ELI (Grade 23) powder

particle size is the same as for Ti6Al4V. The mechanical properties of the Ti6Al4V ELI parts

made using the EBM process are summarized in (Table 6.2)

Other super-alloys can be processed with EBM, such as cobalt chrome [Gora et al., 2016]
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Table 6.1 – Mechanical properties of Ti6Al4V [Arcam, 2017b].

Table 6.2 – Mechanical properties of Ti6Al4V ELI [Arcam, 2017a].

with its excellent mechanical characteristics in terms of strength and temperature resistance

has attracted industrials in the defense, the aerospace where parts operate at very high tem-

peratures. The 316L stainless steel powder is often used to produce parts by means of AM

[Zhong et al., 2017]. Obtained parts are known for their excellent corrosion resistance, which

makes them attractive for automotive and medical industries.

Inconel 718 is another superalloy which can be processed by EBM [Popovich et al., 2017]

because of its excellent mechanical properties, corrosion resistance and top performance at high

temperatures. EBM-printed parts fabricated from Inconel 718 are used in racing and aerospace

applications. Valves fabricated from this nickel alloy are used in the petrochemical industry where

durability and corrosion resistance are important characteristics.
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2.3 Influence of the part orientation in EBM process

In AM, the part building is done by stacking layers of material on top of each other producing

staircase effect which leads to poor surface finish of the part. Therefore part build orientation

appears to be a crucial parameter which affects the part quality. [Das et al., 2015] proposed a

procedure to find optimal part build orientation which minimize the volume of support structures

while meeting the specified geometric tolerancing criteria of the part.

[Leutenecker-Twelsiek et al., 2016] proposed a procedure for the early determination of the

part orientation as depicted in Figure 6.9. Their method is based on dividing the part design into

several elements which are analyzed separately. During this analysis the orientation’s effects on

the quality features of the elements are evaluated and rated. The final orientation of the part is

determined based on this rating.

Figure 6.9 – Determination of part orientation in AM to meet geometric tolerancing criteria
[Leutenecker-Twelsiek et al., 2016].

Besides to the geometric tolerancing requirements for parts obtained by AM, the part build

directions (Figure 6.10) during the forming process can have a direct influence of the mechan-

ical characteristics of the part itself. For instance [Kok et al., 2018] reported that among the

influencing factors for the anisotropy of parts obtained by AM are : lack-of-fusion defects; phase

transformation; layer banding and microstructural coarsening. They concluded that adjusting
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the build orientation and specifying a minimum cross-sectional thickness were ways to reduce the

effect of the anisotropy and heterogeneity in material properties. Earlier, [Simonelli et al., 2014]

investigated the tensile properties of Ti6Al4V parts obtained by AM. They conclude that ductil-

ity is dependent on the build orientation of the parts. In particular, horizontally orientated AM

parts typically showed a higher mechanical strength as compared to vertically orientated ones.

Similar results were reported by [Carroll et al., 2015] on the influence of the anisotropic tensile

behavior of Ti6Al4V parts obtained by AM.

Figure 6.10 – Part build orientation in AM.

Generally in EBM process, the final surface quality has to be processed because in addition to

the staircase irregularities, the EBM process also faces other issues. When the powder is melted,

heat exchanges cause some of the bed powder to be partially sintered and sticked to the part

surface. The surface sintering effect not only degrades the geometrical tolerancing accuracy of

the part, but also creates surface defects which constitutes crack initiation sites. Therefore, it

appears that the surface quality improvement of EBM produced parts is of critical importance.

Within the EBM process, numerous post-process surface treatment techniques exist, to improve

the accuracy of the final parts. The most used are : machining, mechanical-polishing, abrasive-

polishing, electro-polishing, chemical milling and electroplating. Figure 6.11 shows the EBM

manufacturing steps of cylindrical lattice structure which will be analyzed in our work.

2.4 Advantages and drawbacks of EBM

The EBM process has several advantages and also some drawbacks, as with every manufac-

turing process.

Advantages

Among the advantages of EBM, we can cite :
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Figure 6.11 – Manufacturing steps of a cylindrical lattice structure obtained by EBM process.

— EBM process is more competitive economically than other processes.

— EBM process offers more flexibility for the design of complex parts.

— EBM produces parts are of better quality than those obtained by casting.

— EBM parts request less supports during forming than other processes.

— EBM process is 95 % energy-efficient, 5∼10 times better than Selective Laser Melting (SLM)

process.

— EBM parts have less residual stresses than in other processes.

Drawbacks

EBM process has some drawbacks, among :

— EBM parts have surfaces with low quality, it generally requires post-processing.

— EBM process needs a significant amount of calibration.

— EBM requires the use of pure powder metals.

— EBM machines require important preventative maintenance.

— EBM parts quality depends on the position of the part during the forming.

— EBM parts generally have a lower strength and a lower durability compared to SLM parts.
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3 Description of the studied 3D printed lattice structures

3.1 Lattice structures for energy absorption

As seen in the previous sections, lattice structures are one of the best choices when it comes

to energy absorption during impact. Several research groups have investigated the influence of

different patterns on cellular structures performances. [Labeas and Sunaric, 2010] studied the

response of three different cellular core types, suitable for manufacturing crashworthiness sand-

wich cellular structures. They showed that the structural response is strongly influenced by the

aspect ratio (radius/length), as well as the unit-cell size and shape. [Yang et al., 2015] investi-

gated experimentally and analytically the behavior of a 3D re-entrant honeycomb auxetic cellular

structure shown in Figure 6.12. They found that re-entrant auxetic structures have relatively

little sensitivity to the number of unit cells.

(a) (b)

Figure 6.12 – 3D re-entrant honeycomb auxetic cellular structure a) Re-entrant auxetic samples by
EBM. b) Auxetic unit cell [Yang et al., 2015].

[Warmuth et al., 2017] investigated the three-dimensional chiral cellular structure of Figure

6.13 which exhibits auxetic behavior in all three directions caused by negative Poissons ratio.

Samples were fabricated from Ti6Al4V powder via selective electron beam melting. The authors

studied the influence of the strut thickness on the mechanical properties and the deformation

behavior of cellular structures. They showed that the deformation changes from stretching to

bending dominated by an appropriate choice of the amplitude of the strut.

[Ozdemir et al., 2017] undertook an experimental study of Ti6Al4V re-entrant and diamond

lattice structures across a range of loading rates in Figure 6.14. The authors found that, whilst

re-entrant cube specimens made up of multiple layers of unit cells were load rate sensitive, the

mechanical properties of lattice structure cell layers were insensitive to load rate. This is an

important characteristic since the later type of lattice structure could be used as an energy
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(a) (b)

Figure 6.13 – A cubic chiral lattice structure (a) with a high amplitude, (b) with a low amplitude
[Warmuth et al., 2017].

absorber in impact problems.

(a) (b)

Figure 6.14 – Representative unit cells of (a) diamond and (b) re-entrant cube lattice structures
[Ozdemir et al., 2017].

With AM process one can theoretically produce an infinite variety of lattice structures using

different patterns within a design space. It is now possible to find through the literature, a wide

variety of lattice shapes (Figure 6.15) having more or less complex patterns [Ahmadi et al., 2015].

They have all in common a lightweight and high energy absorption in impacts compared to

classical parts.

In the present thesis work, two lattice structures made of Ti6Al4V ELI and supplied by the

G-SCOP laboratory at Grenoble Alpes University will be studied and the variability of some

geometrical and material parameters will be investigated. The two lattice structures are designed

as new solutions for the system of shock absorber for aircraft seats as shown in Figure 6.16.

3.2 Octagonal lattice structure

The first lattice structure is 3D truss made of titanium alloy Ti6Al4V ELI. The lattice structure

has an octagonal shape and is made of four-levels and four symmetrically linked branches in the
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(a) (b) (c)

(d) (e) (f)

Figure 6.15 – Lattice structures based on different types of unit cells: (a) Cubic; (b) Diamond; (c)
Truncated cube; (d) Truncated cuboctahedron; (e) Rhombic dodecahedron; (f) Rhombicuboctahedron
[Ahmadi et al., 2015].

Figure 6.16 – Aircraft seat absorber.

horizontal plane. Levels are linked together by branches of equal height L2. The cross section

size of the branches is circular of the same diameter as depicted in Figure 6.17.

All dimensions of the lattice structure are given in the 2D layout of the CAD geometry given

in Figure 6.18. The mechanical properties of Ti6Al4V ELI Titanium Alloy, may be found in

[Arcam, 2017a] and a wide range of values may be found in the literature. The main geometric
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(a) (b)

Figure 6.17 – Description of the studied octagonal lattice structure : (a) EBM real part (b) CAD
geometry.

Figure 6.18 – 2D layout of the CAD geometry of the studied octagonal lattice structure.

and material characteristics of the first studied octagonal lattice structure, are summarized in

Table 6.3.

3.3 Re-entrant cube lattice structure

The second lattice structure is 3D truss made also of titanium alloy Ti6Al4V ELI. The lattice

structure has a cubic shape and is generated by duplicating three re-entrant cube unit cells along

three axes, as shown in Figure 6.19.
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Parameter Value Unit

Length L1 12.5 mm
Length L2 7.5 mm
Angle α 45 deg
Angle β 90 deg
Diameter dCAD 2 mm
Young’s modulus E 113.8-120 GPa
Poisson ratio ν 0.342
Density 4.43 g/cm3

Table 6.3 – Geometric and material characteristics of the first studied octagonal lattice structure.

(a) (b)

Figure 6.19 – Description of the re-entrant cube lattice structure : (a) EBM real part (b) CAD geometry.

The re-entrant cube unit cell has dimensions a×a×a and all branches are of the same circular

cross section with a constant diameter d as depicted in Figure 6.20. The geometric and material

characteristics of the second lattice structure, are summarized in Table 6.4.

Parameter Value Unit

Length a 7.0 mm
Length b 1.56 mm
Angle β 90 deg
Diameter dCAD 1.12 mm
Young’s modulus E 113.8-120 GPa
Poisson ratio ν 0.342
Density 4.43 g/cm3

Table 6.4 – Geometric and material characteristics of the re-entrant cube lattice structure.
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Figure 6.20 – 2D layout of the CAD geometry of the re-entrant cube lattice structure.

Both of the lattice structures have been manufactured using the EBM process. The two

parts have been tested experimentally under compressive loading without any post-processing

technique to improve their external surfaces (raw parts). As it is known, raw parts made by

EBM do not meet the required CAD tolerances, therefore it becomes important to take into

account geometrical uncertainty in order to better analyze their mechanical response.

4 Uncertainty quantification and experimental buckling

loads

4.1 Geometrical variability associated to EBM process

The geometrical variability of 3D lattices structures obtained by means of EBM process is well

established. This is generally due to several parameters among, the built-part orientation, the

layer thickness and the melted pool depth. Some authors reported that 3D printed lattice parts

produced by EBM may present high variability in strut size and roughness [Yang et al., 2013],

and they introduce the so-called effective strut diameter d which falls entirely within the strut,

as shown in Figure 6.21. From the microscopic observations, [Antonysamy et al., 2013] analyzed

the effect of build geometry on the β-grain structure in Ti6Al4V parts, produced by EBM. They
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showed that nucleation of the β-grains always occurred heterogeneously from boundary layers.

This is resulting from partially melted powder in the surrounding bed. The authors found that

in bulk sections, coarse columnar grains develop a strong texture parallel to the build direction.

In contrast, the contour produced a complex skin grain structure which dominated thin sections

less than 2mm thick.

Figure 6.21 – Strut size of the parts made by EBM [Yang et al., 2013].

Figure 6.22 describes the concept of the geometrical diameter and the effectively working

diameter for specimens manufactured by EBM. The respect of the desired geometry described by

the CAD depends significantly on the size of the powders used during the building process. The

dimensions of the powders are given by a Gaussian distribution centered on the value of 80µm

(which is the reference for our two lattice structures). From Figure 6.22, we can understand that

powders of 80µm may partially increase the geometrical diameter of our parts, without necessarily

increasing the mechanical properties. In addition, knowing that Arcam AB had announced that

the roughness of parts produced by EBM is about 25− 30µm. By thus, accumulating this value

with the error induced by fused powders is of 30% on diameter, an error of about 90µm can be

obtained on the working radius of the strut.

[Suard et al., 2014, Suard, 2015] studied struts geometry based on X-ray micro-tomography.

They start from 3D images and develop a criterion of “mechanically efficient volume” for stiffness

prediction. They showed that the effective volume ratio, defined as the ratio of volume of the

inscribed cylinder over the volume of the strut estimated from 3D image analysis (6.23), leads to

a slight underestimation of the stiffness. Thus, Suard proposes a correction of the CAD diameter

dCAD as a function of the manufacturing orientation α considering a linear regression model.

The effective diameter dEFF is described as follows:

dEFF = (k0 + k1α)dCAD + (k2 + k3α) (6.1)
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(a) (b)

Figure 6.22 – Illustration of EBM built-part contour roughness : (a) During the EBM process (b) After
cooling and solidification.

Figure 6.23 – Inscribed and circumscribed surface : (a) Tomographic reconstruction of a 1mm strut
(b): Inscribed cylinder (red) inside the real strut (green) [Suard et al., 2014].

with k0 = 8.65 10−1, k1 = 1.02 10−3, k2 = −1.16 10−2, k3 = −3.37 10−3 the regression

coefficients of the polynomial. The author precises that this identification leads to a maximal

error between the measured values and the mathematical model of 5%. This mathematical

model and associated identified errors will be used in the next chapter relative to uncertainty

management.

4.2 Material variability associated to EBM process

Quasi-static traction tests are presented for 3 or 4 sets of raw specimens made of Ti6Al4V by

ARCAM EBM machine with three orientations as shown in Figure 6.24. Variation of material
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parameters obtained from the experiments for Ti6Al4V material are given in Table 6.5.

(a) (b)

(c)

Figure 6.24 – Mechanical behavior of specimens obtained by EBM manufacturing: (a) 0◦ direction (b)
45◦ direction (b) 90◦ direction.

We observe a non linear behavior as a function of the orientation during the manufacturing.

The highest values are obtained for an orientation of 45◦ whereas the highest variation about

elastic modulus is detected for an orientation of 90◦. The order of observed variation is classical

to this kind of experimental test bench.

124



Chapter 6. Uncertainty quantification of 3D printed lattice structures under compressive loading

Type Orientation Elastic Modulus [GPa]

0◦ 109.2±6.3

Machined material 45◦ 121.5±9.2

90◦ 107.1±11.6

Average 112.6±9.03

Table 6.5 – Material Elastic modulus: Influence of manufacturing direction.

4.3 Experimental setup variability

In the present investigation, a SINTECH 20/D machine was used for the quasi-static measure-

ments. Besides the standard experimental measurement errors which usually exist in all devices,

it has to be noticed that the upper clamping claw of the machine was free to rotate before it

stabilizes and starts pressing the specimen. Figure 6.25 shows the possible rotation of the upper

clamping claw of the SINTECH machine.

Figure 6.25 – Uncertainty of the experimental setup.

Therefore it has to be mentioned that the clamping claw may take an initial rotation angle

which may have a maximal amplitude of βmax = ±2◦. This value has to be taken into account

as a variability parameter of the experimental setup itself. Moreover, one has to add to this

variability parameter the standard error measurement on the load and displacements results.

4.4 Experimental buckling tests

Quasi-static experiments have been conducted to determine the buckling loads of the two

studied lattice structures (octagonal and re-entrant cube lattice structures). Compression tests

have been achieved using a SINTECH 20/D machine with a maximum loading capacity of 100

kN, available at LAMIH as shown in Figure 6.26. The specimen is placed between two lower and

upper claws and the load was applied very slowly with a speed of 2mm/min in such a way that
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the structure will deform slowly at very low strain rate.

Figure 6.26 – SINTECH 20/D machine used for buckling experiments.

The observation of the buckling process of the octagonal lattice structure during compression

is shown in Figure 6.27. As it can be observed experimentally, the deformed lattice structure

behaves as expected showing the first buckling mode shape consistent with the theory.

Figure 6.27 – Experimental buckling of the octagonal lattice structure.

The observation of the buckling process of the re-entrant cube lattice structure during com-
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pression is shown in Figure 6.28. Here, we observed experimentally that the deformed lattice

structure stays stable and collapse vertically when reaching the buckling load. This phenomenon

was expected because the re-entrant cube lattice structure belongs to the auxetic family of lattice

structures which are known to be stable because of their negative Poisson ratio.

Figure 6.28 – Experimental buckling of the re-entrant cube lattice structure.

The mechanical response in terms of load-displacement behavior is shown in Figure 6.29.

The two blue and red curves are the results of two quasi-static tests obtained from two different

specimens. The critical buckling load values are defined by the first limit point on the load-

displacement curve. These values correspond to 26.917kN and 26.751kN respectively.

On the same manner, the mechanical response of the re-entrant cube lattice structure is

shown in Figure 6.30. The critical buckling load values are 19.557kN , 20.066kN and 19.281kN

corresponding to the first limit points on the curves.

5 Deterministic simulations and correlation

5.1 3D Beam element for buckling analysis

In order to perform the numerical simulation of the buckling analysis of the two studied

lattice structures, the 3-dimensional Timoshenko beam finite element developed during this thesis.

Consider a 3D beam finite element given in Figure 6.31, we assume a two-node straight line beam

of length l having six degrees of freedom (dof) per node i as ui, vi, wi, θxi, θyi, θzi and hence 12 dof

in total.
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Figure 6.29 – Mechanical response of the octagonal lattice structure.

Figure 6.30 – Mechanical response of the re-entrant cube lattice structure.

The linear buckling formulation allows to obtain two matrices: a classical linear stiffness

matrix and a geometric stiffness one. The former can be written as
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Figure 6.31 – A 3D beam element with two nodes and 6 dof per node.

Kl =

∫
L0

BT
l H Bl dx (6.2)

where L0 is the initial length of the beam, H is the 6 × 6 generalized linear material law

which depends for isotropic materials on two parameters E and ν. Bl is the 6×12 constant finite

element strain matrix.

Taking into account the membrane, bending and sheering forces, the geometric stiffness matrix

reads:

Kσ =

∫
L0

BT
g σ Bg dx (6.3)

where σ is a generalized stress matrix, which is function of the generalized forces Nx, Ty, Tz

and moments Mx, My and Mz. Bg is a constant matrix defined in terms of the first derivatives

of the shape functions. Only one quadrature Gauss point is necessary for full integration of both

linear and geometric stiffness matrices.

In the following, the linear buckling problem will be solved as explained previously in chapter

1 using these two matrices. It has to be noticed that the choice of a beam element has been

justified by the high accuracy which can be obtained using much less elements compared to the

solid hexahedral elements.

5.2 FE modeling of the octagonal lattice structure

The octagonal lattice structure, shown in Figure 6.32, is defined with 2 strut types correspond-

ing to two orientations 0◦ and 90◦. Thus, two elastic modulus E0◦ and E90◦ and two diameters
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of section d0◦ and d90◦ are so considered for the parameterization. Hence, an inclination angle β

is added as shown in Figure 6.32.

Figure 6.32 – Choice of variability parameters for the octagonal lattice structure.

The octagonal lattice structure is submitted to a total compression load F = 37kN which is

distributed on 9 nodes at the top of the structure as indicated in Figure 6.33. At the bottom all

nodes are considered as clamped.

Figure 6.33 – Description of loading and boundary conditions of the octagonal lattice structure.

Three sets of values are considered for the five parameters E0◦ , E90◦ , β, d0◦ and d90◦ respectively

associated to CAD description, a mean description as well as a Suard description. They are

resumed in Table 6.6. These different data will be used in the next section for the correlation

with experimental results.

The linear buckling of the structure has to be validated using CAD nominal. To this purpose,

ABAQUS© software has been used as a reference solution where the B31 two-node beam model
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Parameter CAD description Mean description Suard description

Young’s Modulus E0◦ [GPa] 109.2 109.2 109.2
Young’s Modulus E90◦ [GPa] 107.1 107.1 107.1
Angle β [◦] 90 90 90
Diameter of section d0◦ [mm] 2 1.82 1.72
Diameter of section d90◦ [mm] 2 1.76 1.6

Table 6.6 – Significant set of values for the 5 selected parameters.

was adopted. For our modeling using MATLAB programming, the linear buckling analysis has

been done by means of eigenvalue solver IRA/Sorensen which is valid for very large number of

degrees of freedom. The first buckling mode shape is depicted in Figure 6.34.

Figure 6.34 – First buckling mode shape of the octagonal lattice structure using ABAQUS©.

For the computation of the critical buckling load, different finite element mesh refinements

have been used and our solution obtained using MATLAB was compared to the one obtained using

ABAQUS© software for exactly the same mesh. Figure 6.35 shows the comparison between the

two solutions in function of the number of dof. Both behaviors of our solution and the one

obtained using ABAQUS©, shown that the critical loads reduces and tends to be unchanged

after a certain refinement. Considering the input values of Suard’s case, the critical load changes

from 24162N to 22253N for ABAQUS©, and it changes from 28908N to 22188N in our model

when refining mesh from 819 dof to 57267 dof.

As it can be observed, the critical buckling load becomes stable after 5427 dof. The related

accuracy of critical load between ABAQUS© and our model is 0.3% up to 5427 dof. Hence, we

can consider that our developed 3D beam element is validated.
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Figure 6.35 – Comparison of the critical buckling load vs. total number of dof.

5.3 FE modeling of the re-entrant cube lattice structure

Similarly, for the re-entrant cube lattice structure in Figure 6.36, there are 2 strut types

corresponding to the two orientations 17.5◦ and 45◦. Similar number and kind of parameters are

considered for the present application, namely two elastic modulus E0◦ and E45◦ , an inclination

angle β, two diameters of section d17.5◦ and d45◦ as shown in Figure 6.36. Note that the first

Young modulus used here corresponds to the value measured at the nearest angle from 17.5◦.

Figure 6.36 – Choice of variability parameters for the re-entrant cube lattice structure.

The re-entrant cube lattice structure is submitted to a total compression load F = 30kN

which is distributed on 16 nodes at the top of the structure as represented on Figure 6.37. At
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the bottom the corresponding nodes are considered as clamped.

Figure 6.37 – Description of loading and boundary conditions of the re-entrant cube lattice structure.

As previously, the different description of parameters values are resumed in Table 6.7.

Parameter CAD description Mean description Suard description

Young’s Modulus E0◦ [GPa] 109.2 109.2 109.2
Young’s Modulus E45◦ [GPa] 121.5 121.5 121.5
Angle β [◦] 90 90 90
Diameter of section d17.5◦ [mm] 1.12 1 0.92
Diameter of section d45◦ [mm] 1.12 0.97 0.86

Table 6.7 – Significant set of values for the 5 selected parameters.

ABAQUS© and MATLAB buckling analyses were performed in the same conditions that in

the previous case. After resolution, the first buckling mode shape was obtained and is depicted

in Figure 6.38.

Figure 6.39 shows the comparison between the two solutions in function of the number of dof.

Both behaviors of our solution and the one obtained using ABAQUS©, shown that the critical

load reduces and tends to be unchanged after a certain refinement. Considering the input values

of Suard’s case, the critical load changes from 22486N to 20252N for ABAQUS©, and it changes

from 24825N to 19947N in our model when refining mesh from 5196 dof to 75180 dof.

As it can be observed, the critical buckling load becomes stable after 36300 dof. The related

accuracy of critical load between ABAQUS© and our model is 1.2% up to 36300 dof.

5.4 Deterministic numerical and experimental comparisons

The aim of this section is to compare numerical deterministic results of critical buckling loads

to those experimentally measured. For recall, three descriptions are here considered corresponding
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Figure 6.38 – First buckling mode shape of the re-entrant cube lattice structure using ABAQUS©.
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Figure 6.39 – Comparison of the critical buckling load vs. total number of dof.

to different values of diameters as a function of the orientation. Tables 6.8 and 6.9 summarize

buckling loads respectively obtained for the octagonal and re-entrant cube lattice structures.

Experiments Test 1 [N] Test 2 [N]
26971 26751

Numerical CAD [N] Mean for ROM [N] [Suard, 2015] [N]
44878 29867 22498

Table 6.8 – Comparison of critical buckling loads for octagonal lattice structure: experiments vs. nu-
merical.
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Experiments Test 1 [N] Test 2 [N] Test 3 [N]
19281 19557 20066

Numerical CAD [N] Mean for ROM [N] [Suard, 2015] [N]
50938 30150 19591

Table 6.9 – Comparison of critical buckling loads for re-entrant cube lattice structure: experiments vs.
numerical.

For the two studied lattice structures, the buckling loads calculated with CAD description are

clearly higher than those observed during experiments as explained by Suard. The correction of

the CAD diameter is mandatory for our lattice applications. For the octagonal lattice structure,

the mean and Suard’s, descriptions, namely 29867N and 22498N , bound those obtained exper-

imentally, corresponding to 26834N in mean. On the contrary for the re-entrant cube lattice

structure where the diameter is closer, Suard’s description, namely 19591N , is enough close to

the experimental ones, either 19635N in mean.

6 Conclusions

The main objective of this chapter was to propose an assessment of the variability associated

to the additive manufacturing of the lattice structures and to perform a first comparison between

numerical and experimental buckling loads.

After the brief description of the EBM method, two studied lattice structures with octagonal

and re-entrant cube shapes, are presented. Different experiments have been performed to highlight

the variations on the buckling loads and the elastic modulus as a function of the manufacturing

orientations. Next, we have proposed to investigate the Suardś works proposing a correction of

CAD diameters to consider the effective active volume of the built structures. Finally, two finite

element models have been developed and validated thanks to an industrial software to study the

buckling loads of the lattice structures.

The comparison of numerical and experimental results have highlighted that the correction,

proposed by Suard, is a good starting point to simulate the behavior of our lattice structures.

However, to numerically capture the variable experimental behaviors, the integration of uncer-

tainty in the numerical model seems to be interesting. This way will be developed in the next

chapter by considering both the different description to model the diameter variability and the

uncertainty associated to elastic modulus and angle inclination.
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Additive manufacturing of lattice

structures: Uncertainty propagation
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1 Uncertainty propagation in mechanical engineering

1.1 Towards reliable and robust designs

In spite of the developments of efficient numerical simulations, the correlation between a

deterministic simulation and experimentations are not obvious in many cases. Indeed, dur-

ing the manufacturing of mechanical structures, it is not uncommon to observe some un-

certainties resulting in product variability either on material properties, on geometric char-

acteristics and on boundary conditions. These observed variability necessarily affect the re-

sponse of structures and the efficiency of the studied system. Numerically, to take into ac-

count these uncertainties and tend to reliable and robust predictions, a current industrial

trend involves making multiple numerical simulations by performing sensitivity analyses, de-

signs of experiments [Fisher, 1935, Taguchi et al., 2005, Kleijnen, 2010] non-deterministic studies

[Moore, 1966, Shinozuka, 1972, Zadeh, 1978, Ben-Haim and Elishakoff, 1990] or even reliable and

robust optimizations [Goldberg, 1989, Kennedy and Eberhart, 1995]. Thus, the idea is to sim-

ulate the evolution of mechanical responses as a function of input parameter variations and to

detect failures and performance reductions of products.

In mechanical engineering, several theories, such as probabilistic theory

[Metropolis and Ulam, 1949], interval theory [Moore, 1966], and fuzzy set theory [Zadeh, 1965],

have already been used. Whatever the used theory, the introduction of uncertainty in numerical

simulations relies on several steps, namely uncertainty modeling step, uncertainty propagation

step and finally uncertainty management step.

Two major axes have generally been chosen considering intrusive or non-intrusive propaga-

tion methods. With intrusive approaches, the uncertain parameters are replaced in the governing

equations by appropriate expansions or approximations. To implement this category of approach

in a classical simulation code, it is necessary to rewrite a large part of the software. On the con-

trary, the main objective of non-intrusive methods is to obtain the perturbed output quantities

without making any modifications to the deterministic software. This second approach treats the

deterministic code as a black-box and approximates the unknown coefficients with formulas based

on deterministic code evaluations. The strategy for the selection of samples in the design space

and their number depend on the chosen non-intrusive technique. Several intrusive or non-intrusive

alternative propagation methods have been developed in order to overcome inconveniences of ref-

erence intensive samplings methods. In probabilistic approach, Monte Carlo Simulations (MCS)

[Metropolis and Ulam, 1949], represent the numerical reference method to propagate uncertainty.

This method is based on random sampling of input parameters and on deterministic calcula-
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tions associated with each combination of generated parameters [Schueller, 1997, Schueller, 2001].

Simple to implement, this method presents guarantee in terms of convergence but can be

proved prohibitive when the number of uncertain parameters increase or the deterministic

method itself is time consuming. Many improvements have been proposed to reduce this

drawback, such as the parallelization [Johnson et al., 1997, Papadrakakis and Kotsopulos, 1999,

Johnson et al., 2003], the sampling technique [Cambier et al., 2002, Helton and Davis, 2003] or

the used of meta-model [Gayton et al., 2003, Lew et al., 2006] which will be discussed in the

next subsection. If a classification is considered as a function of uncertainty nature, two

main categories can be built namely parametric and non-parametric methods. The paramet-

ric methods [Sudret, 2007] are the most popular and allow to take into account uncertain-

ties on the parameters of the model. Amongst numerous proposals, the first methods were

based on Taylor series expansion or perturbation techniques [Benfratello and Muscolino, 1998,

Chakraborty and Dey, 1998, Nieuwenhof and Coyette, 2002, Falsone and Ferro, 2005] with the

aim to substitute the equations of numerical model and the random functions by the mathe-

matical developments to quantify the first statistical moments (mean, variance) of output solu-

tions [Sudret, 2007]. These methods are dependent on the validity of Taylor series expansion

and can only be applied for linear static and dynamic problems [Handa and Andersson, 1981,

Liu et al., 1986, Shinozuka and Yamazaki, 1988] with low output dispersions around the nom-

inal values as shown by Ghanem and Spanos [Ghanem and Spanos, 1991b]. These last years,

authors were particularly interested in methods relying on polynomial chaos expansion de-

veloped by Wiener [Wiener, 1938a]. The first works in mechanical engineering are due to

Ghanem and Spanos [Ghanem and Spanos, 1991b] who have combined Wiener-Hermite devel-

opments with finite element method to model and propagate uncertainty in mechanical struc-

tures. A more general extension, called generalized polynomial chaos, was proposed by Xiu

et al. [Xiu and Karniadakis, 2002a]. The method is based on the correspondence between

the probability density functions of certain random variables and the weight functions of or-

thogonal polynomials of the Askey scheme. The polynomial chaos method allows the stochas-

tic contribution of a random variables and the deterministic contribution to be dissociated.

The random part is then decomposed on a basis of orthogonal polynomials (for example Her-

mite polynomials for Gaussian variable, Legendre for uniform variable). Intrusive and non-

intrusive methods have been successively applied to calculate stochastic modes useful to un-

certainty propagation. The intrusive method is based on the Galerkin projection to expand

the uncertain model on the polynomial chaos basis as a linear system of deterministic cou-

pled equations [Ghanem and Spanos, 1991b, Babuska et al., 2004]. Nevertheless, this way is

limited to a low number of random parameters and mainly applied to the case of linear
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problems to avoid the significant difficulties of implementation for non-linear problems. The

second way, non-intrusive, relies on either regression methods or spectral projection meth-

ods. The first category calculates the stochastic modes by minimizing the gap between ran-

dom function and its approximation on the polynomial chaos basis. On the contrary, the

Non-Intrusive Spectral Projection (NISP) methods [Nechak et al., 2012, Nechak et al., 2013a]

project the solution of problem on the basis of chaos. The initial problem is transformed

into a calculation of integrals [Crestaux et al., 2009] by the collocation approach for exam-

ple [Babuska et al., 2007, Loeven et al., 2007]. To avoid some limitations encountered in the

case of large numbers of random variables or large range of variations, several alternatives

have been proposed such as sparse generalized polynomial chaos [Xiu and Hesthaven, 2005,

Ganapathysubramanian and Zabaras, 2007, Blatman and Sudret, 2008], multi-element general-

ized polynomial chaos [Wan and Karniadakis, 2005], Wiener-Haar chaos [Mâıtre et al., 2004,

Nechak et al., 2013b] or Wiener-Fourier chaos [Millman et al., 2005]. As the parametric prob-

abilistic approach are not sufficient to take modeling errors and modeling uncertainties into ac-

count, a second category, called the non-parametric methods [Soize, 2000] has been developed

and are based on the use of a reduced-order model and the random matrix theory. The ran-

dom matrix theory [Mehta, 1991] is used to construct the prior probability distribution of the

random matrices modeling the uncertain operators of the mean computational model. On the

same way, the non-parametric method consists in constructing directly the stochastic model-

ing of the operators of the mean computational model. In practice, the generalized matrices

issued from the nominal finite element model of the structure are replaced by random ma-

trices. The uncertainties are introduced directly on global matrices of the model by using a

dispersion parameter and its prior probability distribution. The dispersion parameter is esti-

mated according to the Maximum Entropy Principle [Jaynes, 1957] for which the constraints are

defined by the available information [Soize, 2005a, Soize, 2005b]. Many works have been pub-

lished in order to validate the non-parametric probabilistic approach with experimental results

[Chebli and Soize, 2004, Chen et al., 2006] and to extend the applicability of the theory to differ-

ent areas in structural mechanics [Capiez-Lernout and Soize, 2004]. Recently, an improvement of

the non-parametric approach, called the generalized probabilistic approach of uncertainties, has

been proposed [Soize, 2010] and allows the prior stochastic model of each type of uncertainties

(uncertainty on the parameters of the model and modeling errors) to be separately constructed.

Other developments are dedicated to quantify the role of each kind of uncertainty (parametric

and non-parametric) and to integrate them simultaneously in uncertain applications.

The numerical developments proposed in interval and fuzzy set theories are very close and

can be explained together since a fuzzy problem can be decomposed into a set of interval prob-
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lems [Massa et al., 2006, Massa et al., 2008a, Massa et al., 2015b]. The reference method used

to solve problems described by the fuzzy formalism is based on Zadeh’s Extension Principle

(ZEP) [Zadeh, 1975a, Zadeh, 1975b, Zadeh, 1975c], which extends general operations for real

numbers to the corresponding operations for fuzzy numbers. The Extension Principle states

that the degree of membership of one combination is equal to the smallest degree of mem-

bership of the independent parameters of this combination. In the case of multiple occur-

rences of a solution, the final membership degree is equal to the maximum membership de-

gree of the different solutions. In practice, fuzzy numbers can be discretized either accord-

ing to the support (membership value equal to 0) or, more conveniently, according to the

membership function. Formally, implementation of the method leads to a combinatorial pro-

cess which can be compared to MCS in the sense that it presents the same drawback in

terms of computational time. In a similar way as with the probabilistic theory, many re-

searches have been performed to propose alternatives considering successively interval arithmetic

[Moore, 1966], perturbation or series expansion [Qiu and Elishakoff, 1998, Lallemand et al., 1999]

and specific samplings or designs of experiments [Hanss, 2002, Hanss, 2003, Donders et al., 2005,

Hanss and Turrin, 2010, Haag et al., 2010]. However, these methods have rapidly shown some

limitations such as the overestimation of the output set with interval arithmetic or a bad ap-

proximation of non-linear problems with perturbation techniques. The best results have been

obtained using either sensibility analyses or optimization algorithms. The first works have been

initiated by McWilliam [McWilliam, 2001] and relied on monotonic evolutions of response sur-

faces. Bounds of solutions are determined with bounds of the intervals associated to each param-

eter. More recently, an interesting solution has been proposed by transforming interval problems

as a min-max optimization problem to limit computational time of the uncertainty propaga-

tion step and thus to be compatible with an industrial context [Massa et al., 2009a]. Indeed,

this approach relies on iterative search for global optima (local gradient algorithm) in a search

space, the size of which is gradually increasing when the degree of membership is decreasing

[Massa et al., 2006, Massa et al., 2008b, Degrauwe et al., 2009]. For the crisp values, the output

quantities and their first sensitivities are determined for each fuzzy parameter. The signs of the

first-order sensitivities indicate the functional dependence of the response function and define

the combinations of discrete fuzzy parameter values for the following level of degree of member-

ship, which then can supply the minimum and maximum variations. For each α-cut level, the first

derivatives of the output quantities are evaluated for the combinations of discrete fuzzy parameter

values determined at the previous level. The comparison of the signs of the derivatives with those

obtained at the previous level indicates the search path. In this context, the uncertainty propa-

gation have already been studied in different linear problems such as static [Massa et al., 2006],
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modal [Massa et al., 2008b], frequency responses [Ruffin-Mourier, 2008, Massa et al., 2009b] and

transient [Rao et al., 2010]. Moreover, to control the computational time, the proposed methods

have been coupled with different approximations or reanalyses to limit the number of calls to

finite element calculations.

The last step is the uncertainty management. After having calculated the non-deterministic

solutions, it is possible to integrate them either on sensitivity analyses, to identify the most

sensitive parameters or in optimization process, to study and improve the reliability and the

robustness of the design. The aim of sensitivity analysis [Saltelli et al., 2000, Cao et al., 2013,

Zhang and Pandey, 2014] is to quantify the influence of each uncertain input parameter of a

model. In this context, a global sensitivity is considered rather than a local deterministic sen-

sitivity based on the computation of gradients of the response with respect to input parameters

around a specific value. First, the aim is to take into account both the input interactions and the

information for all possible ranges of variation of the uncertain parameters with the aim to esti-

mate their influence [Gauger et al., 2008]. Secondly, the idea is to avoid the drawback linked to

the choice of a reference point where local gradients are generally calculated. In non-probabilistic

context, a state-of-the-art of available methods is proposed in [Saltelli et al., 2000]. Regression-

based methods or variance-based methods are mainly considered to measure the effects of inputs

on outputs. In the case of variance methods, generally called ANalysis Of VAriance (ANOVA),

the variances of the output are decomposed as a sum of contributions of each input variable.

Next, the reliability analysis [Ditlevsen and Madsen, 1996, Melchers, 1999, Lemaire, 2005] con-

sists in computing the probability of failure of the system which can be described by a failure

criterion. This mathematic criterion is directly linked to uncertain input parameters and me-

chanical output responses and is represented by a limit state function which separates safe and

failure domain. The probability of failure is defined as the integral of the failure domain of the

joint probability function of random vector and cannot be computed analytically. It is necessary

to use numerical methods such as MCS or approximation methods such as First Order Reliability

Method (FORM) or Second Order Reliability Method (SORM) [Kiureghian et al., 1987] to eval-

uate the joint probability function. With the two last methods, the idea is to approximate the

probability of failure and to limit the computational time compared to MCS. In current industrial

applications, the objective is to optimize the system and to guaranty that 95%, even 99%, of the

samplings stay in the safe domain. The recent developments are focussed on the integration of

efficient approximation to define a more suitable approximated probabilistic problem. Finally,

the robustness analysis traduces the ability of the optimum to be insensitive with respect to the

input uncertainty. The aim is to guarantee in operation, low modifications of the proposed design

behaviour. Robustness measures can be directly incorporates in the objective functions of non-
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probabilistic approaches of the non-deterministic optimization problem. For example, Kelesoglu

[Kelesoglu, 2007] has proposed a method for fuzzy multi-objective optimization of space trusses,

and Ramı́k [Ramı́k, 2007] has developed a class of fuzzy optimization problems with an objective

function depending on fuzzy parameters. Massa et al [Massa et al., 2011a] have proposed a robust

fuzzy optimization of a lower wall of micro satellite. The aim was to minimize the mass of the

component while maximizing the robustness of the design parameters. In probabilistic theory, the

robustness problem can be seen as a minimization problem of the variance of output data. Shah

et al [Shah et al., 2015] have proposed a robust and computationally efficient optimization algo-

rithm for air foil design under mixed uncertainty. The algorithm exploits stochastic expansions

derived from the Non-Intrusive Polynomial Chaos techniques. Li et al [Li et al., 2015] proposed

a multi-objective robust optimization procedure mixing both random and interval variables in

crashworthiness design of a foam filled column. These advanced developments require very ex-

pensive computational times, which must be reduced, or at least maintained, using mathematical

approximation as an alternative to the evaluation of large systems of equations (due to the finite

element discretization for example).

1.2 Probabilistic approach

Many methods have been proposed in the literature for uncertainty propagation when un-

certain parameters are represented by random variables. The following sections summarized the

two methods used in this chapter for the numerical tests, namely Monte Carlo Simulation and

polynomial chaos expansion.

In the probabilistic theory, uncertainty is described either by random variables or by random

fields if spatial variation of the model properties is of concern. Construction of the associated

probability distributions requires a statistical study of measured data from specific tests. This par-

ticular phase of uncertainty quantification is primordial to introduce realistic variations. When

few experimental data are available from some observations of the system, these experimental

data can be used to identify an optimal prior stochastic model of uncertainties using the maxi-

mum likelihood method. In mechanical engineering, Gaussian, log-normal and uniform laws are

preferred in most applications.

1.2.1 Monte Carlo Simulation

Monte Carlo Simulation (MCS) [Metropolis and Ulam, 1949] is a general mathematical tech-

nique which allows to propagate uncertainty on input parameters through a deterministic model.

MCS is a non-intrusive method and can be used in a wide variety of fields such as in quantitative

finance, computational biology or physical science. The principle of the MCS is to simulate a large

143



Chapter 7. Additive manufacturing of lattice structures: Uncertainty propagation

number of samples of input random parameters then compute for each sample the response quan-

tity under consideration through the deterministic model. The last step of the method consists

in performing a statistical treatment of the output samples.

Suppose the response of a system is modelled by a mathematical function or an algorithm

M : Rp → R and x is the vector of input parameters. Uncertainty on the input parameters is

modelled by a random vector X ∈ Rp described by the joint probability function fX(x). The

response Y is also a random variable and is given by:

Y =M(X) (7.1)

Assume that a sample set of N input vectors has been generated, unbiased estimates of the

mean value µY and standard deviation σY of a response quantity Y are given by:

µY =
1

N

N∑
i

M
(
x(i)
)

(7.2)

σ2
Y =

1

N − 1

N∑
i

(
M
(
x(i)
)
− µY

)2
(7.3)

Additionally, the coefficient of variation of a response quantity Y which gives a measure of

its relative dispersion is given by:

CVY =
σY
µY

(7.4)

In practice, the quantities of interest in Eq 7.2 and Eq 7.3 are updated continuously during the

process after each run. The accuracy of the MCS can be estimated by the coefficient of variation

of the empirical mean given by equation Eq 7.5. Generally, a value of 1% or 5% is chosen as a

threshold for the convergence loop.

CVMCS =
σY√
NµY

(7.5)

The precision of the method is mainly dependent on the number of simulations which can

be very time consuming. Nevertheless, in many applications, MCS serves as a reference for the

evaluation of random response quantities given by alternative methods.

1.2.2 Polynomial chaos expansion

Polynomial Chaos Expansion (PCE), firstly introduced by Norbert Wiener [Wiener, 1938b]

is a powerful metamodeling technique to evaluate uncertainty of a dynamical system thanks to
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a probabilistic description of the system parameters. A first application of PCE in structural

mechanics is due to Ghanem and Spanos [Ghanem and Spanos, 1991a] who proposed an efficient

construction of the PCE for representing second-order stochastic processes and random fields.

They used PCE for solving boundary value problems with a stochastic finite elements method.

PCE was initially studied for Gaussian random variables. In a way to extend the method to

any random distributions, Xiu and Kaniakakis [Xiu and Karniadakis, 2002b] have proposed a

generalization of the original Wiener chaos expansion. Given a random vector with independent

components X ∈ Rp described by the joint probability density function fX(x) and a model

M : Rp → R, from the Wiener theory and the generalized Cameron-Martin theorem, any second

order random process can be expanded in a polynomial function series, such as:

Y =M(X) =
∑
α∈Nr

yαΨα (X) (7.6)

where Ψα (X) are multivariate polynomials orthonormal with respect to fX , α is a multi-

index that identifies the components of the multivariate polynomials and real values yα are the

coefficients of the polynomial chaos. In practice, the sum in Eq. 7.6 is truncated which leads to

the truncated PCE given by:

Y =M(X) =
∑
α∈A

yαΨα (X) (7.7)

The polynomial basis Ψα (X) is classically built from a set of univariate orthonormal polyno-

mials of degree k, φ
(i)
k (xi) associated to each input parameters (i) and is given by:

Ψα (x) =

p∏
i=1

φ(i)
αi

(xi) (7.8)

Type of variable Orthogonal univariate polynomials Support

Gaussian Hermite (−∞,+∞)
Uniform Legendre ]− 1,+1[
Gamma Laguerre ]0,∞)
Beta Jacobi ]− 1, 1[

Table 7.1 – List of common random variable and their corresponding univariate polynomials.

The correspondence between families of univariate polynomials and common random variables

to which they are orthonormal is given in Table 7.1. Considering a maximum order of truncation

d, the standard truncation scheme corresponds to all polynomials in the p input variables of total

degree less than or equal to d:
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Ap,d = {α ∈ Np : |α| < d}cardAp,d = r =
(p+ d)!

p!d!
(7.9)

To limit the number of polynomial coefficients, one can consider the hyperbolic truncation

scheme proposed by Blatman [Blatman, 2009].

This scheme is formally given by

Ap,d,q = {α ∈ Ap,d :‖ α ‖q< d} (7.10)

where:

‖ α ‖q=

(
p∑
i=1

αqi

) 1
q

(7.11)

For q=1, the hyperbolic truncation scheme correspond exactly to the standard one. For values

inferior to 1, the number of interaction terms decrease as q decrease. An example of the behaviour

of the hyperbolic truncation is given in Fig 7.1 for a problem with 2 uncertain parameters and a

maximum order of polynomial basis d=3.

Figure 7.1 – Hyperbolic truncation scheme for 2 uncertain parameters p1, p2 expand at degree 3.

Once the polynomial basis is created, the last step of the method concerns the evaluation of

the coefficients yα of the PCE. Several methods have been proposed in the literature. They are

either intrusive or non-intrusive. The non-intrusive ordinary least-square minimization method

[Berveiller et al., 2006] has been chosen and implemented. The non-intrusive aspect and the fact

that an arbitrary number of snapshots can be used to calculate the coefficients are the main

advantages of the method.

Given an experimental design of N input random vectors Xed = {x(1), · · · , x(N)}T and their

corresponding model responses Yed = {y(1), · · · , y(N)}T , the vector ŷ of coefficients yα is calculated

with:
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ŷ =
(
ATA

)
ATYed (7.12)

where the experimental matrix A which contains the values of all basis polynomials in the

experimental design points is given by:

Aij = Ψ
(
x(i)
)

with i = 1, · · · , N ; j = 1, · · · , r (7.13)

In practice, it is preferable that the size of the experimental design be superior to the rank r

of the polynomial basis (note that rank 1 corresponds to degree 0). Of course, snapshots must

be representative of the random input vector and are often evaluated using a Latin Hypercube

Sampling.

With the coefficients in hand it is then straightforward to calculate the two first moments of

the PCE and so of the outputs. The mean value of an output is given by:

µY = ŷ1 (7.14)

where ŷ1 is the coefficient of the constant basis term Ψ1 = 1. The variance of an output is

given by all over coefficients of the non-constant basis terms using:

σ2
Y =

∑
α∈A,α6=1

ŷ2
α (7.15)

Finally, one can obtain a posteriori error estimation of the PCE using the leave-one-out error

[Blatman and Sudret, 2010] which uses cross-validation. The technique consists in building N

different PCE meta-models where one snapshot of the experimental design has been suppressed

and then verify the prediction of this snapshot with the real value. In practice, when the results

of the least-square minimization are available, there is no need to explicitly calculate the PCE

meta-models, which can be time consuming. In this case, leave-one-out error can be calculated

using Eq. 7.16.

εLOO =

N∑
i=1

(
M(x(i))−MPCE(x(i))

1−hi

)2

N∑
i=1

(M (x(i))− µY )
2

(7.16)

where hi is the ith component of the vector calculated from the experimental matrix defined

by Eq 7.13.
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h = diag
(
A
(
ATA

)−1
AT
)

(7.17)

1.3 Interval and fuzzy sets approaches

In interval theory [Moore, 1966], the uncertain data are represented by intervals of variation.

The inferior and superior bounds represent the minimal and maximal observed data and each

value has the same confidence degree. Fuzzy set theory, introduced by Zadeh [Zadeh, 1978], can

be seen as an extension of the classical set theory and a generalization of the interval theory.

Fuzzy set introduces a degree of membership, represented by the membership function. This

membership function describes the grade of membership for each element in the domain defined

by the fuzzy set. The concept allows thus membership values between zero and one. Different

forms of membership functions can be chosen, depending on the kind of imperfection considered.

Triangular membership functions are the simplest and common choice to represent imprecisely

known quantities. Indeed, one can fix a membership degree of 1 to the classical used value

while membership values of 0 are affected to an estimate of the bounds of this value. However,

with additional information, other membership functions can be chosen (π-shape, trapezoidal

....) to model the perception and the expert judgment of the user. Triangular or trapezoidal

membership functions represented, Fig. 7.2, are a common choice when no specific information is

available about imperfections.

Figure 7.2 – Triangular and trapezoidal membership functions.

To solve problems described by fuzzy formalism, Zadeh proposes to use the Extension Princi-

ple, which extends general operations for real numbers to the corresponding operations for fuzzy

numbers.

Zadeh’s Extension Principle is outlined below:

Given a function ϕ that maps from X = X1 × X2 × . . . × XN to universe Y , such that

y = ϕ(x1, x2, . . . , xn) where y ∈ Y and xi ∈ Xi,∀i and considering fuzzy subsets A1, A2, . . . , An
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defined for reference sets X1, X2, . . . , Xn, the Extension Principle defines a fuzzy subset B of Y

using data from fuzzy subsets A1, A2, . . . , An of X. A fuzzy characterization of the membership

function in Y is written as follows:

If ϕ−1(y) 6= �, µB(y) = sup{min(µA(x1), µA(x2), . . . , µA(xn))}{x∈X,y=ϕ(x)}

If ϕ−1(y) = �, µB(y) = 0
(7.18)

Zadeh’s Extension Principle has already been implemented in its discrete form to propagate

uncertainties in mechanical engineering applications and is called the Transformation Method

[Moens and Hanss, 2011]. In practice, this approach initially requires a discretization of input

membership functions following the level of confidence in Fig 7.3 rather than the support. This

strategy defines a set of intervals
[
xinf
i ; xsup

i

]α
for which a level of confidence is also associated and

thus transforms the fuzzy problem in Eq 7.19 into several interval problems in Eq 7.20.

[ỹ1, . . . , ỹm] = f(x̃1, . . . , x̃n) (7.19)

where x̃1, . . . , x̃n and ỹ1, . . . , ỹm are respectively the input and output fuzzy numbers and f̃ the

function representative of the fuzzy problem to solve.

[
[yinf

1 ; ysup
1 ]α, . . . , [yinf

m ; ysup
m ]α

]
= f
(
[xinf

1 ; xsup
1 ]α, . . . , [xinf

n ; xsup
n ]α

)
(7.20)

Figure 7.3 – Description of the discrete implementation of Zadeh’s Extension Principle.
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In this chapter, ZEP is considered to calculate the membership function of buckling loads.

Next, a calculation of deterministic solutions corresponding to all combinations of fuzzy input

parameter values is performed to determine all possible evolutions for output data. Finally, an

evaluation of the degree of confidence for all solutions is considered to build the membership

functions of output data.

Since the implementation of the Extension Principle is time consuming to propagate the

uncertainty with precision in a finite element context, several methods have already been pro-

posed in the literature and are known as the fuzzy finite element method. These meth-

ods are based either on specific combinatorial samplings [Moens and Hanss, 2011], on inter-

val arithmetic [Massa et al., 2008a], on fuzzy logic [Massa et al., 2015a], on series development

[Massa et al., 2004] or on optimization problems [Massa et al., 2011a]. All these methods have a

common goal, which is to precisely determine all modifications of behaviours of studied solutions

in a time frame compatible with a mechanical design step.

To reduce the conservatism of the output solutions, we propose to build the output intervals by

considering an optimization technique rather than interval arithmetic which can seriously overesti-

mate the output set because of the same parameter [Moens and Hanss, 2011, Massa et al., 2008a].

The interval problem, defined for each α-cut level, is transformed as a min-max optimization prob-

lem in Eq 7.21 for each output data yi, defined as follows:

[
yinf

1 ; ysup
1

]α
=

[
argmin

(
f
(
[xinf

1 ; xsup
1 ]α, . . . , [xinf

n ; xsup
n ]α

))
; . . .

argmin
(
−f
(
[xinf

1 ; xsup
1 ]α, . . . , [xinf

n ; xsup
n ]α

)) ]α
(7.21)

where f is the function representative of the deterministic problem to solve.

The choice of optimization technique is mainly guided by the functional dependence of the

solutions, the kind of studied uncertain parameters and the mathematical problem to solve (linear

system for static analysis, eigenvalue problem for modal analysis, time or frequency dependence

for dynamic analysis). For certain parameters, simple rules can be defined because the func-

tional dependence of the solutions is monotonic. For example, eigenvalues tend to increase as

Young’s modulus increases and decrease as density increases. However, for other parameters,

the functional dependence is not always monotonic, particularly with large variations. Moreover,

functional dependence can be different for each component of the solution vector.

In the present case, the functional dependence of the solutions are not always monotonic and

we propose to consider a local gradient algorithm adapted to the management of the different

α-cut levels in Fig 7.4.
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Figure 7.4 – Propagation of uncertainty for fuzzy data.

Firstly, for each α-cut level, a search of parameter combinations leading to extreme solutions

is performed. The sensitivity of the output data is evaluated between each level to determine

how the response function is evolving. The output quantities and their first sensitivities for each

fuzzy parameter are determined for the crisp values (α = 1). The signs of the first-order sensitiv-

ities indicate the functional dependence of the response function and define the combinations of

discrete fuzzy parameter values, which could supply the minimum and maximum variations for

the following α-cut level. The signs of the derivatives are compared with those obtained at the

previous α-cut level. If the sensitivities have the same signs, the response function is considered

to be locally monotonic, and the determined combinations provide the minimum and maximum

variations of the modal quantities for the current α-cut level. If the sensitivities have different

signs, the response function cannot be considered monotonic, giving rise to an extremum between

these two α-cut levels. The combination nearest the extremum is chosen and the search is stopped

for this variation. Finally, the fuzzy output data are then built α-cut by α-cut.

To reduce the computational time associated with uncertainty propagation, we propose now

to substitute the classical solver for stability problem (which can be solved several times in the
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optimization scheme) with a reanalysis technique. The proposed strategy is described in the next

section.

2 Buckling analysis with uncertainty for lattice structures

2.1 Organization of calculations

The two lattice structures, described in the previous chapter, are here studied by considering

the five uncertain parameters. For each lattice structure, a ROM is built by using ROM-HPP-

Kriging method and integrated in fuzzy sets and probabilistic uncertainty propagation methods.

All the investigated non-deterministic simulations are summarized in Fig 7.5.

Figure 7.5 – Organization of non-deterministic calculations.

To evaluate the efficiency of proposed methods based on ROM, reference calculations are re-

spectively performed with MCS and Extension Principle implementation. Moreover, a polynomial

chaos is calculated for the probabilistic way whereas an uncertainty propagation by optimization

is proposed for the fuzzy sets theory.

2.2 Uncertain parameters description

Description of uncertain parameters is done using the same rules for both lattice structures.

The main idea is to maximize the use of information in hand for the description of fuzzy num-

bers. In a way to compare the results and considering the weak quantity of experimental data,

probabilistic uncertainty is built considering uniform laws where bounds are those of the fuzzy

number supports.
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Fuzzy numbers related diameters of struts are described using common triangular fuzzy num-

bers where typical values are defined as follows:

• The maximum of confidence corresponding to the crisp value (α = 1) is given to the diameter

calculated from Suard’s response surface model in Eq. 6.1 of Chapter 6.

• The lower bound of the support (α = 0) corresponds to 95% of the crisp value. In fact, a

maximum gap of 5% was observed by Suard between the response surface and the measured

values.

• The upper bound of the support is fixed to the CAD value expectation which cannot be

attained, justifying a degree of confidence of 0.

Fuzzy numbers related to Young modulus of struts are described using common fuzzy intervals

where typical values are defined as follows:

• Bounds of the interval at maximum of confidence are fixed with the extremum of measured

Young moduli in Table 6.5 of Chapter 6

• A variability of 10% is generally adopted to quantify uncertainty on elastic modulus. This

percentage is then shared between the lower and upper values of the previous interval which

gives the bounds of the support.

A triangular fuzzy number is adopted for loading angle β with a crisp value at 90◦. A

variation of 2◦ around this value was estimated and allows to fix the bounds of the supports.

Tables 7.2 and 7.3 summarized the description of uncertain parameters for respectively octagonal

lattice structure and re-entrant cube lattice structure. In both case, two orientations of struts are

considered leading to two uncertain diameters and two uncertain Young moduli. Note that for re-

entrant cube lattice structure, a Young modulus measured for a 0◦ manufacturing orientation has

been applied for the 17.5◦ struts orientation because material characterization was not realized

for this orientation. A fifth parameter, namely the loading angle finish the parameterization of

the uncertain buckling problem.
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Fuzzy description

Name Type Support Crisp

d0◦ Triangular [1.63;2] mm 1.72 mm
d90◦ Triangular [1.52;2] mm 1.60 mm
E0◦ Trapezoidal [97.76;121.28] GPa [102.9;115.5] GPa
E90◦ Trapezoidal [90.73;124.64] GPa [95.5; 118.7] GPa
β Triangular [88;92] ◦ 90◦

Probabilistic description

Name Type Bounds Mean; CV[%]

d0◦ Uniform [1.63;2] mm 1.815; 5.88
d90◦ Uniform [1.52;2] mm 1.76; 7.87
E0◦ Uniform [97.76;121.28] GPa 102.52; 6.20
E90◦ Uniform [90.73;124.64] GPa 107.69; 9.09
β Uniform [88;92]◦ 90◦; 1.28

Table 7.2 – Uncertain parameter description for octagonal lattice structure.

Fuzzy description

Name Type Support Crisp

d17.5◦ Triangular [0.87;1.12] mm 0.92 mm
d45◦ Triangular [0.82;1.12] mm 0.86 mm
E0◦ Trapezoidal [97.76;121.28] GPa [102.9;115.5] GPa
E45◦ Trapezoidal [106.69;137.24] GPa [112.3; 130.7] GPa
β Triangular [88;92] ◦ 90◦

Probabilistic description

Name Type Bounds Mean; CV[%]

d17.5◦ Uniform [0.87;1.12] mm 0.995; 7.25
d45◦ Uniform [0.82;1.12] mm 0.970; 8.93
E0◦ Uniform [97.76;121.28] GPa 109.52;6.20
E45◦ Uniform [106.69;137.24] GPa 121.97; 7.23
β Uniform [88;92] ◦ 90◦; 1.28

Table 7.3 – Uncertain parameter description for re-entrant cube lattice structure.
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2.3 Definition of the Reduced Order Models

The ROM-HPP-Kriging method is used to approximate the critical loads by using the strategy

summarized in Chapter 5. First, the projection matrix is defined considering the nominal data

and the high order perturbed modes calculated per parameter direction. In the present case,

five calculations are necessary to capture the evolution of the five variable parameters. For each

homotopy development, a third order of truncation is selected. Thus, the number of modes in the

projection matrix is equal to 16 to analyze the first buckling mode. About the kriging parameters,

we consider a second order regression model and a Gaussian correlation function. The sample

data size is equal to 50 for the first lattice structure and 50 for the second one.
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Figure 7.6 – (a) Evolution of maximal errors on buckling load (b) and of the computational time
as a function of number of degrees of freedom for octagonal lattice structure.

Method Offline calculation Online calculation Total Reduced

(for 57267 dof) Samples Offline time (s) Output number Online time time time
(s) (s) (s)

Kriging 400 20105 3125 49 20154 7

ROM-HPP-Kriging 50 1946 3125 119 2065 70

Table 7.4 – Decomposition of CPU times for Kriging and ROM-HPP-Kriging for octagonal lattice
structure.

To highlight the efficiency of the ROM-HPP-Kriging method, we propose to compare it to

kriging method as in the first part of this report. The results for the octogonal lattice are presented

in Fig. 7.6 as a function of the number of degrees of freedom to test the robustness of the method
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too. First, kriging method does not allow to achieve the, certainly demanding, threshold fixed to

1% whatever the size of data samples used. Indeed, with only kriging, we cannot obtain an error

less than 2.6% for 50 samples and less than 1.5% for 400 samples. Nevertheless, depending on

the context, it is clear that these last values can be considered as acceptable. On the contrary,

the maximal error for ROM-HPP-Kriging method is inferior to 1% with a DOE of 50 samples for

all finite element models. Moreover, the computational gain for the proposed method is close to

70 in comparison to the reference calculation. Notice that the computational gain associated to

kriging method is only to 7 as resumed in Table 7.4 for the case of 57267 dofs. The same efficiency

is obtained for the second lattice structure. This particularity of the ROM-HPP-Kriging method

will be highlighted again in sections 2.4 and 2.5 with the comparison of uncertain buckling loads.

2.4 Probabilistic simulations

The same procedure is applied for both lattice structures. In every cases, mean value and

coefficient of variation of the buckling load as well as data relative to the numerical cost of the

problem are stored. First, a MCS is performed using the full model to get the probabilistic

reference results. To avoid any outlier value of the buckling load during the simulation, the

current buckling mode is compared to the nominal one using a MAC criterion threshold of 70%.

Negative eigenvalues that may arise are also suppressed of the cumulative MCS process. For the

studied problems, none of these cases occurred. Second, a MCS is performed using the ROM-

HPP-Kriging described in section 2.3 and third, some PCE calculations was done in a way to

find the parameterization giving the best results compared to the MCS reference ones. Relative

errors on mean and CV of buckling load gives the first criterion to evaluate the quality of the

different reduce models. They are completed with a criterion which gives the maximum error

between buckling values given by the reference MCS and buckling approximations given by the

reduce models. This last criterion, called verification, error is formalized by expression Eq. 7.22.

ErrY =

(
Y i
MCSref −M(X i

MCSref )

Y i
MCSref

)
(7.22)

where M is either the ROM-HPP-Kriging or PCE model.

For a given number of uncertain parameter, the control parameters of the PCE model are the

maximum order of polynomials basis (d) and the truncation scheme (q). These control parameters

have a direct impact on the number of coefficients of the polynomial chaos and thus on the number

of necessary snapshots of the experimental design. The snapshots themselves have also an impact

on the accuracy of the PCE model because they are evaluated for random evaluations of the
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uncertain parameters using a LHS. As previously mentioned, the accuracy of the PCE can be a

posteriori controlled using the leave-one-out error (εLOO, Eq. 7.16) which behaviour is correlated

with the verification error. However, note that in an effective use of the method, the verification

error cannot be evaluated since it requires MCS reference. Thus, evaluation of the precision of

the PCE will be performed using only the leave-one-out error in the sequel.

The nature relatively smooth of the studied problems (in terms of stochastic complexity) does

not need high order polynomials. In a way to evaluate the minimal experimental design needed,

different PCE configurations have been tested using either orders 2 or 3 with standard truncation

and hyperbolic truncation with q=0.75 for order 3. With 5 uncertain parameters, the minimum

size of the experimental designs needed to avoid underdetermined linear system in eq. 7.10 are

Nmin = 21 for order 2, Nmin = 56 for order 3 (q=1) and Nmin = 26 for order 3 (q=0.75).

The Figs. 7.7 and 7.8 show the behaviour of the leave-one-out error thanks to the number

of samples used to build the PCE for respectively the octagonal and the re-entrant cube lattice

structures. Simulations was performed using a third order expansion and a standard truncation

scheme starting from the minimum number of samples and ending by doubling this number. Note

that a good evaluation of the leave-one-out error in the minimum case needs in fact Nmin + 1

samples (57 samples in these cases). For each sample set, 20 LHS have been performed to evaluate

the influence of the random sampling. The verification error is also plotted for each case. On

these figures, a blue dot corresponds to one PCE evaluation while the red cross gives the mean of

the 20 evaluations per experimental design size. A comparison between the two figures show that

it is not obvious to a priori set a threshold for the leave-one-out error since the minimal value that

can be reached is structure dependent. For the selection of the optimal size of the experimental

design, it is preferable to reason in terms of slope of the leave-one-out error. A second point that

can be mentioned concerns the behaviour of the two errors which is well correlated. It can also be

seen on both cases that the quality of the PCE are very sensitive to the random sampling when

the number of samples is set to the minimum. From the observations of the mean values of the

leave-one-out errors, one can consider that a number of 75 samples are necessary for the octagonal

lattice structure while 70 samples can be selected for the re-entrant cube lattice structure in a way

to get a good and stabilized quality of the PCE. In fact, for these selections good convergences

of the leave-one-out curves are reached.

Following this last results, a similar study is performed considering a reduced order with

a standard truncation scheme (order 2, q=1) and the same order with a hyperbolic truncation

scheme (order 3, q=0.75). In both cases, sizes of experimental designs were fixed to a proportional

value corresponding to the previous selection. These values correspond to an increase of the

minimum experimental design size of 34% for the first structure and 25% for the second one.
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Figure 7.7 – Evolution of (a) leave-one-out and (b) verification error for the octagonal lattice
structure.

Mean results about the PCE studies are reported in Table 7.5 for the octagonal lattice structure

and Table 7.6 for the re-entrant cube lattice structure. In both cases, one can notice that the two

reduce basis cases does not allow to reach the same Loo error order than the previous simulation.

The verification errors follow the same rule. They are inferior to 1%, as expected, only in the

cases corresponding to order 3 with a standard truncation scheme which confirms the choice of

the PCE model parameterizations.

Order Truncation [q] No of PCE Size of εLOO ErrY
coefficients experimental

Nmin design

3 1 56 75 5.12 10−5 0.76
3 0.75 26 35 7.57 10−4 2.50
2 1 21 29 9.10 10−4 2.76

Table 7.5 – Mean results of the PCE studies for octagonal lattice structure.

As a final evaluation for the probabilistic methods, Table 7.7 gives, for the two structures,
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Figure 7.8 – Evolution of (a) leave-one-out and (b) verification error for the re-entrant cube lattice
structure.

Order Truncation [q] No of PCE Size of εLOO ErrY
coefficients experimental

Nmin design

3 1 56 70 2.60 10−6 0.24
3 0.75 26 33 5.95 10−4 2.65
2 1 21 27 9.10 10−4 3.50

Table 7.6 – Mean results of the PCE studies for re-entrant cube lattice structure.

a comparison between the MCS reference results performed with the full models, MCS results

performed with the ROM-HPP-Kriging models and the chosen PCE models (order 3, q=1). As

a measure of numerical cost, numbers of full model evaluations or their equivalent values are also

reported in Table 7.7 for each method. Gains finally complete measures of efficiency.

Relative errors on the mean value and coefficient of variation of the first buckling factor

calculated with both alternative methods are very small and of the same order. The same remark

can be formulated for the verification error which reveal also a very good precision for the reduce
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Octagonal lattice structure Re-entrant cube lattice structure

MCS Ref MCS ROM PCE 75/3/1 MCS Ref MCS ROM PCE 70/3/1

µ Buckling 29532 29459 29488 31568 31357 31182
load [N]
CV Buckling 19.07 19.52 19.31 28.14 28.16 28.19
load [%]
Err µ [%] - 0.25 0.15 - 0.67 1.22
Err CV [%] - 2.36 1.26 - 0.07 0.18
Erry [%] - 0.93 0.76 - 0.54 0.24
No. 364 45 75 792 40 70
evaluations
Gain - 8 5 - 20 11

Table 7.7 – Comparison of probabilistic simulations.

model and the metamodel. Concerning the performance of the methods, a slight advantage is

obtained with the reduce model but the gain remains in the same level. The advantage with the

PCE is the capability to calculate the first moments directly with the PCE coefficients (Eqs. 7.14

and 7.15) without performing a Monte Carlo Simulation.

The Figs 7.9 and 7.10 show the histogram build from the Monte Carlo simulations for the two

lattice structures. The left pictures correspond to the reference results while the right pictures

are obtained with the reduce models. Mean values calculated for all probabilistic simulation are

superimposed in blue dotted lines while experimental solutions are represented by the red dotted

lines.

Considering that samples are different, comparison of the histograms for the same structure

confirms again the quality of the evaluation with the reduce models. Concerning the experimental

values, in both cases they are enclosed in the variation domains given by uncertainty propagation

simulations. However, one must recognize that mean values are much closer to the experimental

ones for the octagonal lattice structure than for the re-entrant cube lattice structure. Nevertheless,

this section has highlighted that uncertain propagation techniques allows to obtain more confident

results and more generally improve the predictivity of numerical simulations.
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Figure 7.9 – Histogram of buckling load for octagonal lattice structure.
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Figure 7.10 – Histogram of buckling load for re-entrant cube lattice structure.
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2.5 Fuzzy simulations

To perform the calculation with the Extension Principle and the optimization strategy, the

fuzzy numbers are discretized with 4 α-cuts. The Figs. 7.11 and 7.12 present the fuzzy input

parameters and the fuzzy buckling load used for the octagonal lattice structure whereas Figs. 7.13

and 7.14 are relative to the re-entrant cube structure.
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Figure 7.11 – Fuzzy input parameters of octagonal lattice structure.
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Figure 7.12 – Fuzzy buckling loads of octagonal lattice structure.

Figs. 7.12 and 7.14 present the fuzzy buckling load respectively calculated with the Exten-

sion Principle using reference calculations (EP-REF), with the Extension Principle using ROM

calculations (EP-ROM) or the optimization strategy using ROM calculations (OPT-ROM). For

the two lattice structures, the quality of the results is very good. The maximal error observed

between methods based on reference and ROM calculations is inferior to 1%. Thus, to study

the evolution of the fuzzy buckling load of different lattice structure, the OPT-ROM method can
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Figure 7.13 – Fuzzy input parameters of re-entrant cube structure.
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Figure 7.14 – Fuzzy buckling loads of re-entrant cube structure.

be selected. This last one requires a number of calculations clearly inferior to the EP method.

Indeed, a EP method relies in this case on 21952 calculations whereas a fifty of calculations are

necessary for the OPT method.

For the two lattice structures, the experimental results are included in the bounds of fuzzy

numbers. The intersection between the experimental values and the α-cut level give respectively

for the two lattice structures 0.9 and 1. As these values are enough close to one, the adding

of a slight observed variability on variable parameters is sufficient to enclose the experimental

data. This section has highlighted that uncertain propagation techniques allows to obtain more

confident results and more generally improve the predictivity of numerical simulations.
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3 Conclusion

This chapter has allowed to investigate the uncertain linear buckling of lattice structures which

was one of the objectives defined in the introduction of this thesis. Indeed, material and geometric

uncertainty, experimentally identified in previous chapter and associated to the octagonal and re-

entrant cube lattice structures, have been modelled using fuzzy sets and probabilistic theories.

Next, considering several uncertainty propagation methods and ROM-HPP-Kriging proposal, we

have respectively studied the membership functions and the probability densities of the buckling

loads. The results with proposed ROM have been confronted to those obtained with a classical

Monte Carlo Simulation or Polynomial Chaos Expansion. Finally, the non-deterministic results

have been successfully compared to experimental buckling loads. The different analysis and results

have highlighted the good behavior of the PCE and the great flexibility of use for the proposed

ROM in a multiparametric analysis context.

An examination of all uncertain results clearly shows that the choice of uncertainty modelling

has a strong influence on the analysis that can be made concerning the design of the structures.

Although all uncertain results enclosed the experimental ones, engineers take generally a decision

thanks to a specific value such as the mean for the probabilistic theory or a defuzzified value for

the fuzzy sets theory. For example, one can consider that mean values of the probabilistic result

are more representative of the experimental ones for the octagonal lattice than for the re-entrant

cube lattice (see figures 7.9 and 7.10). On the contrary fuzzy results are better representative of

the experimental ones for the re-entrant cube lattice since the interval with the maximum degree

of confidence perfectly enclose all experimental values (see figures 7.12 and 7.14). We can even add

that the median value of this interval perfectly match the experimental value. Moreover, focussing

on fuzzy buckling load of octagonal lattice (figure 7.12), the intersection between experimental

results and the fuzzy number give a membership value of 0.9 which corresponds to a high level

of confidence which relativizes the previous analysis. From these considerations it appears that

the fuzzy uncertainty representation is more appropriate in this early design phase. Although

this situation is not a general case this verdict is not completely surprising. Of course, in a more

advance project phase, an ad hoc quantity of information to describe probabilistic uncertainty

should certainly give better results than simple uniform distributions on relatively large intervals.

Anyway in all cases, it appears that uncertain modelling gives more insight that makes the

designer more confident on the quality of its models. This fact would certainly be reinforced if

experimental buckling tests have been performed on a more representative family of manufactured

specimens.
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General conclusions

This thesis has allowed to investigate several numerical methods compatible with the linear

buckling analysis of lattice structures described with uncertain material and non-topologic as

well as topologic geometric properties. The observed variability is associated to the additive

manufacturing, largely used nowadays to design highly complex part shapes. The uncertain

numerical behaviors are finally compared to those obtained experimentally during quasi-static

tests.

The proposed work has been organized in two parts. The first one has allowed to test different

metamodels or ROM methods, proposed in the literature, considering a same numerical framework

and develop a new numerical method coupling homotopy perturbation technique, projection and

kriging. This last proposal is then integrated in fuzzy and probabilistic uncertain propagation

methods in the second part to calculate the membership function and the probability density

function of the critical buckling loads. Two different lattice structures, for which experimental

data are available, are considered in numerical applications. These structures are designed for

energy absorption application and consider either octagonal or re-entrant cube unit cells.

The first chapter has summarized the main steps relative to the numerical solving of a deter-

ministic linear buckling problem and presented the numerical application used in the first part of

this thesis. The uncertain parameters are associated to material and geometric properties, such

as Youngs modulus, angle or section of the structure. Finally, the response surfaces highlight the

effect of section modifications on the buckling load values and the nonlinear evolution due to the

topological modification of node coordinates.

The second chapter has allowed to compare different metamodels in the case of the approx-

imation of linear buckling solutions and extract some advantages and drawbacks about each

metamodel. We have highlighted a good precision between 0.5% and 1% of errors for RBF, Krig-

ing, POD techniques to approximate the buckling loads. However, RBF method is not adapted

to the approximation of the buckling mode whereas the quadratic regression is not efficient for
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the eigensolutions. Finally, the ROM-POD-Kriging has been proposed to couple the advantages

of POD in a projection technique and Kriging. For this proposal, the level of precision (error

inferior to 1% for the buckling load and MAC superior to 0.99 for the buckling mode) and the

computational gain (close to 72 for the proposed multi-parametric analysis) is very interesting

for large finite element models.

Several methods based on perturbations and projection techniques have been investigated

in the third chapter considering the same previous benchmark. First, we have shown that the

modal stability assumption is not verified for the buckling problem. Second, Series or Pade

approximants have a low convergence radius or require very high order of developments that

implies important computational times. Third, the projection techniques, based either on HPP

modes or on residues, are very precise for approximating both the critical buckling loads and

associated buckling modes. However, the associated computational time is close to the reference

one and so the computational gain is not significant for multiparametric analyses. Finally, a new

method, called ROM-HPP-Kriging, has been developed and supplies an excellent compromise in

terms of precision and computational gain. Indeed, the maximal error on buckling load is inferior

to 1% and a MAC of 0.99 with a computational gain close to 74.

Several approximation methods, based on derivatives, are studied in the fourth chapter. These

last ones rely on the availability of a suitable parameterization of finite element matrices as a

function of input parameters. Except for a direct approximation with Taylor expansion series,

the methods based on projection and eigensolutions derivatives supply interesting results in term

of precision (error inferior to 1% for the buckling load and MAC superior to 0.99 for the buckling

mode) for the studied benchmark. Considering the same strategy as in the two previous chapters,

the ROM-Taylor-Kriging has been tested giving precision level similar to the projection techniques

with derivatives. At present, the computational gain is close to 39 and is less interesting than the

previous methods. This reduced performance is due to the computational time needed for the

approximation of finite element matrices.

The fifth chapter proposes an assessment of numerical results proposed in the three previous

chapters. ROM-POD-Kriging, ROM-HPP-Kriging and ROM-Taylor-Kriging performances are

compared by considering different size of finite element models. Finally, we have highlighted that

the ROM-HPP-Kriging gives the best compromise between precision and computational gain

and is chosen for the second part of this thesis. This method will be introduced in uncertainty

propagation methods. A flowchart, resuming the main steps of the ROM-HPP-Kriging method,

is then proposed.

The sixth chapter is firstly dedicated to the presentation of the additive manufacturing and two

studied lattice structures. Secondly, the variability associated to the EBM process is quantified
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thanks to a set of experiments. The variability is identified on Youngś modulus, diameters and

angle. Moreover, quasi static tests are performed to identify the experimental buckling loads

of each lattice structure. Next, we have proposed a finite element model of lattice structures

and some deterministic buckling simulations have been compared to experimental results. The

proposed analysis has confirmed the results developed in the Suardś thesis about the correction

of the diameters and shown the necessity to integrate uncertainty in numerical simulations.

The seventh chapter discusses of the uncertainty propagation in numerical simulations. Two

ways are here investigated considering two uncertainty modeling theories, namely fuzzy sets and

probability. The ROM-HPP-Kriging method is integrated in Monte Carlo Simulations for the

probabilistic formalism, and in Extension Principle and optimization technique for the fuzzy one.

The aim is to calculate the membership or the probability density functions of the buckling

load and to compare them to the experimental results. Finally, the non-deterministic correlation

highlights first the interest to consider uncertainty to improve the predictivity of simulations.

Second, we have shown a great flexibility of use for the proposed ROM.

Perspectives

This thesis has allowed to investigate several numerical methods on a same benchmark to

facilitate the comparisons in terms of precision and computational time. All these methods depend

on several key parameters that can certainly be optimized for future applications. For example,

different correlations functions, such as Matérn one, could be tested for RBF or Kriging methods.

The scaling parameter for RBF could perhaps be updated to reduce the error on buckling mode.

For ROM-POD-Kriging method, as a decrease of the level of precision in comparison to ROM-

POD is observed, it will be interesting to study the parametrization of Kriging in a way to improve

the interpolation of the participation factors. Next, for ROM-POD-Kriging method, it will be

interesting to study the convergence radius of this proposal as a function of the kind of input

parameters and the sampling offline step. Indeed, the generation of samples and the associated

size is another key parameter for this kind of study. Finally, the definition of samples with a

Design Of Experiments or an iterative strategy based on observed errors can improve the quality

of output results. Considering an improvement of these key parameters, another coupling could

be investigated for example ROM-HPP-RBF.

We have highlighted the efficiency of the proposed reduced order model for studying uncer-

tain buckling problems with fuzzy or probabilistic descriptions. Now, it is possible to investigate

different designs of lattice structures with an uncertain description which generalizes the Suardś

model. In this context, an experimental Design Of Experiments (DOE) can be proposed for
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studying more precisely the different uncertainty linked to the additive manufacturing and by

considering different conditions of manufacturing. A focus can be performed about the quantifi-

cation and the modelisation of the uncertainty.

As the solving of the linear buckling problem relies on a linear eigenvalue problem, it is first

possible to apply the ROM-HPP-Kriging method to vibration problem and study the frequency

and associated eigenmodes of mechanical structures. Second, we can extend the proposed method

to the quadratic eigenvalue problem and define a reduced order model to investigate, for example,

the stability problem of rubbing systems. Another way is to extend the current works to the

case of nonlinear buckling problem by taking into account the advantages and drawback of the

studied methods. The starting point is to analyze the behavior of Asymptotic Numerical Method,

successfully used for buckling problems, and study the possibility to introduce a reduced model.

Finally, about the uncertainty propagation in a probabilistic context, it will be interesting

to futher study the non-intrusive Polynomial Chaos Expansion method again and the possibility

to integrate the proposed reduced order model or another technique, instead of using a classical

regression metamodel, to improve the precision of results.

168



Bibliography

[Ahmadi et al., 2015] Ahmadi, S. M., Yavari, S. A., Wauthle, R., Pouran, B., Schrooten, J., Weinans,

H., and Zadpoor, A. A. (2015). Additively manufactured open-cell porous biomaterials made from six

different space-filling unit cells: The mechanical and morphological properties. Materials, 8(4):1871–

1896.

[Antonysamy et al., 2013] Antonysamy, A., Meyer, J., and Prangnell, P. (2013). Effect of build geometry

on the β-grain structure and texture in additive manufacture of ti6al4v by selective electron beam

melting. Materials Characterization, 84:153 – 168.

[Arcam, 2017a] Arcam, A. (2017a). Ti6Al4V ELI Titanium Alloy. Kroksltts Fabriker 27A, SE 431 37

Mlndal, Sweden.

[Arcam, 2017b] Arcam, A. (2017b). Ti6Al4V Titanium Alloy. Kroksltts Fabriker 27A, SE 431 37 Mlndal,

Sweden.

[Arnoult et al., 2011] Arnoult, E., Lardeur, P., and Martini, L. (2011). The modal stability procedure

for dynamic and linear finite element analysis with variability. Finite Elements in Analysis and Design,

47(1):30 – 45. Uncertainty in Structural Dynamics.

[Babuska et al., 2007] Babuska, I., Nobile, F., and Tempone, R. (2007). A stochastic collocation method

for elliptic partial differential equations with random input data. SIAM Journal on Numerical Anal-

ysis, 45(3):1005–1034.

[Babuska et al., 2004] Babuska, I., Tempone, R., and Zouraris, G. E. (2004). Galerkin finite element ap-

proximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis,

42(2):800–825.

[Balmès, 1996] Balmès, E. (1996). Parametric families of reduced finite element models: Theory and

applications. Mechanical Systems and Signal Processing, 10(4):381 – 394.

[Baxter, 1992] Baxter, B. J. C. (1992). The interpolation theory of radial basis functions. PhD thesis,

Cambridge University.

[Ben-Haim and Elishakoff, 1990] Ben-Haim, Y. and Elishakoff, I. (1990). Convex models of uncertainty

in applied mechanics. Studies in Applied Mechanics 25. Elsevier, Amsterdam.

169



Bibliography

[Benfratello and Muscolino, 1998] Benfratello, S. and Muscolino, G. (1998). A perturbation approach

for the response of dynamically modified structural systems. Computers & Structures, 68(1-3):101 –

112.

[Berretta et al., 2018] Berretta, S., Evans, K., and Ghita, O. (2018). Additive manufacture of peek cra-

nial implants: Manufacturing considerations versus accuracy and mechanical performance. Materials

& Design, 139:141 – 152.

[Berveiller et al., 2006] Berveiller, M., Sudret, B., and Lemaire, M. (2006). Stochastic finite element:

a non intrusive approach by regression. European Journal of Computational Mechanics/Revue Eu-
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[Blatman and Sudret, 2008] Blatman, G. and Sudret, B. (2008). Sparse polynomial chaos expansions

and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mécanique,
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ative method based upon padé approximants. Communications in Numerical Methods in Engineering,

15(10):701–708.

[Das et al., 2015] Das, P., Chandran, R., Samant, R., and Anand, S. (2015). Optimum part build

orientation in additive manufacturing for minimizing part errors and support structures. Procedia

Manufacturing, 1:343 – 354. 43rd North American Manufacturing Research Conference, NAMRC 43,

8-12 June 2015, UNC Charlotte, North Carolina, United States.

[David et al., 2012] David, A., J, Z. M., and Charbel, F. (2012). Nonlinear model order reduction

based on local reduced-order bases. International Journal for Numerical Methods in Engineering,

92(10):891–916.

[Degrauwe et al., 2009] Degrauwe, D., Roeck, G. D., and Lombaert, G. (2009). Uncertainty quantifi-

cation in the damage assessment of a cable-stayed bridge by means of fuzzy numbers. Computers &

Structures, 87(17-18):1077 – 1084.

[Ditlevsen and Madsen, 1996] Ditlevsen, O. and Madsen, H. (1996). Sensitivity Analysis. John Wiley

& Sons, Chichester.

[Do et al., 2016] Do, H., Massa, F., and Tison, T. (2016). Using fuzzy logic control approach and model

reduction for solving frictional contact problems. Engineering Computations, 33(4):1006–1032.

[Do et al., 2017] Do, H., Massa, F., Tison, T., and Lallemand, B. (2017). A global strategy for the

stability analysis of friction induced vibration problem with parameter variations. Mechanical Systems

and Signal Processing, 84(Part A):346 – 364.

[Donders et al., 2005] Donders, S., Vandepitte, D., de Peer, J. V., and Desmet, W. (2005). Assessment

of uncertainty on structural dynamic responses with the short transformation method. Journal of

Sound and Vibration, 288(3):523 – 549.

172



Bibliography

[Druesne et al., 2014] Druesne, F., Boubaker, M. B., and Lardeur, P. (2014). Fast methods based on

modal stability procedure to evaluate natural frequency variability for industrial shell-type structures.

Finite Elements in Analysis and Design, 89:93 – 106.

[Druesne et al., 2016] Druesne, F., Hallal, J., Lardeur, P., and Lanfranchi, V. (2016). Modal stability

procedure applied to variability in vibration from electromagnetic origin for an electric motor. Finite

Elements in Analysis and Design, 122:61 – 74.

[Duigou et al., 2003] Duigou, L., Daya, E. M., and Potier-Ferry, M. (2003). Iterative algorithms for

non-linear eigenvalue problems. application to vibrations of viscoelastic shells. Computer Methods in

Applied Mechanics and Engineering, 192(11-12):1323 – 1335.

[Falsone and Ferro, 2005] Falsone, G. and Ferro, G. (2005). A method for the dynamical analysis of FE

discretized uncertain structures in the frequency domain. Computer Methods in Applied Mechanics

and Engineering, 194(42-44):4544 – 4564.

[Fisher, 1935] Fisher, R. A. (1935). The design of experiments. Oliver and Boyd, Edinburgh.

[Galati and Iuliano, 2018] Galati, M. and Iuliano, L. (2018). A literature review of powder-based electron

beam melting focusing on numerical simulations. Additive Manufacturing, 19:1 – 20.

[Ganapathysubramanian and Zabaras, 2007] Ganapathysubramanian, B. and Zabaras, N. (2007).

Sparse grid collocation schemes for stochastic natural convection problems. Journal of Computational

Physics, 225(1):652 – 685.

[Gauger et al., 2008] Gauger, U., Turrin, S., Hanss, M., and Gaul, L. (2008). A new uncertainty analysis

for the transformation method. Fuzzy Sets and Systems, 159(11):1273 – 1291. Theme: Fuzzy Interval

Analysis.

[Gayton et al., 2003] Gayton, N., Bourinet, J., and Lemaire, M. (2003). CQ2RS: a new statistical

approach to the response surface method for reliability analysis. Structural Safety, 25(1):99 – 121.

[Ghanem and Spanos, 1991a] Ghanem, R. G. and Spanos, P. D. (1991a). Stochastic finite element

method: Response statistics. In Stochastic finite elements: a spectral approach, pages 101–119.

Springer.

[Ghanem and Spanos, 1991b] Ghanem, R. G. and Spanos, P. D. (1991b). Stochastic finite elements: a

spectral approach. Springer-Verlag, New York.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

[Gora et al., 2016] Gora, W. S., Tian, Y., Cabo, A. P., Ardron, M., Maier, R. R., Prangnell, P., Weston,

N. J., and Hand, D. P. (2016). Enhancing surface finish of additively manufactured titanium and

cobalt chrome elements using laser based finishing. Physics Procedia, 83:258 – 263. Laser Assisted

Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the LANE

2016 September 19-22, 2016 Frth, Germany.

173



Bibliography

[Gordon, 2008] Gordon, L. (2008). Hybrid Nanocrystalline Mesoscale Periodic Cellular Materials. BASc

thesis in Materials Science, University of Toronto.

[Haag et al., 2010] Haag, T., Herrmann, J., and Hanss, M. (2010). Identification procedure for epistemic

uncertainties using inverse fuzzy arithmetic. Mechanical Systems and Signal Processing, 24(7):2021 –

2034. Special Issue: {ISMA} 2010.

[Hamdaoui et al., 2014] Hamdaoui, M., Le Quilliec, G., Breitkopf, P., and Villon, P. (2014). Pod surro-

gates for real-time multi-parametric sheet metal forming problems. International Journal of Material

Forming, 7(3):337–358.

[Handa and Andersson, 1981] Handa, K. and Andersson, K. (1981). Application of finite element meth-

ods in the statistical analysis of structures. In T. Moan and M. Shinozuka (Eds) Proc. of the 3rd

International Conference on Structure Safety and Reliability, pages 409 – 420.

[Hanss, 2002] Hanss, M. (2002). The transformation method for the simulation and analysis of systems

with uncertain parameters. Fuzzy Sets and Systems, 130(3):277 – 289.

[Hanss, 2003] Hanss, M. (2003). Simulation and analysis of fuzzy-parameterized models with the ex-

tended transformation method. JProceedings of the 22th International Conference of the North Amer-

ican Fuzzy Information Processing Society, NAFIPS, Chicago, USA.

[Hanss and Turrin, 2010] Hanss, M. and Turrin, S. (2010). A fuzzy-based approach to comprehensive

modeling and analysis of systems with epistemic uncertainties. Structural Safety, 32(6):433 – 441.

Modeling and Analysis of Rare and Imprecise Information.

[Hardy, 1971] Hardy, R. L. (1971). Multiquadratic equations of topography and other irregular surfaces.

Journal of Geophysical Research, 76:1905–1915.

[Haykin, 1999] Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper

Saddle River, NJ.

[He, 1999] He, J.-H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics

and Engineering, 178(3-4):257 – 262.

[Helton and Davis, 2003] Helton, J. and Davis, F. (2003). Latin hypercube sampling and the propagation

of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1):23 – 69.

[Hong et al., 2011] Hong, S.-K., Epureanu, B. I., Castanier, M. P., and Gorsich, D. J. (2011). Parametric

reduced-order models for predicting the vibration response of complex structures with component

damage and uncertainties. Journal of Sound and Vibration, 330(6):1091 – 1110.

[Javaid and Haleem, 2017] Javaid, M. and Haleem, A. (2017). Additive manufacturing applications in

medical cases: A literature based review. Alexandria Journal of Medicine.

[Jaynes, 1957] Jaynes, E. T. (1957). Information theory and statistical mechanics. ii. Phys. Rev.,

108:171–190.

174



Bibliography

[Johnson et al., 2003] Johnson, E., Proppe, C., Jr., B. S., Bergman, L., Székely, G., and Schueller, G.
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