Modèle local des schémas de Hilbert-Siegel de niveau Г₁(p)
Auteur / Autrice : | Shinan Liu |
Direction : | Pascal Boyer, Benoît Stroh |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 28/09/2018 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Analyse, géométrie et applications (LAGA) (Villetaneuse, Seine-Saint-Denis) |
Etablissement de préparation : Université Sorbonne Paris Nord (Bobigny, Villetaneuse, Seine-Saint-Denis ; 1970-....) | |
Jury : | Président / Présidente : Anne-Marie Aubert |
Examinateurs / Examinatrices : Cédric Pepin | |
Rapporteur / Rapporteuse : Laurent Fargues, Sophie Morel |
Mots clés
Résumé
Dans cette thèse, nous étudions la mauvaise réduction de variétés de Shimura. Plus précisément, nous construisons un modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) sur Spec Zq lorsque p est non-ramifié dans le corps totalement réel, où q est le cardinal résiduel au-dessus de p. Notre outil principal est une variante sur le petit topos de Zariski du complexe de Lie anneau-équivariant Aℓv_G défini par Illusie dans sa thèse, où A est un anneau commutatif et G est un schéma en A-modules.Nous montrons aussi une compatibilité entre le complexe de Lie de G équivariant par l’anneau A, et celui équivariant par le monoïde multiplicatif sous-jacent de A.Ce complexe nous permet de calculer le complexe de Lie Fq-équivariant d’un schéma en groupes de Raynaud, donc de relier le modèle entier et le modèle local.