Analyse de la méthode projector augmented-wave pour les calculs de structure électronique en géométrie périodique
Auteur / Autrice : | Mi-Song Dupuy |
Direction : | Xavier Blanc |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques. Mathématiques appliquées |
Date : | Soutenance le 28/09/2018 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019) |
Laboratoire : Laboratoire Jacques-Louis Lions (Paris ; 1997-....) | |
Jury : | Président / Présidente : Ionut Danaila |
Examinateurs / Examinatrices : Xavier Blanc, Ionut Danaila, Erwan Faou, Benjamin Stamm, Virginie Ehrlacher, Eric Cancès, Marc Torrent | |
Rapporteur / Rapporteuse : Erwan Faou, Benjamin Stamm |
Mots clés
Résumé
Cette thèse est consacrée à l'étude de la méthode PAW (projector augmented-wave) et d'une de ses modifications, baptisée méthode PAW variationnelle (VPAW), pour le calcul de l'état fondamental d'Hamiltoniens en géométrie périodique. Ces méthodes visent à améliorer la vitesse de convergence des méthodes d'ondes planes (ou méthodes de Fourier) en appliquant une transformation inversible au problème aux valeurs propres initial agissant au voisinage de chaque site atomique. Cette transformation permet de capter une partie des difficultés dues aux singularités coulombiennes. La méthode VPAW est analysée pour un opérateur de Schr\''odinger unidimensionnel avec des potentiels de Dirac. Les fonctions propres de ce modèle comprennent des sauts de dérivées similaires aux cusps électroniques. Le saut de dérivée des fonctions propres du problème aux valeurs propres issu de la méthode VPAW est réduit de façon importante. Cela entraîne une accélération de convergence en ondes planes du calcul des valeurs propres corroborée par une étude numérique. Une étude de la méthode VPAW est conduite pour des Hamiltoniens 3D périodiques avec des singularités coulombiennes, parvenant à des conclusions similaires. Pour la méthode PAW, la transformation inversible comporte des sommes infinies qui sont tronquées en pratique. Ceci introduit une erreur, qui est rarement quantifiée en pratique. Elle est analysée dans le cas de l'opérateur de Schrödinger unidimensionnel avec des potentiels de Dirac. Des bornes sur la plus basse valeur propre en fonction des paramètres PAW sont prouvées conformes aux tests numériques.