Contributions à la théorie des valeurs extrêmes : Détection de tendance pour les extrêmes hétéroscédastiques
Auteur / Autrice : | Aline Mefleh |
Direction : | Clément Dombry, Hassan Zeineddine, Romain Biard, Zaher Khraibani |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et applications |
Date : | Soutenance le 26/06/2018 |
Etablissement(s) : | Bourgogne Franche-Comté en cotutelle avec École doctorale des Sciences et de Technologie (Beyrouth) |
Ecole(s) doctorale(s) : | École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Mathématiques de Besançon (Besançon) - Laboratoire de Mathématiques de Besançon / LMB |
Etablissement de préparation : Université ouverte de Franche-Comté | |
Jury : | Examinateurs / Examinatrices : Clément Dombry, Hassan Zeineddine, Romain Biard, Zaher Khraibani, Anne-Laure Fougères, Joseph Ngatchou-Wandji, Camelia Goga, Nasser Hoteit, Hussein Badran |
Rapporteurs / Rapporteuses : Anne-Laure Fougères, Joseph Ngatchou-Wandji |
Mots clés
Résumé
Nous présentons dans cette thèse en premier lieu la méthode de Bootstrap par permutation appliquée à la méthode des blocs maxima utilisée en théorie des valeurs extrêmes (TVE) univariée. La méthode est basée sur un échantillonnage particulier des données en utilisant les rangs des blocs maxima dont la distribution est présentée et introduite dans les simulations. Elle amène à une réduction de la variance des paramètres de la loi GEV et des quantiles estimés. En second lieu, on s’intéresse au cas où les observations sont indépendantes mais non identiquement distribuées en TVE. Cette variation dans la distribution est quantifiée en utilisant une fonction dite « skedasis function » notée c qui représente la fréquence des extrêmes. Ce modèle a été introduit par Einmahl et al. dans le papier « Statistics of heteroscedastic extremes ». On étudie plusieurs modèles paramétriques pour c (log-linéaire, linéaire, log-linéaire discret) ainsi que les résultats de consistance et de normalité asymptotique du paramètre θ représentant la tendance. Le test θ =0 contre θ ≠0 est interprété alors comme un test de détection de tendance dans les extrêmes. Nous illustrons nos résultats dans une étude par simulation qui montre en particulier que les tests paramétriques sont en général plus puissants que les tests non paramétriques pour la détection de la tendance, d’où l’utilité de notre travail. Nous discutons en plus le choix du seuil k en appliquant la méthode de Lepski. Enfin, nous appliquons la méthodologie sur les données de températures minimales et maximales dans la région de Fort Collins, Colorado durant le 20ème siècle afin de détecter la présence d’une tendance dans les extrêmes sur cette période. En troisième lieu, on dispose d’un jeu de données de précipitation journalière maximale sur 24 ans dans 40 stations. On réalise une prédiction spatio-temporelle des quantiles correspondants à un niveau de retour de 20 ans pour les précipitations mensuelles dans chaque station. Nous utilisons des modèles de GEV en introduisant des covariables dans les paramètres. Le meilleur modèle est choisi en termes d’AIC et par la méthode de validation croisée. Pour chacun des deux modèles choisis, nous estimons les quantiles extrêmes. Finalement, on applique la TVE unvariée et bivariée sur les vitesses du vent et la hauteur des vagues dans une région au Liban en vue de protéger la plateforme pétrolière qui y sera installée de ces risques environnementaux. On applique d’abord la théorie univariée sur la vitesse du vent et la hauteur des vagues séparément en utilisant la méthode des blocs maximas pour estimer les paramètres de la GEV et les niveaux de retour associés à des périodes de retour de 50, 100 et 500 années. Nous passons ensuite à l’application de la théorie bivariée afin d’estimer la dépendance entre les vents et les vagues extrêmes et d’estimer des probabilités jointes de dépassement des niveaux de retour univariés. Nous associons ces probabilités jointes de dépassement à des périodes de retour jointes et nous les comparons aux périodes de retour marginales.