Méthodes GPU de recherche par voisinage pour les problèmes de minimisation de graphes Euclidiens
Auteur / Autrice : | Wenbao Qiao |
Direction : | Jean-Charles Créput |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 22/09/2018 |
Etablissement(s) : | Bourgogne Franche-Comté |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Electronique, Informatique et Image (LE2i) (Dijon, Côte d'Or ; Auxerre, Yonne ; Chalon-sur-Saône, Saône-et-Loire ; Le Creusot, Saône-et-Loire ; 1996-2018) |
Etablissement de préparation : Université de technologie de Belfort-Montbéliard (1999-....) | |
Jury : | Président / Présidente : Christophe Nicolle |
Examinateurs / Examinatrices : Abder Koukam, Lhassane Idoumghar | |
Rapporteur / Rapporteuse : Adnan Yassine, Xianyi Zeng |
Mots clés
Résumé
Dans cette thèse, nous proposons des solutions parrallèles basées sur le systèmes actuel GPU (graphics processing unit) pour deux problèmes de minimisation de graphe Euclidien, à savoir le problème de forêt/arbre couvrant minimum Euclidien (EMSF / EMST) et le problème du voyageur commerce (TSP). Les solutions proposées résolvent également aussi le problème d'une paire bichromatique la plus proche (BCP), et suivent la technique de ``contrôle décentralisé, du parallélisme des données et des mémoires partagées par GPU''.Nous proposons une technique de recherche dans le voisinage le plus proche de dimension K Euclidienne basée sur les approches classiques de NNS d’Elias qui divisent l’espace Euclidien en cellules congruentes et ne se chevauchant pas, où la taille des points de chaque cellule est délimitée. Nous proposons aussi une technique d'élagage pour obtenir le NNS à base de composants afin de trouver le point de sortie le plus proche de l'ensemble de points de requête de Q dans la complexité temporelle linéaire séquentielle lorsque les données sont uniformément réparties. Ces techniques sont utilisées conjointement avec deux GPU algorithmes proposés pour arbre traversement, à savoir la recherche en largeur bidirectionnelle GPU et la liste chaînée dynamique distribuée, afin d'adresser le BCP. Basé sur la solution BCP, un algorithme parallèle Divide and Conquer est implémenté pour construire EMSF et EMST totalement côté GPU. Le TSP est adressé avec différents algorithmes de recherche locaux parallèles 2-opt, dans lesquels nous proposons une méthodologie ``évaluation multiple K-opt, mouvements multiples K-opt'' afin d’exécuter simultanément, sans interférence, des processus massifs 2-/3-opt mouvements qui se retrouvent globalement sur le même circuit TSP pour de nombreux bords. Cette méthodologie est expliquée en détail pour montrer comment nous obtenons un calcul haute performance à la fois du côté du GPU et CPU. Nous testons les solutions proposées et rapportons des résultats de comparaison expérimentale par rapport aux algorithmes de pointe.