Synthèse et caractérisation de matériaux organiques transporteurs de trous à base de carbazole : application aux cellules solaires DSSC solides et pérovskite
Auteur / Autrice : | Safia Benhattab |
Direction : | François Tran-Van, Bruno Schmaltz |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences des matériaux |
Date : | Soutenance le 19/12/2018 |
Etablissement(s) : | Tours |
Ecole(s) doctorale(s) : | École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire ; 2012-....) |
Partenaire(s) de recherche : | Equipe de recherche : Physico-Chimie des Matériaux et des Électrolytes pour l’Énergie (Tours) |
Jury : | Président / Présidente : Agnès Rivaton |
Examinateurs / Examinatrices : Nicolas Berton, Johann Bouclé, Frédéric Dumur | |
Rapporteur / Rapporteuse : Philippe Blanchard, Laurence Vignau |
Mots clés
Mots clés contrôlés
Résumé
Ce travail de thèse a permis de concevoir, synthétiser et caractériser de nouveaux verres moléculaires à base de carbazole pour la réalisation de cellules solaires DSSC solide ou de type pérovskite. Ces structures sont une alternative à la molécule de référence à base de spirobifluorène (Spiro-OMeTAD) utilisée majoritairement dans les dispositifs hybrides. Nous avons optimisé une voie de synthèse simple et rapide d’un « synthon carbazole » servant de précurseur à la conception d’une large variété de verres moléculaires transporteur de trous (HTM). Cette voie de synthèse a ainsi permis de réaliser une première génération de molécules possédant un unique synthon carbazole substitué par des groupements aryles (naphtalène, pyrène, triazatruxène) puis une seconde génération incorporant deux synthons carbazole séparés par un espaceur alkylé. Dans les deux cas, les voies de synthèse sont simples et les rendements de conversion d’énergie générés en DSSC solides sont prometteurs (entre 2,22 et 2,47 % avec le colorant D102). Une étude préliminaire de vieillissement consistant à analyser la dégradation en thermolyse et photolyse d’un film mince utilisant un HTM carbazole montre que ce dernier (Cz-P) possède une stabilité comparable au Spiro-OMeTAD en absence de dioxygène. Finalement, deux verres moléculaires ont été étudiés en cellules de type pérovskite permettant d’atteindre des rendement de conversion de 13,08 % et 12,41 % (pour Cz-P et Cz-PF) quasi-identiques à ceux à base de Spiro-OMeTAD (13,45 %) confirmant que ces structures à base de synthon carbazole sont aussi de bons candidats pour la réalisation de cellule pérovskite performantes.