Thèse soutenue

Dissociation de l'eau électrocatalytique avec des nanoparticules de ruthénium

FR  |  
EN
Auteur / Autrice : Jordi Creus Casanovas
Direction : Karine Philippot
Type : Thèse de doctorat
Discipline(s) : Chimie organométallique de coordination
Date : Soutenance le 11/07/2018
Etablissement(s) : Toulouse 3 en cotutelle avec Universitat autònoma de Barcelona
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Chimie de Coordination (Toulouse ; 1974-....)
Jury : Examinateurs / Examinatrices : Xavier Sala

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans le but de développer de nouveaux catalyseurs pour améliorer la production d'H2 à partir de l'eau et faire de l'hydrogène un vecteur d'énergie alternatif aux combustibles fossiles, l'étude de nanocatalyseurs pour les réactions d'évolution de l'hydrogène et de l'oxygène laisse entrevoir des perspectives prometteuses. Le Pt et l'Ir sont les principaux métaux des catalyseurs HE et OE. Mais un effort considérable est dévolu à comprendre les étapes mécanistiques qui gouvernent les deux demi-réactions impliquées afin de mettre à profit les connaissances acquises pour l'utilisation d'autres métaux plus abondants et moins coûteux. Le Ru apparaît un candidat idéal, étant un métal très polyvalent qui montre des activités similaires à celles du Pt et de l'Ir et pouvant être étudié par un large éventail de techniques analytiques. En outre, le Ru est quatre fois moins cher que le Pt qui est la référence aujourd'hui. Le développement de nanocatalyseurs précisément contrôlés pour leur application à la production d'H2 par dissociation électrocatalytqiue de l'eau figure parmi nos intérêts de recherche. Le but de ce travail de thèse est de développer des nanocatalyseurs à base de Ru pour les réactions HER et OER, et d'étudier les caractéristiques qui induisent une réponse catalytique spécifique. La synthèse suivie dite par approche organométallique permet de disposer de nanoparticules (NPs) avec un contrôle fin de leurs propriétés (taille, état de surface, dispersion, etc.). Les ligands organiques utilisés comme agents stabilisants permettent de stopper la nucléation des atomes métalliques et d'obtenir de très petites NPs avec une distribution en taille étroite. Ils peuvent aussi influer sur les propriétés chimiques de la surface des NPs, une caractéristique clé dans les processus catalytiques. Cette méthode permet également la préparation de NPs métalliques sur supports solides. Ce manuscrit est structuré en cinq chapitres: 1. Une introduction générale qui présente tout d'abord l'intérêt d'utiliser l'hydrogène comme combustible chimique, comparativement à d'autres sources d'énergie renouvelables et non renouvelables, et décrit les voies de production d'H2 à partir d'autres matières premières ainsi que les techniques pour son stockage et son utilisation de manière sûre et efficace. Viennent ensuite une description du concept de dissociation de l'eau et un parallèle avec la photosynthèse naturelle utilisée comme source d'inspiration, puis une mise au point bibliographique sur les catalyseurs pour les deux demi-réactions redox impliquées. Ce chapitre se termine par une brève description de l'approche organométallique pour la synthèse de nanocatalyseurs. 2. Sur la base d'une étude bibliographique, nos objectifs en lien avec la synthèse, la caractérisation et l'évaluation en catalyse de RuNPs sont ensuite présentés. 3. Le troisième chapitre décrit la synthèse et la caractérisation de NPs de Ru stabilisées par des molécules organiques, et leur évaluation en tant que catalyseurs dans la réaction d'évolution d'H2.