Thèse soutenue

Conception et développement d'un système d'intelligence économique (SIE) pour l'analyse de big data dans un environnement de cloud computing

FR  |  
EN
Auteur / Autrice : Amine El Haddadi
Direction : Bernard DoussetAbdelhadi Fennan
Type : Thèse de doctorat
Discipline(s) : Image, information, hypermédia
Date : Soutenance le 31/03/2018
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)

Résumé

FR  |  
EN

Aujourd'hui, avec la connexion présente en tout lieu et à tout instant, des données considérables naissent. Ces données ou data deviennent un acteur clé pour la compréhension, l'analyse, l'anticipation et la résolution des grands problèmes économiques, politiques, sociaux et scientifiques. Les data changent aussi nos procédures de travail, notre environnement culturel, allant même jusqu'à restructurer notre manière de penser. Et à peine que le monde scientifique, manageriel et financier, s'intéresse au Big Data, qu'une nouvelle discipline est en train de monter en puissance : le Fast Data. Outre le volume saillant de données ; une autre variante devient décisive, la capacité de traiter à vitesse efficiente les données dans toute leur diversité, de les transformer en connaissances en fournissant la bonne information à la bonne personne et au bon moment, voire les utiliser pour prédire l'avenir. L'exploitation de Big Data nécessite la proposition de nouvelles approches mathématiques et informatiques adaptées mais aussi une réingénierie des approches managériales pour la maîtrise de l'environnement informationnel d'un organisme public ou privé. Tout en se basant sur une démarche de management stratégique d'information comme l'Intelligence Économique (IE). Cette dernière combine et englobe les techniques de Business Intelligence pour la maîtrise des données internes et les techniques de veille stratégique pour la surveillance et la maitrise des flux d'informations externe. Cependant, le Big Data, comme source d'information sans limite pour l'IE, a bouleversé le processus traditionnel de l'IE, ce qui demande une réingénierie de la démarche d'IE. Mes travaux de recherche s'inscrivent parfaitement dans ce contexte caractérisé par un environnement incertain et imprévisible. Dans l'objectif principal est de proposer un nouveau système d'IE (SIE) pour l'analyse de Big Data. Donc, comment peut-on adapter la démarche d'IE à la nouvelle ère moderne de Big Data ? Dans lequel les organismes publics ou privés se trouvent submergés par l'information. Une première réponse, fait l'objet de ma contribution sur la proposition d'un nouveau SIE nommé XEW 2.0, qui se base sur une architecture Big Data orientée service, agile et modulable. L'architecture décisionnelle de XEW 2.0, se compose de quatre services : le Service de Sourcing (SS-XEW), le Service de Data Warehousing (SDW-XEW), le Service de Big Data Analytics (SBDA-XEW) et le Service de Big Data Visualisation (SBDV-XEW). Chaque service est vu comme une composante indépendante qui doit rendre un service bien précis aux autres composantes de XEW 2.0.