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Introduction

This thesis started in October 2015, the same year as the beginning of the Run 2 data-

taking period (2015-2018) during which the center-of-mass energy, the instantaneous lu-

minosity and the bunch crossing frequency was increased compared to the Run 1 (2008-

2013). Consequently, the possibilities for physics analyses were largely extended with a

price of a larger fluence on the detector side, especially on the tracker which is the inner

subdetector. With this increasing fluence, the detector suffers from a larger irradiation

which could be a cause of performance issues. Moreover, the detector is also ageing with

irradiation, leading to a change of some of its characteristics. Therefore it is very impor-

tant to monitor closely the detector, to keep its stable performance and consequently the

potential physics reach.

Particle physics is described by the standard model whose last piece, the Higgs boson,

was discovered in 2012 by the CMS and ATLAS collaborations. Although the standard

model is now complete and in general describes excellently the physics phenomena, it

suffers from several shortcomings. This issue makes us believe that the standard model

is an effective theory at low energy of a more fundamental theory which is to be deter-

mined. Over years, many theories were proposed and one, referred to as supersymmetry,

became of a special interest due to its capability to address many of the standard model

shortcomings.

Supersymmetry introduces a new partner to each standard model particle and there-

fore extensive searches for these particles have been performed by the CMS collaboration

as well as other collaborations. One of these particles is the supersymmetric partner of

the top quark, the stop, which is expected to have a mass around 1 TeV in natural su-

persymmetry and therefore be accessible at the LHC energies. No evidence for the stops

was found in Run 1, but the increase in luminosity as well as the center-of-mass energy

in Run 2 allows us to probe the stop masses beyond the Run 1 exclusion.

The description of the Compact Muon Solenoid (CMS) detector is given in the first

chapter, Chapter 1, together with a brief introduction of the Large Hadron Collider. This

chapter focuses on the silicon strip tracker, whose deeper understanding is required for the

following chapters. This chapter also presents the reconstruction of the physics objects

corresponding to particles passing through the detector.

1



INTRODUCTION

In Chapter 2 a study of Highly Ionizing Particles (HIP) in the strip tracker is presented,

motivated by the observation of the inefficiencies in tracking during years 2015 and 2016.

These HIPs are induced by inelastic nuclear interactions in the sensitive volume of the

tracker. The front-end electronics of the strip tracker is not designed to cope with the large

HIP energy deposits, therefore a HIP interaction saturates the electronics and induces a

dead-time. This chapter presents two studies I performed during my PhD on the HIPs.

They lead to the first measurement, with the CMS data, of the probability that a HIP

occurs in the tracker.

The third chapter, Chapter 3, focuses on the simulation of the CMS strip tracker. In

order to be able to compare the results of the experiment with the theoretical expecta-

tions, the interactions of generated particles with the detector must be simulated. This

chapter describes how the simulation in the strip tracker is implemented and how it can

be improved. It is shown that several tracker properties and conditions are taken as pa-

rameters in the simulation. With the ageing of the detector these properties evolve and

therefore need to be remeasured and updated in the simulation. In this chapter, I identify

which parameters need to be reevaluated. In this context, a measurement of the cross

talk, resulting from the capacitive coupling between neighboring strips, is presented using

cosmic data. The impact of the newly measured cross talk parameters on the simulation

is presented as well.

After an introduction of both SM and SUSY in Chapter 4, the search for the stop is

presented in Chapter 5 in the single lepton final state with the data of Run 2 recorded

in 2016 corresponding to an integrated luminosity of 35.9 fb−1. In this analysis I was

mainly responsible for the estimation of one of the SM backgrounds entering into the

targeted signal regions. I also tried several options to improve the analysis performance

(i.e. W-tagging).

2



Chapter 1

The CMS experiment at the LHC

There are several options how to study elementary particles, for example it can be studied

via cosmic rays, astrophysical neutrinos, direct searches for the dark matter or at collider

experiments. In Section 1.1 the largest existing collider, the LHC, and its experiments are

introduced. In Section 1.2 the CMS detector, in which context this thesis is performed,

is described. Then in Section 5.2.3, the object reconstruction techniques of the CMS

collaboration applied on the CMS data are introduced. A special interest is put on the

topics whose a deeper understanding is required for the following chapters of this thesis.

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1] is a particle accelerator with a circumference of

27 km, which is a part of the CERN accelerator complex [2] located near Geneva, Switzer-

land. The LHC project was approved in 1994 and designed to provide mainly collisions

of protons. Part of the LHC operation time is also dedicated to collisions of heavy nuclei,

but in this thesis only the proton collisions are described.

A schematic view of the CERN accelerator complex with its main experiments is

presented in Fig. 1.1 [3]. At the beginning of the acceleration process the protons are

obtained by stripping electrons from the hydrogen atoms. Protons are then accelerated

through a chain of accelerators: Linac2, Booster, Proton Synchrotron (PS) and Super

Proton Synchrotron (SPS). The proton beams accelerated to 450 GeV are injected from

the SPS into the LHC using separate pipes, one beam turning clockwise and the other

one anti-clockwise. In the LHC, the beams are further accelerated with eight radio-

frequency (RF) cavities per beam, currently to the beam energy of 6.5 TeV. The LHC

is equipped with 9593 magnets, mainly dipoles and quadrupoles, to bend and focus the

beams. There is an ultrahigh vacuum of order of 10−10 − 10−11 mbar in the LHC tube to

3



CHAPTER 1 - THE CMS EXPERIMENT AT THE LHC

avoid collisions of particles with gas. A vacuum of around 10−6 mbar is also used for the

isolation of cryomagnets and the helium distribution line.

Figure 1.1: The CERN accelerator complex [3].

The proton beams are not homogeneous but composed of trains of bunches, each

bunch containing around 100 billions of protons. Bunches within a given train are spaced

by 25 ns. Time gaps between two different trains are longer, their duration depends

on the beam structure and currently they start from seven times 25 ns. The LHC uses

several beam structures, which are specified by the filling scheme. An example of a beam

structure is shown in Fig. 1.2.

Up to now, the LHC operation has been divided into two eras, Run 1 and Run 2. The

Run 1 started in 2008 and ended in 2013. During this era the center-of-mass energy of

the pp collisions was first 7 TeV, then it was increased to 8 TeV in 2012, and the beam

structure allowed collisions every 50 ns. The Run 2 started in 2015 and is still ongoing. In

the Run 2 the collision center-of-mass energy increased to 13 TeV and the time between

collisions was reduced to 25 ns. The Run 2 stops at the end of 2018, the Run 3 is scheduled

to start in 2021.

The bunches of protons collide at four interaction points (IP), at which four main

experiments are installed. The two general-purpose detectors, which are designed to cover

4
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�... �...

25 ns

(~7.5 m)
long gap

up to 1.2 1011 

protons in bunch

train 1 train 2

beam 

up to 2808 bunches in beam

Figure 1.2: (top) An example of beam structure. The beam pipes are shown in red and
violet and the beams are drawn in green. (bottom) An example showing the structure of
two trains.

a wide range of physics, are ATLAS (standing for “A Toroidal LHC ApparatuS”) [4] and

CMS (standing for “Compact Muon Solenoid”) [5]. The other two main experiments are

ALICE (standing for “A Large Ion Collider Experiment”) [6], mainly focusing on the

physics of heavy-ion collisions and the study of the “quark-gluon plasma” which existed

at the early Universe, and the LHCb (standing for “Large Hadron Collider beauty”) [7]

specialized in the physics of the b-quark. There are also three smaller experiments along

the LHC, one of them is TOTEM [8] which is close to CMS and its principal goal is to

measure the total cross section of protons at the LHC. LHCf [9], which is located near to

the ATLAS experiment, studies particles moving very close to the proton beams. Finally

MoEDAL [10], which is close to LHCb, focuses on the search of hypothetical particles,

e.g. magnetic monopoles.

One of the main motivations for the LHC and its experiments was the search for the

Higgs boson. After its discovery in 2012 by the ATLAS and CMS collaborations, the

measurement of the Higgs boson properties has now entered into the physics program.

A second important topic of research is the search for new particles and more generally

for evidence of physics beyond the Standard Model, motivated mainly by cosmological

observations, naturalness of the Higgs mass and the desire for unification of known inter-

actions.

5
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1.2 The Compact Muon Solenoid detector

The CMS (“Compact Muon Solenoid”) detector [5] is a multipurpose detector of an overall

length of 22 m, a diameter of 15 m and a weight of 14 t, located at the IP 5. The designed

properties [11] of the CMS detector were to have high a quality tracking providing pre-

cise charged-particle momentum measurement and resolution around 1%-2% for 10 GeV

muons in the majority of the CMS coverage being |η| < 2.4 and to have high efficiency

of muon identification and reconstruction, leading to a requirement on a dimuon mass

resolution of the order of 1% at 100 GeV. Furthermore it was designed to have the best

possible measurement of the electromagnetic energy, leading to a resolution of diphoton

and dielectron masses of around 1% at 100 GeV. These conditions have to be fulfilled in

the LHC environment, with a bunch crossing (bx) every 25 ns, where every bunch crossing

leads to tens of inelastic interactions on top of the interaction of the interest, referred to

as “pileup” (PU), resulting in thousands of charged particles in the CMS detector every

25 ns. Because of this large radiation, the detectors and front-end electronics have to be

radiation-hard.

To achieve the given requirements, CMS was built in layers around a large solenoidal

magnet, with endcaps at each side. The CMS magnet is a superconducting solenoid

providing a magnetic field of 3.8 T. The magnet is surrounded from outside by the steel

yoke which returns the magnetic flux of the solenoid [12]. The radius of the magnet has

to be kept relatively small and therefore the available space between the magnet and

interaction point is limited.

Inside the magnet from the interaction point outwards, there is a pixel and silicon strip

tracker, followed by the electromagnetic and hadron calorimeters. Outside of the magnet

there is the outer hadron calorimeter and the steel return yoke with embedded muon

chambers. The CMS detector layout is shown in Fig. 1.3 [13]. In the following sections,

first the coordinate system of the CMS is described. Then the CMS subdetectors are

introduced, starting from the innermost one. At the end, basic information on trigger,

luminosity and pileup is given.

1.2.1 Coordinate system and conventions

The coordinate system used by CMS [5] is sketched in Fig. 1.4 [14]. In the CMS con-

ventions, the cartesian coordinate system is centered at the IP, with the x-axis pointing

into the center of the LHC, the y-axis going upwards and the z-axis going anti-clockwise

along the beam direction. The azimuthal angle Φ is defined in the x-y plane and is mea-
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Figure 1.3: A schematic layout of the CMS detector [13].

sured from the x-axis. The polar angle θ is measured from the z-axis and is defined in

the y-z plane. Finally r is a radial coordinate in the x-y plane. In this convention the

pseudorapidity η is defined as

η = − ln

[

tan

(

θ

2

)]

. (1.1)

The angular distance between two points can be measured with the help of ∆R defined

as

∆R =
√

∆Φ2 + ∆η2. (1.2)

The transverse momentum pT can be computed from the x and y momentum compo-

nents as

pT =
√

p2
x + p2

y. (1.3)

At the interaction point, the partons in proton beams have negligible momentum in
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the x-y plane, and therefore the sum of momenta of all particles originating from the

collision in this plane should be zero due to momentum conservation law. Therefore an

imbalance of momenta in this plane, i.e. a non-zero total pT , can be a sign of particles

whose momentum is unmeasured, like neutrinos or hypothetical new particles.

Figure 1.4: The CMS coordinate system with the three axes intercepting at the inter-
action point, the x-axis pointing inside the LHC ring, the y-axis going upwards and the
z-axis pointing anti-clockwise along the beam [14].

1.2.2 The silicon tracker

The silicon tracker [15, 16] is the innermost subdetector of the CMS detector. The CMS

tracker is divided into two parts, the inner (outer) part consists of a pixel (strip) detector.

Its purpose is to reconstruct tracks from charged particle depositions, energy losses Eloss,

in silicon sensors. In order to recognize from which interaction a given particle originates,

the tracker is required to have a capability to reconstruct primary and secondary vertices.

The reconstruction of primary vertices targets to find the positions where the interaction of

interest or the PU interaction occurred. The primary vertices are determined by the vertex

fitting procedure from the tracks [17]. The goal of the secondary vertex reconstruction is

to spot the place where a particle with a long lifetime decays to other particles.

On the tracker level, the tracking is performed in 4 steps [18, 19]. It starts from

hits reconstructed from particle depositions in the sensors. First, the track seeding is

performed from three 3-D reconstructed hits in pixel and/or strip tracker or from two 3-D

hits with a constraint on the beam spot. Then the algorithm proceeds with track building

which aims to connect all hits originating from one particle. During the track building
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the track is propagated to the neighboring layers of the tracker, testing the compatibility

of the reconstructed hit with the track by a χ2 test. Once the full track candidate is

complete, the track fitting is performed to obtain the best parameters of the track and to

recompute precisely the hit position using the track properties. The last step is a track

quality selection rejecting tracks not fulfilling quality requirements, which are based on

the χ2 of the final fit, the number of layers with a hit associated to the track and the

probability of the track to originate from the primary vertex.

The default track reconstruction [20] is using the software referred to as the Combina-

torial Track Finder (CTF), based on the combinatorial Kalman filter [21]. The tracking

uses an iterative approach: in the first iteration the easiest tracks to find are recon-

structed (i.e. the ones with the highest pT ), then after these tracks are complete their hits

are masked in order to avoid duplicities and reduce combinatorics for further iterations of

tracks finding. In total there are 12 iterations and each iteration is focused on a specific

type of tracks.

Due to the presence of the magnetic field, charged particles are bent according to their

momentum and charge, thus the CMS tracker is able to measure the charge sign and the

momentum associated to a track. To perform so, the tracker needs to have a good spatial

resolution. It has to be as well extremely radiation-hard due to the large flux of incoming

particles. Also the material was chosen carefully, in order to reduce multiple scattering,

nuclear interactions or bremsstrahlung in the tracker material.

The flux of particles in the CMS detector decreases with the distance from the in-

teraction point, the flux of charged particles in the barrel at a radius of 4 cm is around

108 cm−2s−1 while at a radius of 115 cm it decreases to around 3 × 105 cm−2s−1. Conse-

quently, the inner part of the tracker is made of silicon pixels, which are able to measure

particle paths and their properties in a high particle density environment. Moreover a

good resolution is needed for the vertex determination. In the outer part of the tracker,

the particle density is low enough to use silicon strip sensors, which are cheaper mainly

because they require less readout channels. Overall, the tracker pseudorapidity coverage

is |η| < 2.5.

The silicon pixel tracker

Before 2017, the pixel barrel, referred to as BPIX, was located at a radius of 4.4 cm

up to 10.2 cm, from the IP. The pixel endcaps (FPIX) extended on each side from 35 cm

to 47 cm in the z direction. In total, there were three barrel layers and two endcaps layers

on each side. During an extended winter shut-down in 2017, due to the high radiation

exposure, the pixel tracker was replaced. The new pixel tracker has four barrel layers

covering 3≤ r ≤16 cm and three endcap disks at distances 29.1≤ |z| ≤51.6 cm. The pixel
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detector plays a crucial role in the track seeding, and the reconstruction of the primary

and secondary vertices [22].

Silicon strip tracker

As the following chapters present studies of the silicon strip tracker and its simulation,

let take now a deeper look into its design and properties. The silicon strip tracker is divided

into four partitions. Each partition is composed by several layers of modules, which have

either one side (mono) or two sides (stereo) of silicon sensors. In total the strip tracker

is composed of 15148 modules. The Tracker Inner Barrel (TIB) is the innermost barrel

part with two layers of stereo modules succeeded by two layers of mono modules. The

Tracker Outer Barrel (TOB) surrounds the TIB. In the innermost part of TOB, there are

two layers of stereo modules, the remaining four layers being mono. On each side of the

barrel, Tracker Inner Disks (TID) and Tracker EndCaps (TEC) are located. There are

three wheels (perpendicular to the z-axis) of TID with three module rings (parallel to the

z-axis) and 9 wheels of TEC with four to seven rings of modules on each side. In each

wheel there is a mixture of mono and stereo modules, but each ring has either mono or

stereo modules.

In the barrel region, the silicon tracker is placed in radius between 20 cm up to 1.1 m

from the IP. The disks start at 80 cm in the z-direction from the IP and the endcaps reach

up to z=2.8 m from the IP. The overall layout of the silicon strip tracker can be seen in

Fig. 1.5 [20].

r 
(c

m
)

0

10

20

30

40

50

60

70

80

90

100

110

z (cm)
-300 -200 -100 0 100 200 300

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

→η→

−TEC TEC+

TOB

TIB−TID TID+

PIXEL

Figure 1.5: A schema of the longitudinal view of the upper half of the CMS silicon strip
tracker and layout of its partitions. The star represents the IP. The modules in blue are
stereo, while the mono ones are shown in black [20].

Each mono module holds 320 µm or 500 µm thick silicon sensors with either 512 or

768 silicon strips. The strip length range is from 8 to 25 cm. The distance between strips,
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called pitch, varies between around 80 µm and 200 µm. In the barrel, the strips are

parallel to the z-axis, or tilted by 100 mrad with respect to the z-axis in case of the stereo

sensors. In TID and TEC, the strips are not parallel to each other and are aligned to be

parallel to r, or tilted by 100 mrad with respect to the r in case of the stereo sensors. The

strip width to pitch ratio is equal to 0.25.

The local module coordinates have their zero in the middle of the module, the z-axis

going in the direction from the back-plane to the strips, the y-axis going along the strips,

and the x-axis being perpendicular to the strips and traversing them. The local θ angle

is measured from the z-axis. The local Φ is defined in the x-y plane and measured from

the x-axis. The schematic view of the sensor local coordinates is shown in Fig. 1.6. The

details about the module geometries for each layer of TIB and TOB and each ring of TID

and TEC can be found in Table 1.1 [23].

x

z

y

Figure 1.6: The sensor local coordinate system with the three axes intercepting in the
middle of the sensor. The x-axis is perpendicular to the silicon and aluminium strips
(represented by the dark gray bands on the top of the drawing), the y-axis goes along
the strips and the z-axis points from backplane (represented at the bottom by the dark
gray/green surface) to the strips.

The track resolution in pT determined in 2011 before replacing the pixel detector, is

of the order of 1.5% for non-isolated particles in the range 1 < pT < 10 GeV and |η| < 1.4

and of order of 2.8% for particles with pT = 100 GeV and |η| < 1.4 [24]. The performance

in pT resolution is comparable after the upgrade as before. The spatial resolution of

reconstructed hits for different barrel layers of the strip tracker is shown in Fig. 1.7 [25]:

The typical strip hit resolution ranges between 15 and 45 µm in the barrel region of the

silicon strip tracker.
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Layer Type #Strips Thickness [µm] Pitch [µm] Geometry label
TIB L1 stereo 768 320 80 IB1
TIB L2 stereo 768 320 80 IB1
TIB L3 mono 512 320 120 IB2
TIB L4 mono 512 320 120 IB2
TOB L1 stereo 768/512 500 122/183 OB2
TOB L2 stereo 768/512 500 122/183 OB2
TOB L3 mono 512 500 183 OB2
TOB L4 mono 512 500 183 OB2
TOB L5 mono 768 500 122 OB1
TOB L6 mono 768 500 122 OB1
TID R1 stereo 768 320 81...112 W1a
TID R2 stereo 768 320 113...143 W2a
TID R3 mono 512 320 124...158 W3a
TEC R1 stereo 768 320 81...112 W1b
TEC R2 stereo 768 320 113...143 W2b
TEC R3 mono 512 320 124...158 W3b
TEC R4 mono 512 320 113...139 W4
TEC R5 stereo 768 500 126...156 W5
TEC R6 mono 512 500 163...205 W6
TEC R7 mono 512 500 140...172 W7

Table 1.1: Module type, strip multiplicity, sensor thickness and pitch and module geom-
etry label for layers or rings of the four silicon strip tracker partitions [23].
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Figure 1.7: Measured resolution of reconstructed hit position for different layers of the
strip tracker and different size of pitch between the strips. The red color corresponds to
hits with a charge deposited in one strip, green in two strips and blue in three strips [25].

1.2.3 The electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) [26] is a subdetector located on the outer side

of the silicon tracker. In the barrel region the ECAL extends up to a radius of 1.77 m
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from the IP. It is an homogeneous, fast, radiation resistant calorimeter with a good energy

resolution. It is composed of 75848 lead-tungstate (PbWo4) crystals and its purpose is

to measure the energy of electrons and photons. The ECAL consists of one barrel (EB)

covering |η| < 1.479 and two endcaps (EC) extending the coverage up to |η| = 3. A

preshower is placed in front of the endcaps in order to separate highly energetic single

photons from the photons originating from the decay of neutral pions. In the barrel part

the ECAL has 25.8 radiation lengths in the radial direction, and in the endcap part 24.7

interaction lengths in the z-direction.

The energy resolution σE of the ECAL was determined [5] to be

σE

E
=

0.028√
E

⊕ 0.12

E

⊕

0.003, (1.4)

where E is the energy. The first term (∝ 1/
√

E) is the stochastic part, it corresponds

to e.g. fluctuations in number of particles. The second term (∝ 1/E) accounts for noise

and the third term (constant) covers mainly the non-uniformities, energy leakage and

inter-calibration issues.

1.2.4 The hadron calorimeter

The purpose of the hadron calorimeter (HCAL) [27] is to measure the energy of strongly

interacting particles. The HCAL is a sampling calorimeter composed of four parts, out

of them two are located between the ECAL and the magnet, which are the HCAL Bar-

rel (HB) and Endcaps (HE). Both HE and HB have a brass absorber and their active

material is made of plastic scintillators. The pseudorapidity coverage of HB is |η| < 1.3,

and of HE 1.3 < |η| < 3. The length of the HB in interaction lengths in the radial

direction is around 6, and of the HE in the z-direction of around 10. The coverage is

further extended up to |η| = 5.2 by the third part called the Forward calorimeter (HF).

Installed 11.2 meters from the IP on both sides, the HF is made of steel as an absorber

and quartz fibers creating the active volume. The technology of the HF is very radiation-

hard as around one third of the particles produced in the collisions reaches HF. Because

the available radial space between the ECAL and the magnet (i.e. in the region between

r=1.77 m and r=2.95 m) is not large enough to build a calorimeter with enough stopping

power, the last part of the calorimeter, the Outer calorimeter (HO), was added after the

magnet. The HO is covering the region |η| < 1.3 and stops particles escaping the HB, for

this reason it is sometimes also referred to as “tail catcher”. The magnet material is in

that case used as an absorber for the HO. A schematic layout of the HCAL is shown in

Fig. 1.8 [5].
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HF

HE

HB

HO

Figure 1.8: A schema of one quarter of the CMS HCAL with the layout of the HB, HE,
HF and HO [5].

The hadron energy resolution from the combination of the ECAL and HCAL (barrel

and endcaps) [28] was measured to be

σE

E
=

0.847√
E

⊕

0.074, (1.5)

where the meaning of the terms is similar as for the ECAL.

1.2.5 The muon chambers

Because many interesting physics processes have a signature with muons in the final state,

a good and precise measurement of muons is one of the main goals of CMS. This comprises

muon identification, momentum measurement and triggering. The good triggering and

momentum measurement is achieved with the help of the high magnetic field provided

by the solenoid. The measurement of muons is done in three gaseous subdetectors, the

Drift Tube (DT), Cathode Strip Chamber (CSC) and Resistive Plate Chamber (RPC)

systems [29]. The combined three muon systems have in total 1400 chambers, which in

radial direction are placed between around 4 m up to 7.5 m from the IP. The |z| positions

of the inner and outer part of muon systems are about 5.5 m-11 m, respectively. The

layout of the muon systems is shown in Fig. 1.9 [30].

The DTs are located in the barrel region and are partly integrated into the return

yoke. The pseudorapidity coverage is of |η| < 1.2. They are composed of plane cathodes

with anode wires in between the planes. The smallest unit of DTs is the drift cell of

dimensions 42×13 mm, in which one 50 µm thick anode wire is located. The drift time
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Figure 1.9: A schematic longitudinal view of one quarter of the CMS muon systems and
their inner structure [30]. In case of DTs MB stands for “Muon Barrel” and in case of
CSCs ME stands for “Muon Endcap”. The notation for RPCs is RB for barrel and RE
for endcaps.

of charge carriers can be up to around 400 ns.

The CSCs are located in the endcap areas outside of the return yoke. The CSCs

coverage is 0.9 < |η| < 2.4, which is partly overlapping with the DTs. The CSCs also

contain cathodes with anode wires in between, but one cathode of the pair is segmented

into strips. The DTs and CSCs provide a good triggering of muons.

To ensure the correct bunch crossing identification (i.e. from which bunch crossing a

given muon originates), the complementary RPCs are present in both barrel and endcap

regions. RPCs are composed of parallel plates of anodes and cathodes and readout strips.

The RPCs are faster than DTs and CSCs, but provide a worse position resolution. The

RPCs trigger is independent of the CSCs and DTs.

The spatial hit resolution per chamber differs for the three systems, for DTs it is

80-120 µm, for CSCs 40-150 µm, and for RPCs 0.8-1.2 cm [30].

In the following the time measurement in the DTs is introduced. The timing can be

also measured with the CSCs and the ECAL in a very similar way, but for the purposes

of the thesis, only the knowledge of the time measurement in the DTs is needed.

Muon timing measurement in the DTs

For each of the DT segment, a local muon timing measurement is performed. A muon

going through the DT segment deposits its energy by ionization of the gas. The created

charge carriers drift towards the wires as illustrated by the blue arrows in Fig. 1.10 [31]
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and are read at the time tread. The time, tcell, when the muon arrives from the IP to the

given drift cell can be calculated under the assumption of the muon production time and

that it travels at the speed of light. With the knowledge of the drift velocity vdrift, the

difference between tread and tcell can be converted into a distance between them. This

distance vdrift(tread − tcell) is used to compute the hit positions (illustrated by the red

crosses), where the muon crossed the cells. If the production time of muon is correctly

assumed, the hits in the red crosses lie around a straight line. On the contrary, if the

production time is not correctly assumed, then the line which connects the red crosses is

no longer straight, but curly. To determine the production time, the hit positions in the

red crosses are fitted by a three-parameter function, where the parameters are the position

and slope of the line, and the production time ti. This fitting procedure minimizes the δt

distances, i.e. the differences between the hit positions at the red crosses and the positions

predicted by the fit function (blue crosses), which depend on the production time ti.

�t

XX

X

X

X X

X

X

X X

tread

Figure 1.10: A schema of a transverse view of few drift cells of the DTs. The wires
are shown as black dots, the drift direction as blue arrows, the reconstructed hits as red
crosses and the fit function as green arrow. The distance between the reconstructed hits
and the positions predicted by the fit function (blue crosses) is denoted as δt. The time
when the charges were read by a wire is denoted as tread [31].

The local timing measurements in segments are combined to produce, among others,

the following variables:

time
InOut

IP
This variable corresponds to the time at which a muon was present at the

interaction point, assuming that the muon moves at the speed of light from the IP

outside of CMS. It is computed as a weighted average t̄ of the measured ti values,

where i denotes a single segment measurement. In case of the DTs each weight is

equal to Ns,i − 2, with Ns,i being the number of hits in the segment of DTs in which

the given ti was measured. The formula is then

t̄ =
1

N
× 1

∑

Ns, i − 2
×

∑

(Ns,i − 2)ti, (1.6)
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where N is the number of timing measurements.

The error on the time measurement is computed as

σ2 =
1

N − 1
× 1

∑

wi

×
∑

(ti − t̄)2wi, (1.7)

where the weight wi is defined as wi = 1/σ2
i with σi being a single timing measure-

ment resolution and t̄ is the above defined weighted average of the ti measurements.

time
OutIn

IP
The timeOutIn

IP is the muon time at the interaction point assuming that the

muon moves from the outside of the CMS detector towards the IP. During the

calculation, each ti measurement is increased by twice the time-of-flight (TOF) of

an in-time muon from the IP to the DT segment measuring the ti to take into

account that the OutIn muon which was at IP at the same time as the InOut one

arrived to the DTs twice TOFs before the InOut muon. Then the computation of

timing continues as for the timeInOut
IP .

Direction The direction variable provides a simple and robust estimate if the muon

traveled from the IP out or in the opposite way. The evaluation takes into account

the errors on the timeOutIn
IP and timeInOut

IP variables and assumes that the correct

time hypothesis has the smallest error.

Free 1/β The free inverse beta (free 1/β) variable is the c/v, where c is the speed of

light and v the speed of the muon. It is obtained from the fit of muon time-of-flight

measurements. The word “free” indicates that neither the production time, the

direction nor the velocity is assumed and that all three are free parameters. The

muons, originating from collisions reaching the muon chambers, travel from inside

towards outside of detector at the speed close to the speed-of-light and therefore

their free inverse beta is close to one. The free inverse beta for cosmic muons is

around minus one due to the opposite direction.

The timing resolution for DTs is further discussed in Chapter 3.

1.2.6 Trigger and data acquisition

As bunches are colliding every 25 ns, thus with a rate of 40 MHz, fast and reliable

triggering system [32] is required. The raw data size of one event is approximately 1 MB,

therefore if there would not be any dedicated trigger, 40 TB of data per second would

have to be stored, what is far beyond the current technical capacities. In CMS there are

two levels of triggers which provide physics motivated selection of the interesting events.

The first one, called Level-1 (L1), is hardware based and its decision-making is based
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on information from the muon chambers and the calorimeters. The L1 is capable to

take a decision within 3.4 µs and its output rate is up to around 100 kHz. The rest of

the event is read upon the decision of the L1 and sent to the second level called High

Level Trigger (HLT). The HLT is a software based trigger providing further selections.

At the HLT level, information from all subdetectors is read and therefore the full event

can be reconstructed. The output rate of the HLT is around 1 kHz. The time period of

uninterrupted data-taking is called a run and ideally there is one run per a LHC fill, where

a fill represents the lifetime of a given proton beam in the LHC machine. In the case of

detector technical difficulties the run can be interrupted and a new one started. Once

the beams are dumped the run is stopped and a new run of cosmics instead of collision

data-taking can start.

During collision runs, most of the triggers are dedicated to record events useful for

the physics analyses (triggering on events with the presence of e.g. one single muon, two

muons, or a large Emiss
T value). Part of the triggers can be used for calibration purposes,

such as the Zero Bias and Minimum Bias triggers which fire on any bunch crossing leading

to a minimal activity in the detector.

1.2.7 Luminosity and pileup

In particle physics experiments it is very important to have information about an expected

event rate during a time period. For this evaluation, the following formula can be used

dN

dt
= σ × L, (1.8)

where σ is the cross section of process of interest and L is the instantaneous luminosity

given by

L =
N2

b nbfγ

4πǫnβ∗
F, (1.9)

where the variables in numerator are the number of particles per bunch Nb (around

1011), the number of bunches per beam nb and the bunch crossing frequency f (currently

40 MHz). In the denominator, ǫn is the normalized transverse beam emittance and β∗ is

the beam amplitude function at the IP. The β∗ function is defined as the distance from

the focus point (IP) to the point where the beam is twice as wide as at the focus point

and is expressing how much the beam is “squeezed” before the collision: lower the β∗ is,

more the beam is squeezed. At the LHC, the ǫn is of the order of 4 mm µm and β∗ of

the order of 0.5 m. Lastly, because of the beam crossing angle, the reduction factor F is
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introduced. Its value at the LHC is typically around 0.95.

By integration of the instantaneous luminosity over time, the integrated luminosity

can be obtained:

L =
∫

Ldt. (1.10)

The LHC was designed to deliver an instantaneous luminosity of 1 × 1034cm−2s−1.

During Run 2, because of the smooth running and thanks to the large efforts of the

LHC group, the LHC instantaneous luminosity was increased even beyond the designed

luminosity, up to 2.06 × 1034cm−2s−1 [33]. The integrated luminosity delivered to CMS

over years 2010–2017 can be seen in Fig 1.11 [33]. A large fraction of integrated luminosity

is good to be used in the physics analyses, the rest is being discarded due to a detector

problem, for example. For example, in 2016 around 88% of the integrated luminosity was

used for physics analyses.
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Figure 1.11: The delivered luminosity to the CMS detector for years 2010-2017 [33].

High luminosity is essential to study rare processes, but on the other hand it results

in effect called pileup (PU) [34]. Pileup particles are particles which are not originating

from the interaction of interest at a given bunch crossing. The pileup can be divided into

two categories, in-time and out-of-time pileup. The in-time pileup is caused by multiple

pp interactions in the event, the average pileup for all years of Run 2 is shown in Fig. 1.12.

The out-of-time pileup (OOT PU) originates from particles produced before or after the

bunch crossing of interest. The OOT PU is caused for example by slow particles looping

in the detector for more bunch crossings or due to the duration of integration of the signal

charge by the front-end electronics, resulting in a pulse shape which is typically longer
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than 25 ns, depending on the subdetector. Because of the wide signal pulse shape, the

signal from one particle can be read during more bunch crossings.
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Figure 1.12: The average pileup for all years of Run 2 [33].

1.3 Event and object reconstruction at CMS

In this section several physics objects, which are important for the analyses discussed in

this thesis, are introduced.

1.3.1 The Particle-Flow algorithm

As it can be seen in Fig. 1.13 [35] each kind of particle leaves a characteristic signature

in the CMS detector. For example, an electron leaves a track in the tracker and then

stops in the ECAL where it deposits the rest of its energy. The neutral hadron does not

interact in the tracker but can leave energy both in ECAL and HCAL where it stops.

The CMS approach to reconstruct an event takes this into account and combines infor-

mation from all subdetectors at once to reconstruct the objects. The algorithm used for

this kind of reconstruction is called the Particle Flow (PF) algorithm [35]. This algorithm

is linking particle deposits in the different subdetectors using specific procedures which

depend on the subdetectors and particles. The PF charged hadrons are reconstructed

by linking the deposits in an (η, Φ) window. In addition to a geometrical matching, the
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Figure 1.13: Transverse view through a sector of the CMS detector. The depositions of
different particles in different subdetectors are indicated in the picture [35].

tracks from the tracker are matched with the clusters in calorimeters based on comparing

the momentum and energy from tracker and calorimeters. The reconstruction of the PF

charged hadrons is also ensuring that there is no deposit in the muon chambers. Such pro-

cedure improves both energy and direction determination of the charged hadrons. The

PF neutral particles are reconstructed from the clusters in the calorimeters under the

photon or neutral hadron hypothesis. The prompt PF electron reconstruction requires

both the presence of ECAL and tracker deposits but the absence of HCAL deposits. The

prompt PF muon is reconstructed from a track in the tracker and a track in the muon

chambers and its momentum is determined either from the tracker measurement alone or

from a combination of the two, depending which option is providing the best momentum

measurement.

1.3.2 Leptons

1.3.2.1 Muons

Muons are traversing the whole CMS detector and therefore their tracks can be recon-

structed in both the silicon tracker and the muon chambers. The “standalone muon” is
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a muon track reconstructed from the hits in CSC, DT and RPC, while the “inner track

muon” is reconstructed from the hits in the silicon strip tracker only. Additionally, there

are two options how to reconstruct muons using both information from the muon cham-

bers and the tracker. The first one leads to the collection of muons called “tracker muons”.

The tracker muons are first reconstructed in the tracker and then they are extrapolated

to the muon chambers by matching the inner track with hits in the muon chambers. The

second approach matches the standalone muon with an inner track based on geometrical

criteria. Then the combined track is refitted and the resulting collection is called “global

muons” [36].

The PF algorithm uses both global and tracker muons to identify a PF muon. The

leptons originating from the hard scattering (prompt muons) are decay products of e.g.

W, Z and H boson and therefore they are not expected not to have any other activity

in the proximity. A requirement on muon isolation is added in order to select a muon

and reject jets misidentified as muons or muons from decay of heavy flavor quarks. The

selected muons are then tested by several quality requirements to balance the efficiency

and purity of the muon selection. Based on given criteria, several muon identifications

(IDs) and their working points are assessed, e.g. loose, medium, tight. Muons are being

reconstructed up to |η| = 2.4 with a reconstruction and identification efficiency larger than

96%. The muon trigger efficiency is higher than 90% in the full η range. Using information

from both tracker and muon chambers the pT resolution for muons with 20<pT <100 GeV

is 1.3–2.0% in the barrel region and better than 6% in the endcaps. For muons with pT

up to 1 TeV the transverse momentum resolution does not go above 10% [36].

1.3.2.2 Electrons

The electrons are reconstructed with the track information from the tracker and the energy

deposits in the ECAL [37]. Because of bremsstrahlung, an electron looses part of its energy

before reaching the ECAL, this amounts around 30% of its energy in average for example in

|η| ≈ 0. The energy deposit in the ECAL is reconstructed as a supercluster. A supercluster

is a cluster extended in the Φ direction to take into account the bremsstrahlung photons.

The electron track in the tracker is not reconstructed by the standard CTF algorithm,

but the GSF algorithm is used instead to include also bremsstrahlung photons [38]. The

GSF algorithm is starting either from the seed created by a few tracker hits or from the

ECAL supercluster and then the track is extrapolated from the seed to the full tracker.

In case of a tracker-based seeding, the next step is to match the ECAL supercluster with

the electron track. Similarly as for the muons, an isolation criterion is requested for

the prompt electrons as well as quality requirements on the reconstructed electrons are
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imposed resulting in several electron IDs and categories of these IDs, e.g. loose, medium,

tight.

Electrons are reconstructed up to |η| = 2.5, with an efficiency higher than 88% in

the pT range from 10 GeV to 100 GeV and |η| < 2. The energy measurement in the

ECAL and the momentum measurement in the tracker are used to estimate the momenta

of electrons. The resolution on the momentum measurement is evaluated from Z → ee

decays and its is between 1.7%-4.5% for electrons with pT ≈ 45 GeV [37].

1.3.2.3 Taus

In around 2/3 of the cases the tau leptons decay hadronically to a mixture of charged

and neutral hadrons and tau neutrino. The decay is very fast and thus it is difficult to

reconstruct the secondary vertex. The algorithm which is used to identify the hadronically

decaying tau is called Hadron-Plus-Strips (HPS) [39]. The probability to misidentify

a jet, an electron or a muon as an hadronic tau depends on the objects identification

requirement and was measured in data to be around 0.01%-4%, 0.1%-3% or 0.03%-0.3%,

respectively. Large differences were found in misidentification rate between data and

simulation, leading to data to simulation ratio up to 1.66 in the case of an electron, 1.86

in the case of a muon and between 0.8 and 1.2 in the case of a jet. The hadronic tau

identification efficiency is of around 50-60% and is similar for data and simulation [40].

The probability to misidentify a jet, an electron or a muon as an hadronic tau depends on

the objects identification requirement and was measured in data to be around 0.01%-4%,

0.1%-3% or 0.03%-0.3%, respectively. Large differences were found in misidentification

rate between data and simulation, leading to data to simulation ratio up to 1.66 in the

case of an electron, 1.86 in the case of a muon and between 0.8 and 1.2 in the case of a

jet. The hadronic tau identification efficiency is of around 50-60% and is similar for data

and simulation [40].

1.3.3 Photons

Photons do not leave tracks in the tracker and thus their energy is obtained only from

ECAL measurements. The prompt photon identification is based on two categories of

observables, its shower shape and its isolation from the remaining activity in the ECAL.

Again, there are several photon identifications (IDs), for each of them three working points

are defined: loose, medium and tight. Due to the high material budget before the ECAL,

the photon can convert to the electron-positron pair before reaching the ECAL. The

achieved resolution in the barrel region on both the unconverted and converted photon
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energies varies between 1% and 2.5% for photons with an energy of tens of GeV. In

the endcaps the photon energy resolution for unconverted and converted photons is of

2.5%-4% [41].

1.3.4 Jets

The production of quarks and gluons is followed by radiations and hadronization, this

results in a large activity in a narrow cone. In order to reconstruct these particles the

anti−kT (ak) clustering algorithm [42, 43] is used. Within this algorithm the distance

between objects is defined as

dij = min
(

pT
−2(i), pT

−2(j)
) (ηi − ηj)

2 + (Φi − Φj)
2

R2
= min(pT

−2(i), pT
−2(j))

∆R2
ij

R2
,

(1.11)

where pT (i) is the transverse momentum, ηi the pseudorapidity and Φi the azimuthal

angle of the object i. To reconstruct PF jets, the algorithm runs over PF reconstructed

candidates such as electrons, muons, photons, charged and neutral hadrons. The param-

eter R is a jet distance parameter. In the standard jet reconstruction, R=0.4 in Run 2

while it was chosen to 0.5 in Run 1, this decrease is due to the change of the energy and

pileup between these two Runs. In the case of boosted objects decaying to partons, two

or more jets originating from the boosted parton can be merged. These topologies can be

reconstructed as so called “fat jets”, and for purpose of their reconstruction, the param-

eter R is increased to 0.8 or 1.0. The anti−kT algorithm, by definition, tends to cluster

first the high pT objects with the shortest distance between each other and continues with

objects further apart. After all high pT particles are clustered, the clustering algorithm

adds all low pT particles in the cone specified by the parameter R. The product of the

clustering is a jet. The charged component of the jet can be reconstructed only up to

|η| = 2.4 due to the tracker coverage, while the neutral component extends up to |η| = 5.

The measured jet energy is in general not equal to the energy of parton responsible

for the jet, due to several inefficiencies and biases in the energy measurement. Therefore

the jet energy must be calibrated and rescaled by the correction factor in order to have

a correct jet energy scale. The jet energy corrections are obtained from simulations. An

additional jet energy scale correction is derived from measured dijet, photon+jet, Z+jet,

and multijet events to take into account differences between data and simulation [44].

The typical PF jet energy resolution is around 15% for 10 GeV jets, 8% for 100 GeV jets,

and 4% for 1 TeV jets.
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1.3.5 b-jets

In order to determine from which quark the jet is originating, flavor tagging techniques

were developed. The target of the heavy flavor tagging techniques is to identify jets

originating from a b quark (b-jets) or a c quark (c-jets). In the following, only b-jets are

discussed. The b-quarks are forming B-mesons, which decay within about 1.5 ns creating a

secondary vertex displaced by few mm up to cm from the primary vertex. The information

on a displaced secondary vertex or displaced tracks in the jet, information about tracks

originating from the secondary vertex and optionally information on soft leptons within

the jet are used by b-tagging algorithms to tag jets formed from the b-quarks [45]. Due

to the tracker geometry, b-jets can be reconstructed only up to |η| = 2.4.

There are several algorithms, whose purpose is to tag a b-jet. The first one is the Com-

bined Secondary Vertex (CSVv2) algorithm, which combines information about displaced

tracks with information on the secondary vertex. The DeepCSV algorithm improves the

performance with respect to the CSVv2 algorithm by using a deep neural network. The

Combined Multivariate Analysis (cMVAv2) technique takes into account a fact, that B-

hadrons can decay leptonically and thus soft electrons or muons can be present in the

b-jet. In this algorithm, the information about soft leptons is used in combination with

other taggers. The efficiency to tag a b-jet versus the probability to misidentify a c or

light flavor jet as a b-jet for different taggers is shown in Fig. 1.14 [45], as estimated from

simulation. For each b-tagging algorithm, loose, medium and tight working points are

defined. These working points are defined by requiring a threshold on the misidentifi-

cation probability of around 10% for loose, 1% for medium and 0.1% for tight working

points. As for many other objects, the scale factors are then derived to correct for different

performances in data and simulation.

1.3.6 Missing transverse energy

If the momenta of all particles could be measured, the sum of all momenta in the plane

transverse to the beam would be zero due to the momentum conservation law. But as

neutrinos escape the detector undetected, an imbalance of momentum in this plane could

be observed.

The Missing Transverse Momentum, for simplicity referred to as “Missing Transverse

Energy” (Emiss
T ) is the magnitude of the negative vectorial sum of the transverse momenta
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of all PF particles [46] and is computed as

Emiss
T =

∣

∣

∣

∣

∣

−
∑

i

þpTi

∣

∣

∣

∣

∣

, (1.12)

where þpTi
is the momentum of i-th PF particle. Because of energy thresholds in the

calorimeters, inefficiencies in the tracker or non-linearity of the calorimeters’ response

for hadrons, the Emiss
T measurement can be biased and thus an energy correction factor

must be used. This factor accounts for effects influencing the Emiss
T and is applied on the

transverse momenta of the jets. The Emiss
T is then recomputed with the new transverse

momenta of jets. The uncertainty on Emiss
T is evaluated by varying the pT of each kind of

object within its resolution. The Emiss
T distributions for Z → ee and Z → µµ events are

shown in Fig. 1.15 [46]. These plots show a good agreement between data and simulation.

The Z → ee and Z → µµ events have no genuine source of the Emiss
T , no neutrino in the

final states. Therefore the Emiss
T is expected to be zero, but due to the Emiss

T resolution,

non-zero values are observed.

The Emiss
T variable plays a crucial role in searches for physics beyond the Standard

Model, as many theories predict stable weekly interacting particles which would enhance

the Emiss
T .
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Figure 1.15: Emiss
T distributions for Z → µµ (left) and Z → ee (right) events with the

data to simulation ratio in the bottom canvas. There is also a contribution from two
other groups of processes decaying to the dimuon or dielectron final states. The Top
contribution originates from tt̄ and single top processes, in which the W-bosons decay
leptonically to a charged lepton and a neutrino and therefore these events have a genuine
source of Emiss

T . The EWK group of processes consists of diboson, Zγ and Wγ production
processes, which are also partly present in the Emiss

T tail due to leptonically decaying W-
bosons in some of them [46].
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Chapter 2

Study of the highly ionizing particles

in the silicon strip tracker

This chapter focuses on the tracking inefficiencies of the CMS silicon strip tracker observed

during years 2015 and 2016 and on the studies of “Highly Ionizing Particles” (HIP) which

were identified as a possible cause of these inefficiencies. First, the tracking inefficiencies

are described as well as the HIP events. Secondly, details about the silicon strip tracker

readout electronics and data reconstruction are introduced in order to understand the

effect of highly ionizing particles on the silicon strip tracker and the data acquisition.

Past studies in the laboratory conditions (with laser and test beam) of the highly ionizing

particles are then shortly discussed as a starting point for my new studies based on CMS

pp collision data. In Sections 2.4.2 and 2.4.4, two studies with the CMS pp collision data

are performed, one in perspective of identifying highly ionizing particles as a source of the

observed tracking inefficiencies. The second study uses data after the fix of the largest

source of inefficiencies and aims to purely characterize a HIP event and its consequences

in the CMS environment.

2.1 The tracking inefficiencies at the beginning of

Run 2 and a first promising suspect

2.1.1 Observed inefficiencies in the tracking performance

At the start of the Run 2 in 2015, the time between collisions was shortened from 50 ns

to 25 ns. During this era, the CMS collaboration started to observe large discrepancies

between predicted and measured number of tracks: data showed less tracks and also in

average shorter tracks than simulation. Such situation was a result of a cluster inefficiency
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in the silicon strip tracker, the loss of clusters left by charged particles being translated

into a loss of tracks.

The observed inefficiencies were shown to depend on the distance from the interaction

point (IP) and also to scale with the instantaneous luminosity [25]. The left plot of

Fig. 2.1 shows the hit efficiency, computed as the ratio of the number of hits associated

to the reconstructed tracks to the number of expected hits, for the different layers of the

barrel, the disks, and the endcaps. The right plot of Fig. 2.1 presents the hit efficiency

as a function of the instantaneous luminosity. In these plots, the reduced hit efficiency,

seen in runs recorded in 2016, is shown as red empty circles. In the figures it can be seen

that the smallest hit efficiency was observed for the first layer of the TOB, in which up

to 8% of the hits were lost during the highest luminosity runs. For comparison, the red

full circles stand for hit efficiency of the runs taken at the end of 2016, once the source of

the largest hit inefficiency was eliminated, as discussed in later sections.

Figure 2.1: (left) Hit efficiency for all layers of the barrel, the disks and the endcaps.
The empty circles represent the hit efficiency measurement for the old front-end electron-
ics (APV) settings while the full circles depict the hit efficiency measurement after the
new APV settings were deployed at the beginning of August 2016. The corresponding
instantaneous luminosity for both runs is indicated in the legend. (right) Hit efficiency as
a function of the instantaneous luminosity. The measurement is shown only for the first
layer of the TOB for both the old (empty circles) and new (full circles) APV settings [25].

2.1.2 Investigating the highly ionizing particles

Among the various possible explanations of the observed hit inefficiencies, the hypothesis

of highly ionizing particles was considered with a great interest. To understand the effect

of the HIP on the hit efficiency, it is required to first discuss the energy loss mechanism
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for charged particles in silicon. The main energy loss mechanism for charged particle in

tracker silicon sensors is via the electromagnetic interaction, mainly via ionization and

excitation described by the Bethe-Bloch formula [47]. Beyond it, the incoming particle

can also deposit energy in sensors via elastic and inelastic nuclear interactions with the

silicon nucleus. These two nuclear interactions result in a nuclear recoil in the elastic

case and a nuclear recoil and fragmentation in case of inelastic interaction. A sufficiently

energetic recoiled nucleus can also induce displacement of the other nuclei in its proximity.

All affected nuclei as well as the nuclear fragments undergo energy loss by ionization,

resulting in large and very localized energy depositions in the silicon volume.

By simulating these interactions in the silicon, it has been shown that elastic interac-

tions do not lead to high energy depositions, while inelastic interactions can induce energy

deposits up to about 100 MeV in 500 µm thick tracker sensors, which represents an en-

ergy deposit approximately 1000 times larger than the electromagnetic interactions [48].

The Most Probable Value (MPV) of the energy deposition in these sensors, originating

from the inelastic interaction has been found to be around 10 MeV, corresponding to 100

times larger deposits w.r.t. to the majority of particle-silicon interaction which does not

involve the nuclear interaction [49]. The readout electronics of the tracker modules is

designed for energy deposits up to around ten times higher than expected, this threshold

is dependent on the module design. Larger energy deposits than this threshold can result

in a saturation of the electronics, dead-time in the charge collection and hit inefficiency.

In summary, a HIP event is an event in which typically the inelastic interaction of

the incoming particle with the silicon is a source of highly ionizing particles. These

particles ionize the volume of the silicon sensor by far more than the majority of particles

coming from collisions and they can thus saturate the readout electronics. The saturated

electronics can become therefore inefficient and insensitive to further incoming particles,

resulting in a dead-time in a cluster reconstruction and thus in a loss of hits, which could

explain the observed hit inefficiency.

2.2 The strip tracker readout system

As the saturation of the readout electronics by the HIP event was found to be a possible

explanation of the observed inefficiencies, the tracker readout chain is introduced in this

section to understand the behavior of the electronics under such conditions.

31



CHAPTER 2 - STUDY OF THE HIGHLY IONIZING PARTICLES IN THE SILICON
STRIP TRACKER

2.2.1 Overview

The charge carriers, created via the ionization of the silicon volume by a traversing parti-

cle, drift toward the electrodes. The current induced on the aluminium strips is read by

an front-end chip called APV25 [50, 51], situated at the Front-End Hybrid, attached to

the tracker module and bond to the tracker sensor. The analog signal from these chips is

sent via optical links to the back-end electronic cards called Front-End Drivers (FED) [52]

located in the control room. In standard data-taking configuration, the data are digitized

and processed in the FEDs. The graphical overview of this data flow is shown in Fig. 2.2.

All these parts of the tracker readout are introduced with more details in following sub-

sections.

Figure 2.2: Overview of the tracker readout chain [53]. The charge collected by the
silicon strip implants and subsequently induced on the aluminium strips is read by the
on-detector APV chips. The output of two APV chips is multiplexed and converted into
an optical signal which is sent via optical link to the off-detector Front-End Drivers for
further signal processing. The data are later sent to the HLT farm for the reconstruction.

2.2.2 The silicon strip modules

The sensitive volume of the CMS tracker modules is composed of silicon strip sensors.

A schematic sketch of a silicon strip sensor is shown in Fig. 2.3. Each silicon sensor is

formed by a n-type bulk, which has on one side an uniform n+ backplane while p+ strip

implants are located on the other side. The implants are connected to a reverse bias

voltage to completely deplete the bulk of the sensors. The thickness of both p+ implants

and n+ backplane is small and negligible compared to the bulk, almost the whole volume
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of the sensor is thus depleted. The signal collected at the p+ strips induces a current

on the aluminium strips separated from the silicon strips by a thin layer of the silicon

dioxide and nitride (AC coupling). Each aluminium strip is connected by a wire bond to

the read-out electronics. The distance between the silicon strips is called the pitch.

Depending on the type, the tracker modules have 512 or 768 p+ strips, and each 128

strips are connected to one front-end APV25 chip. The largest fraction of the modules has

one layer of sensors (mono modules), while the remaining part holds two layers of sensors

(stereo modules) mechanically attached back to back and with a relative tilt of strips of

5.7◦. With two tilted sensor layers, stereo modules are able to provide 3-D information of

the hit position in the global coordinates about the hit position, where the particle has

hit the module. The mono modules give only 2-D hit measurement as the third dimension

depends on the strip length which is around ten cm, what is orders of magnitude larger

than the strip width and thickness. The modules also differ by the sensor thickness which

is either 320 µm or 500 µm and the pitch between each strip which can vary from 80 µm

up to 205 µm depending on the tracker layer and partition.

Figure 2.3: A schematic sketch of the silicon sensor with n-type silicon bulk, p+ strips
and n+ backplane. An incoming particle and the movement of charge carriers left by it
is also drawn [54].

When a charged particle crosses the silicon sensor, electron-hole pairs are produced

along the path of the particle. The energy loss in the material can be described by

the Bethe-Bloch formula [47] as a function of βγ = p/Mc, where β is the ratio of the

interacting particle velocity to the speed of light, γ is the Lorentz factor, c is the speed of

light, and p and M are the momentum and mass of the interacting particle. The Bethe-

Bloch function has a minimum at βγ ≈ 3. The majority of the charged particles produced

in the pp collisions and passing through the CMS detector have in a good approximation

minimal βγ values and are thus called Minimum Ionizing Particles (MIP).
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A signal starts to be induced on the aluminium strips once electrons and holes begin to

drift towards the electrodes. Holes drift to the strips and electrons to the backplane (n+

implant). The current induced at the aluminium strips can be calculated using the Shock-

ley Ramo theorem [55, 56]. In the framework of this theorem, it can be shown [57] that

charge carriers drifting toward one strip induce as well current on the neighboring strips.

The charge integrated over time on neighboring strips is zero and the collected charge on

the main strip is equal to the charge created by ionization in the silicon bulk.

The number of strips collecting the charge carriers created by ionization depends on

the charge sharing and the cross talk between the strips. The charge sharing is a result

of the propagation of the particle and created charge carriers through the silicon sensor.

It can be caused by trajectory inclination, effects of the magnetic field on the charge

carriers, or by diffusion. On the contrary, the cross talk is independent of the propagation

of charges in the bulk of the silicon sensor and arises from the strip coupling via inter-strip

capacitance.

In case of inclined trajectories, the charge carriers from the different parts of the

trajectory are drifting towards different strips.

If there is an absence of the magnetic field, the created charge carriers, electrons and

holes, would drift directly towards the electrodes. But in the case of the tracker barrel (for

TOB and TIB), a perpendicular magnetic field is applied and consequently the charge q

of the carrier is deflected from the direction of the electric field due to the Lorentz force
þF defined by the equation

þF = q( þE + þv × þB), (2.1)

where þE is the electric field, þv is the velocity of charge carrier and þB is the magnetic field.

The angle between the electric field lines and the drift direction of the charge carriers

in the magnetic field is called the Lorentz angle. This angle is independent of the track

inclination and can be compensated by tilting the tracker modules w.r.t. the magnetic

field as it was done for the TIB modules.

Finally, the diffusion of the charge carriers during the drift to the electrodes can also

modify the path of the charge carriers from the straight line. However the spread of the

charge carriers due to diffusion is in the order of few µm and therefore about two orders

of magnitudes smaller than the pitch size. It can thus only result in a small amount of

charge collected by neighboring strips just in case the particle has passed close to the

middle of the pitch [57].

The cross talk arises from the sensor capacitive network. Strips are coupled to back-
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plane via a backplane capacitance and to neighboring strips via an inter-strip capacitance.

The capacitive network of the silicon strip sensor and its electronics is shown in Fig. 2.4.

Due to the inter-strip capacitance, the charge collected by one channel (strip) is shared

between the neighboring channels. The signal in the APV is sampled and depending on

the sampling time, the charge shared to the neighboring strips is different, therefore the

charge sharing, i.e. the cross talk, depends strongly on the signal sampling time [57],

which can be different for different tracker readout modes. This effect has been studied

numerically via the description of the capacitive network by the SPICE simulations [58].
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Figure 2.4: A schematic view of a generic capacitive network of a silicon strip sensor
and its respective readout electronics. The strips are inter-connected via the inter-strip
capacitance Cint. On top of this connection, second neighboring strips are directly coupled
by the capacitance Cs. Each strip is connected to the backplane via the capacitance Csub.
The strips are connected to amplifiers located at the top part of the schema [59].

2.2.3 The APV25 readout chip

As already mentioned, the current of 128 channels is read out by one APV25 [50] chip,

later referred to as APV, which is a front-end chip providing amplification, shaping and

sampling into a single value of the signal received from each channel. To achieve this, the

APV chip is equipped by a preamplifier, an inverter, a CR-RC shaper, an analog pipeline

and a deconvolution filter for each of its 128 channels, as shown in Fig. 2.5. Although

these different stages are separate for each channel, to reduce instabilities, all inverters

of one chip are powered by a common supply rail via an external inverter resistor. This

biasing scheme ensures a stable signal, but on the other hand it introduces another source

of cross talk between channels of one APV.
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Figure 2.5: The schema of the internals of the APV25 chip. The stages before 128:1 MUX
are implemented separately for each of 128 channels [60].

The amplified signal is sent to the inverter which is coping with the signal polarity

and then to the CR-RC shaper to convert the strip signal into a voltage pulse with a

peaking time of 50 ns. The output of the shaper is sampled with the frequency of 40 MHz

and saved to the analog pipeline. The APV can work in the “peak mode”, when only

a single value of the pulse shape is used. This value corresponds to the maximum of

the pulse shape for the given bunch crossing. In the “deconvolution mode” a weighted

sum of the shaper sampled output from three consecutive bunch crossing is calculated in

APSP instead. The computed continuous APV output in the peak mode (black curve)

can be seen in Fig. 2.6. In the real situation the peak curve in black is sampled at its

maximum to obtain peak mode output or by three steps of 25 ns to be able to obtain

the deconvolution mode output. The illustration of the sampling points for peak (circle)

and deconvolution (rectangles) modes is also presented in Fig. 2.6. From the weighted

sum of three sampling points, the continuous APV output in the deconvolution mode

(gray curve) is obtained. The deconvolution mode pulse is shorter as shown in Fig. 2.6,

therefore this mode is the nominal mode as it reduces the out-of-time pileup and improves

the separation of signals from two consecutive bunch crossings. To have the possibility to

optimize the pulse shape, the feedback resistors of both preamplifier and shaper as well

as the bias current and the voltage are fully programmable and their settings can be thus

easily changed. For the calibration and test of the chip, an internal calibration circuit is

present. This circuit enables to inject a charge to each channel separately to the stage

prior to the preamplifier one.

The sampled output for all the 128 channels of one APV are extracted from the analog

pipeline upon the request of the trigger. The average signal level from the 128 channels

can be adjusted within the range of the APV, in order to reduce the signals exceeding the

FED range. The signals from two APV chips are multiplexed by one APVMUX chip [17]

into a single line and converted by laser from an electrical to analog optical signal, which

is sent via an optical fiber to the service cavern. In the control room, the optical signal is
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Figure 2.6: APV output in the peak (black) and deconvolution (gray) mode. Actually,
the shaper output is sampled in the APV to obtain only maxima of the two curves. An
example of the sampling points for the deconvolution mode is shown in green rectangles,
the sampling point for the peak mode is represented by a blue circle [60].

then received by a pin diode which is an entry point of the FED.

2.2.4 The Front End Driver

One FED [52] is receiving data from 96 optical fibers, each sending the information

originating from 2 APVs. The data in form of optical signals are converted to electrical

signals, which are then reordered and synchronized. For each APV input, the signals per

channel are extracted and digitized into 10-bit range Analog Digital Counts (ADC). The

output signal for a given channel is referred to as “raw digi”, which can be seen in Fig. 2.7.

In FED two subtractions are performed. First, there is a subtraction of pedestal,

computed as the mean strip activity for a given strip when no particle is present. The

strip noise, which cannot be further subtracted, is the variation around the pedestal value.

Both are evaluated from special “pedestal runs” taken several times per year. In order

to best use the FED range, not the pedestal value is subtracted, but the pedestal value

minus a fixed offset, which is currently chosen to be 127 ADC. After pedestal subtraction,

the Common Mode Noise (CMN or baseline) is the noise due to e.g. electronics or power

supply origins, which is common to all channels of one APV and is calculated on an event

by event basis as the median over the 128 channels. The data after subtraction of the

pedestals and CMNs are also shown in Fig. 2.7 for one module.
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After both subtractions of the pedestals and the CMNs, the channels with ADC values

lower than zero are truncated to zero as the FED can only handle positive values. For all

channels, the signal-to-noise ratio (S/N) is checked separately. If the S/N of the channel

is larger than two or if the S/N of a group of neighboring channels exceeds a certain

threshold, then the ADC values of these channels are kept while the values of the other

channels are set to zero. Moreover the ADC range is truncated to 8 bits in a way that

no change is applied for channels with charges lower than 254 ADC, but charges between

254 ADC and 1022 ADC included are set to 254 ADC, and charges exceeding 1022 ADC

are stored as 255 ADC. Later only information about strips with non-zero ADC values

are sent to the CMS Data Acquisition System (DAQ). This procedure, including pedestal

and CMN subtraction, evaluation of the channels based on the S/N and suppression of

the channels with zero ADC value, is called “Zero Suppression” (ZS). In the standard

operation mode, the zero suppression mode is used for data-taking. The ZS output data

size is 50 Mb/s per 1% occupancy compared to the 3 Gb/s before the zero suppression.

Therefore thanks to the ZS procedure, the available data are reduced by a factor of around

60 considering 1% occupancy, which avoids an overload of the CMS DAQ system.

For testing purposes the FED is able to operate in other modes than the ZS one. There

is an another mode referred to as the “Virgin Raw” (VR) data taking mode, in which

no subtraction or suppression is applied. This mode is thus suitable for commissioning,

debugging and deeper studies of the APV output.

2.2.5 The offline data treatment

The data collected by the FEDs are then treated offline. A clustering procedure is applied

on the ZS digis. The default clustering algorithm is called the “three threshold algorithm”,

posing thresholds on the seed strip (strip with the largest signal), on the neighboring

strips and on the cluster charge in terms of signal-to-noise ratio. The seed must pass the

requirement of S/N>3, adjacent strips can be added if their S/N is larger than two. On

top of these requirements, the total cluster charge (the sum of the charges of all channels)

must be five times larger than the total cluster noise σcluster which is defined as

σcluster =
√

∑

i

σ2
i , (2.2)

where σi is the noise of channel i within the cluster. In addition to its charge and noise,

each cluster can be quantified by a cluster width, corresponding to the number of channels

in the reconstructed cluster. An example of cluster obtained at the end of the clustering

procedure is shown in Fig. 2.7.
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Figure 2.7: Example of data from one tracker module undergoing zero suppression and
clustering. The raw digis are shown in pink. From the raw digis the pedestals are
subtracted and the resulting digis are shown in blue. From pedestal subtracted digis
the baselines shown in red are computed and subtracted. The final clusters are shown in
green.

During clustering, the strip charge is calibrated by two factors: the tick-mark gain (G1)

and the particle gain (G2). First, the tick-mark gain is correcting the signal for the

transmission losses, mainly for the losses happening during the transmission of the signal

through the O(100) m long optical fibers. To estimate this gain, a well-defined tick-mark

signal is issued at the APV level. The G1 for the APV is then computed offline by re-

scaling the output tick-mark to 640 ADC. By construction, the tick-mark gain aims to

equalize the output among APVs. The main purpose of injections of tick-mark signals is

the synchronization of the APVs to the central trigger.

Secondly, the particle gain is correcting for the differences at the sensor level and

compensates for example for charge trapping. This gain is determined from the ionization

of the silicon sensitive volume per unit of length of the particle traversing the sensor. The

measured MPV of the ionization per unit of length is then used to equalize the response

of different sensors to the MIP charge set to be 300 ADC/mm.

These calibrations need to be determined frequently as they are affected by the ageing

of the detector (e.g. fibers and lasers for G1, sensors for G2) or some change of the

operating conditions (e.g. temperature). During this step the cluster charge is corrected

by the factor 1/(G1×G2).

Because of the observed discrepancy in the cluster position between the data recorded

with the peak and deconvolution modes, which was found to be caused by a reduced

efficiency of collecting charge close to the backplane in the deconvolution data, a correction
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referred to as “backplane correction” must be applied to have the same cluster position

in deconvolution and peak data. The derived backplane correction is not precise and its

inaccuracy is further compensated by the alignment.

For the further reconstruction steps the clusters are converted to hits, whose position

is obtained from charge-weighted positions of the channels in the cluster, corrected for

the backplane correction in the deconvolution mode and for the Lorentz drift in the

barrel, where the magnetic field is perpendicular to the module plane. In the case of

stereo modules, the matching of hits between the two tilted modules is performed. The

resolution on the hit position is also assessed at this step.

The reconstructed hits are then used to reconstruct tracks as described in Section 1.2.2.

The clusters which are associated with tracks are referred to as “on-track” clusters, the

remaining clusters are called “off-track” clusters.

2.3 Laboratory studies on the impact of highly ion-

izing particles on the APV25 chip

After an introduction of the tracker readout in the previous section, we can now study

the effect of the HIP events on the electronics and output data in more details. Before

the start of the LHC operation, several studies of the HIP events were performed in

laboratory, during the beam tests at PSI [61] and CERN X5 [62]. The impact of large

energy depositions on the electronics was also studied by charge injection in the calibration

circuit of the APV or by laser tests [49]. Only the HIP studies performed at the PSI beam

test are described in a larger extent in this section, because of the best projection of their

results to the CMS environment.

2.3.1 Experimental setup of the PSI beam test

To test the behavior of the CMS tracker modules in conditions similar to the CMS ones,

studies at the M1 beam-line at PSI were performed. This beam-line provided a contin-

uous beam of protons and pions. For the module studies, the beam was tuned to pion

momentum of 300 MeV to best mimic the CMS environment. The tracking system under

test at PSI consisted of 12 layers of tracker modules (3×TIB, 3×TEC, 6×TOB), but for

the study of HIP events only TIB and TOB modules were used. These TOB modules had

500 µm thick sensors with a strip pitch of 183 µm and were equipped by inverter resistors

of either 50, 75 or 100 Ω. Special trigger bursts and APV settings were used to trigger
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the HIP events and events after HIP, allowing to provide 29 consecutive events recorded

every 25 ns, resulting in data over a 750 ns period. All modules were operated in peak

mode and the output data were equivalent to the CMS VR data format.

2.3.2 Response of the readout electronics to the HIP events

As discussed previously, the highly ionizing particle leaves very localized large energy

depositions up to the equivalent of ∼1000 MIPs and thus saturate the readout electronics.

The affected channels collect a charge beyond the range of the readout electronics which

is of order of a few tens of MIPs. The rest of the channels belonging to the same 128-

channel APV is shifted towards low ADC values up to the point when the signal is so

small that no light can be emitted by laser (zero-light level). This behavior is caused by

the common biasing of the inverters described in Subsection 2.2.3, due to which a large

signal appearing at one inverter is suppressing the other channels of the APV [53].

Because of the CMN shift, the HIP events can be easily identified thanks to a re-

quirement on the value of the baseline. In this study, an APV chip, which exhibited

baseline value lower or equal to -20 ADC at some point during the trigger burst period,

was tagged as containing a HIP candidate. The response of the APV chip on the HIP

event is shown in Fig. 2.8. Each plot in this Fig. 2.8 presents the data from 6 consecutive

TOB modules (on the y-axis) after pedestal subtraction at a different time. The x-axis

depicts all channels of one module and the individual y-axes show the ADC values for all

these channels. There are four APVs in each module. A normally operating module is

e.g. the top module in the bottom-left plot (Tevent = 525 ns), where all APVs have their

baseline around a nominal value. In this module a MIP signal can be seen in the second

APV. In Fig. 2.8 a HIP signal can also be observed. The top-left plot (Tevent = 300 ns)

shows the first evidence of the HIP event: in the second module from the bottom, in the

second APV, a large signal peak and a small shift of other channels towards low values of

the APV range can be observed. After 50 ns (Tevent = 350 ns) the channels of the affected

APV, which are not collecting the HIP signal, are suppressed and the signal peak is thus

fully revealed. The suppression of numerous channels as well as the large signal peak can

be still observed at Tevent = 525 ns. At Tevent = 575 ns, the channels start to recover

to their initial position. It is interesting to note that at Tevent = 525 ns (for x∼33 mm)

and Tevent = 575 ns (for x∼33 and 50 mm) a MIP passes through all the six layers of the

modules. The signal is observed in the APVs of all layers except of the one affected by

the HIP event. The time period, during which the APV is insensitive to a MIP signal is

referred to as the dead-time.

The CMN distribution of all baselines can be seen in the bottom plot of Fig. 2.9.
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Figure 2.8: Example of the time evolution of the APV behavior as a response to a HIP
event. The situation for six modules is depicted at four different times: Tevent = 300 ns
(top-left), Tevent = 350 ns (top-right), Tevent = 525 ns (bottom-left) and Tevent = 575 ns
(bottom-right). The ADC values of pedestal subtracted data (y-axis) of the six layers of
the TOB modules (y-axis direction) are plotted for all channels of one module (x-axis).
The HIP event appears at Tevent = 300 ns in the second module from the bottom and can
be followed in the same module for the remaining three timestamps. These results come
from measurements obtained with the PSI data [53].

The CMN distribution is peaking around 0 ADC during the standard conditions, while a

smaller peak around -100 ADC comes from suppressed baselines which are the result of

the HIP events. In this analysis the selected HIP event satisfies the selection requesting
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CMN≤-20 and a HIP cluster seed charge larger than 125 ADC. Therefore in Fig. 2.8 this

happened for the event at Tevent = 350 ns, but as shown in the example, the signal from

the real HIP interaction occurred and was partially observed already 50 ns before this

“selected HIP” event Tevent = 350 ns.

As seen in the example, the HIP event is suppressing all channels which are not

collecting the signal. Large enough HIP signals then result in a full suppression of the

channels beyond the lower limit of the possible range, when the electrical signal is too

small. The APV with fully suppressed channels exhibit a very small σraw, which is in

this case computed as a standard deviation of the data before pedestal subtraction (raw

data), when excluding 5% of the lowest and 25% of the highest channels in the APV.

The standard deviation σraw of raw data is shown in the top part of Fig. 2.9, where the

population in the large peak corresponds to the normal operation σraw values around

∼1.5 ADC, which are reproducing the spread of pedestals. The smaller peak population

with an σraw lower than 0.5 ADC is coming from fully suppressed baselines. The tail of

the distribution is populated with distorted baselines. The expression “distorted baseline”

in this text refers to the APVs whose channels exhibit a large spread of signals from the

baseline value, excluding the signal from particles passing trough. The distorted baselines

usually originate from the HIP event, which results in a non-uniform suppression and

recovery of the channels within and APV.

Based on these observations two event categories were defined: the “fully suppressed”

and the “partially suppressed” baseline events. Events with “fully suppressed” baselines

satisfy σraw < 1 ADC, due to no light emission. “Partially suppressed” baselines are

required to have σraw ≥1 ADC and CMN≤-20 ADC.

2.3.3 Dead-time induced by the HIP events

In other laboratory studies, during which a charge has been induced in tracker sensors by

laser, the recovery of the baseline and the signal in terms of S/N has been studied [49].

It was shown in Fig. 2.10 that the S/N ratio recovers differently and by different time

constants than the baseline. However, both recoveries of the baseline and the S/N takes

about order of hundreds of nanoseconds. To estimate the dead-time and hit efficiency

induced by a HIP event, it is necessary to know when enough of signal appears to be

reconstructed in the cluster and not only study the baseline. In the following paragraph

the method and results on the dead-time measurement using PSI beam test data are

described.

In the PSI tests, the dead-time of the APV is calculated from a difference of hit
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Figure 2.9: (top) The standard deviation of raw data (σraw). The large peak around
1.5 ADC corresponds to standard baselines, while the peak at ∼ 0.5 is caused by fully
suppressed baselines. (bottom) The CMN distribution, in which the nominal baselines
are located around zero and the fully suppressed baselines are peaking around -100 ADC.
These results were obtained with PSI beam test data [53].

(b)

�

Figure 2.10: The recovery of the baseline (circles) and signal (triangles) expressed as the
ratio of the measured S/N to the reference S/N, as a function of time. The evolution is
shown for an inverter resistor value of 50 Ω and an energy deposit of 25 MeV [49].
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efficiency. The hit efficiency ǫhit is computed separately for APVs influenced by the HIP

event (ǫHIP
hit ) and for “efficient” APVs which are not influenced by the HIP event (ǫgood

hit ).

The hit efficiency is defined as ǫhit = Nhit/Ntracks, where Nhit is the number of clusters

reconstructed in the APV around the track intercept point, and Ntracks is the number of

reconstructed tracks traversing the APV. The tracks were reconstructed by simple track

finding algorithm using the least-squares linear fit of the clusters positions. The dead-time

is the time interval during which the APV is not fully efficient (ǫHIP
hit < ǫgood

hit ). The averaged

dead-times for the APVs with the fully suppressed baselines are shown in Table 2.1 for both

inverter resistor values of 50 Ω and 100 Ω. The APVs with partially suppressed baselines

exhibit much smaller dead-times compared to the APVs with fully suppressed baselines.

The dead-times for APVs with fully suppressed baselines are typically of the order of a

few tens of ns. In Table 2.1, it can be noticed that a reduced resistor value significantly

decreases the dead-time and that the dead-time depends also on the sensor geometry.

Although, diminishing the resistor value has a disadvantage which is the enhancement

of the baseline distortions, leading to the reconstruction of “fake” clusters as only a flat

CMN is subtracted [53]. In this analysis the fake clusters were observed to have a large

charge and also a large cluster width of typically tens of channels. The increase of fake

cluster multiplicity was found to be negligible and therefore the decision to equip tracker

modules with 50 Ω resistors instead of 100 Ω was taken in order to reduce the dead-time.

Sensor type and Rinv [Ω] Γmean [ns] Γmax [ns]
TIB 100 Ω 99.5 ± 12.0 200 ± 25
TIB 50 Ω 69.6 ± 9.4 250 ± 25
TOB 100 Ω 122.5 ± 12.6 275 ± 25
TOB 50 Ω 100.5 ± 3.6 275 ± 25
TIB Γmean(50 Ω)/Γmean(100 Ω) 0.70 ± 0.13
TOB Γmean(50 Ω)/Γmean(100 Ω) 0.82 ± 0.09

Table 2.1: The mean (Γmean) and maximum (Γmax) dead-time of the APV chip induced by
the HIP events for fully suppressed (σraw < 1 ADC) baseline events. The dead-times were
evaluated for two different module geometries (TIB or TOB) as well as for two inverter
resistor values (100 or 50 Ω). These results were obtained with PSI beam test data [53].
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2.3.4 Probability of a HIP event in the tracker module

At the PSI beam test, the HIP probability per track was also measured. This HIP

probability is defined as

PHIP (CMNHIP ≤ CMNthreshold) =
NHIP (CMNHIP ≤ CMNthreshold)

Ntracks

, (2.3)

where NHIP (CMNHIP ≤ CMNthreshold) is the number of selected HIP events with a base-

line value (CMNHIP ) lower than the threshold CMNthreshold and Ntracks is the number

of tracks traversing the sensor.

The HIP probability measurements were provided with a pion beam of 300 MeV energy,

which is the most probable energy value for pions in the CMS tracker. The probability

measured for different modules, using CMNthreshold = −20 ADC, was found out to be

of the order of 10−3 for the TOB and 10−4 for the TIB. It was also concluded that the

HIP probability per track does not scale with the particle flux, but rather with the sensor

thickness. With a larger thickness of the sensor the probability of the nuclear interaction

is increasing. A similar measurement was provided using a proton beam of 300 MeV/c

momentum, which in this case is not compatible with the CMS conditions.

2.4 Studies of the HIP events with the CMS pp col-

lision data

As described in the previous section, several HIP studies were performed in the laboratory,

but the HIP events have never been studied with the CMS collision data. Though the

PSI beam test conditions were supposed to be as close as possible to the CMS ones, the

particle and energy spectra differ in these two cases, it is thus important to evaluate the

HIP effect in the real CMS environment. Also at PSI only few modules were tested but

not all of them.

The HIP studies with the CMS data that I performed during my PhD thesis are dis-

cussed in Subsections 2.4.2 and 2.4.4 after a first discussion on the strategy of these studies

presented in Section 5.2. In Subsection 2.4.2 the HIP effect is studied from the perspective

as a possible explanation of the observed hit inefficiency. Then Subsection 2.4.3 briefly

presents the change of the APV setting which finally solved the inefficiency problem. A

new study of data recorded after the fix allows to measure the HIP properties and the
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consequences of the HIP on the read-out output, without any influence from the past

issue.

2.4.1 Strategy of the HIP studies

As explained in the section 2.2.4 the Zero Suppression mode is used in the standard

data-taking. During the ZS procedure, all negative channels after pedestal subtraction

are truncated to zero, this mode is thus not suitable to study the HIP events, which are

known for causing a drop of the CMN as described in Section 2.3. The solution is to

request data-taking in the Virgin Raw mode, what comes with a cost of an increased

event size. In the VR data, no subtraction or suppression is applied but the ZS can

always be performed offline, providing then the possibility to compute the CMN and

proceed with clustering and further data treatment. In the following analyses, the CMN

is computed from all 128 raw digis after pedestal subtraction as a median over these 128

strips. The standard deviation (σraw) is calculated from the raw digis of 80% of the 128

channels having the lowest ADC value, to avoid the clusters in this computation. The

ZS and clustering are performed as in the standard data-taking (i.e. truncation to zero,

computation of the baseline after truncation, truncation of digis to 8 bits) to mimic the

standard data-taking output.

The goals pursued in the further studies are to select a HIP event and study the

influence of such event on the electronics and the clustering. As seen in previous studies

in Section 2.3, the signal recovery time is of the order of hundreds of ns. Thus to be able

to study the evolution of the CMN and the cluster properties, consecutive events in a

window of a few hundreds of ns are needed. However the probability to record closely

spaced events in time is very low without special trigger configuration. The possibilities

for a new trigger configuration are very limited due to the increased size of the tracker

information per event during the VR data-taking by factor of O(60) compared to the

standard ZS data taking. Moreover in order not to overload the CMS data acquisition

system, the following trigger criteria are imposed on the number of triggers in a given

number of bunch crossings (bx) [63]:

– no more than 1 trigger in 3 bx,

– no more than 2 triggers in 24 bx,

– no more than 3 triggers in 100 bx,

– no more than 4 triggers in 240 bx.
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For simplicity, in the following sections of this chapter are shown only plots for the first

layer of the TOB, which exhibited the largest drop in the hit efficiency. The probability

of the HIP event for a given APV is defined in a similar way as in the PSI study presented

in subsection 2.3.4 as

pHIP = fHIP
1

Ntracks

, (2.4)

with

fHIP =
NHIP

Nall

, (2.5)

where NHIP is the the number of selected HIP events per APV, Nall is the total number

of events and Ntracks is the number of tracks per APV. The probability pHIP is computed

in average for all layers of the strip tracker in order to complement the study with a more

global picture.

Alternatively the HIP probability can be defined as

pHIP (PU) = fHIP
1

PU
, (2.6)

where PU is the peak pileup of the fill.

2.4.2 A first study of the HIP events in the CMS detector

2.4.2.1 Motivation to study the HIP effect in the CMS detector

As introduced in Section 2.1 the CMS detector faced important hit inefficiencies in 2015

and 2016. At that time, the HIP effect was identified to be most probably the source of

these tracking inefficiencies. A lot of efforts were therefore put into studies of the HIP

effect from many perspectives. One of the options was to analyze the Virgin Raw data,

from which a pure output of the APV can be obtained. In the following study, the VR

data are used to characterize the HIP effect and evaluate its impact on the electronics

and clustering. The presented study provides first results on the HIP effect with the CMS

data.

2.4.2.2 Experimental setup

This study uses the VR data taken on the 12th of April 2016 in the run 273162 of the

LHC fill 4915, where only the silicon strip tracker, trigger and data acquisition system

were included. Due to the constraints from the LHC and CMS, a short run of around 30
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minutes with an instantaneous luminosity of 1.5×1033cm−2sec−1 was taken. During this

run, the APVs were operating in the deconvolution mode. The LHC delivered beams with

601 bunches each, among which 589 pairs of bunches collided at CMS. The average pileup

for this fill was 26 interactions per bunch crossing. The beams were mainly composed of

trains of 72 bunches, in which bunches were spaced every 25 ns. The space between trains

was composed by at least 36 empty bunches.

Closely spaced events in time were enriched in data by using a special trigger config-

uration, which forced the first bunch crossing in a fixed train to be triggered. After this

trigger, two other bunch crossings in the same train were triggered randomly. Then the

trigger waited for the same train in next orbit in order not to overload the data acquisition

system.

2.4.2.3 Methodology

In Section 2.3, it has been observed that a HIP event can be identified via a low value of

the baseline. Applying this approach to the CMS data allows to select the event shown

in the left plot of Fig. 2.11. In this example the expected effect of the HIP event on the

chip can be seen: a negative baseline, a large signal on few channels and a low standard

deviation of the raw digis. But in many cases the large signal is not observed as shown

in the right plot of Fig. 2.11, in contradiction to what has been observed in the study

of Section 2.3. This difference can be explained by the different operation mode of the

APV: a deconvolution mode was used for studies at CMS while for the HIP studies at PSI

it was a peak mode. During studies of the APV chip behavior when large charges were

injected to the calibration circuit [62], it has been shown that when APVs are operated

in deconvolution mode, the large signal peak as seen in the left plot of Fig. 2.11 can be

observed only for few ns and then the channels in which large signal was observed are

also driven beyond the low limit of the measurable ADC values.

A reliable selection of the APVs influenced by the HIP events can be designed via

the presence of the fully suppressed baselines in a similar way as in Section 2.3.3. From

the analysis of the correlation of the baseline and σraw values in Fig. 2.12, it is obvious

that the standard events with a nominal value of the baseline around 127 ADC have a

σraw value around 8 ADC units. The second largest population has a value of σraw lower

than 2.5 ADC and a fully suppressed baseline, which can be connected with large energy

deposits in the sensor read by the given APV chip. To determine the value of σraw which

selects fully suppressed baselines, the distribution in Fig. 2.13 of σraw is analyzed. Based

on the knowledge of the baseline, σraw and their correlation, the selection of the HIP
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Figure 2.11: Example of distribution of raw digis (pink), pedestal subtracted digis (blue),
baselines (red) and clusters (green) as a function of the strip number in one module.
(left) The third APV in the module shows a behavior induced by a HIP event: a low
charge variation for the suppressed raw digis and a large observed signal for few channels.
(right) The third APV in the module shows a behavior induced by a HIP event: low
charge variation for the suppressed raw digis, but in this case no peak is observed.

events has been chosen to be

baseline < −5 ADC and σraw < 2.5. (2.7)
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Figure 2.12: The 2-D distribution of the σraw of raw digis (y-axis) versus the baseline (x-
axis) for the run 273162. The baselines selected as HIP events are indicated by a red
box.

In the Fig. 2.12, there are many events with a negative value of baseline, but a large

50



CHAPTER 2 - STUDY OF THE HIGHLY IONIZING PARTICLES IN THE SILICON
STRIP TRACKER

 [ADC]rawσ

0 2 4 6 8 10 12 14 16 18 20

#
b

a
s
e

lin
e

s

1

10

210

3
10

410

5
10

6
10

710

Figure 2.13: The σraw distribution for the run 273162.

value of σraw. These events can originate from a baseline drop, a baseline recovery or

from large energy deposits, but not large enough to fully suppress the baseline. In order

to disentangle the different populations, the partially saturated baseline events are not

selected as HIP events.

It has also been observed that the full saturation can last for several bunch crossings as

it is later shown in Section 2.4.2.5 and consequently for a given APV, several consecutive

events could be selected as a HIP. In this case, only the first event of these possible

events is defined as the selected HIP. In addition, as the saturation of the baseline is a

consequence of the HIP interaction, the HIP event does not have to be selected at the

time when the real HIP interaction has occurred in the sensor.

The analysis of the APVs influenced by a HIP event has been performed statistically

considering together all the HIP events occurring in the first layer of the TOB. For that

purpose, when a HIP event is selected, the bunch crossing of this event is redefined to

bx=0, and the bunch crossings of two remaining events in the same train are set rela-

tively to the selected HIP event, e.g. if another event is triggered five bunch crossings

after the selected HIP, its bunch crossing is set to 5. The average information about

clusters, baselines and raw digis per each bunch crossing is then used. The APV-averaged

baseline distribution over the first layer of TOB as a function of the bunch crossing num-

ber, shown in the left plot of Fig. 2.14, allows to study what happened before and after

the selected HIP. When following the baseline evolution in time, the baseline shows a

stable value chosen by the tracker operation of around 127 ADC long before the HIP oc-

curs (bx≪0). Shortly before the selected HIP, the baseline starts to drop as a consequence

of the large energy deposition in the sensor. At bx=0, by definition, the baseline is satu-
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rated, i.e. reaches the zero-light level. The baseline recovers to normality in about 15 bx

and slightly overshoots for the remaining duration of the train. The baseline overshoot

can be understood as a consequence of the response of the APV chip to the large signals.

The gap between bx=0 and the other bunch crossings is caused by the first trigger rule,

which allows only one trigger in three bunch crossings.

A similar distribution for σraw as a function of the bunch crossing number is shown in

the right plot of Fig. 2.14. Long before the HIP event, σraw is stable with a value around

8 ADC. Right before the selected HIP, σraw increases due to a non-uniform drop of the

baseline, knowing that the σraw computation should remove the channels associated to the

clusters. After the HIP event it recovers in around 10 bx. Up to this recovery point, the

baseline can be fully or partly saturated what explains the low σraw value. This population

is however mixed with distorted baselines which on the other hand have large σraw and

therefore part of the distribution with bx>0 cannot be straightforwardly interpreted.
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Figure 2.14: (left) The averaged baseline evolution as a function of the bunch crossing
number for the run 273162. (right) The evolution of the averaged σraw of the raw digis
as a function of the bunch crossing number for the run 273162. On both plots, the bunch
crossing of the selected HIP event is translated to the position bx=0. Events before (after)
the selected HIP have bx<0 (bx>0).

2.4.2.4 Results

As shown in Fig. 2.10, the signal recovery, i.e. the hit efficiency recovery, and the dead-

time induced by the HIP event cannot be estimated from the baseline information and it is

thus necessary to study clusters. The distributions of the average cluster multiplicity (i.e.

the number of clusters to number of events per APV) and the maximal cluster charge (i.e.

the charge of the cluster with the largest cluster charge) are shown as a function of the
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bunch crossing in Fig. 2.15. In the rest of this chapter, the cluster charge refers to the

cluster charge not calibrated by the gains. In the shown distributions, as previously, an

averaging over the APVs is performed as well as the alignment of the selected HIP event

with bx=0. The average cluster multiplicity presented in the left plot of Fig. 2.15 is stable

for events long before the occurrence of the HIP. Around bx=-5, the multiplicity grows as

additional clusters originating from the HIP interaction (recoil or fragments) may start

to appear. The delay between the HIP event and the selected event is not know and is

not a constant. As a consequence of the HIP deposit, the chip becomes inefficient for

the signal collection, already at bx=0 when the cluster multiplicity drops significantly.

The cluster multiplicity is recovered in around 10 bunch crossings. The average cluster

multiplicity distribution for bx>10 is flat with a constant higher than for bx<-10, in

contradiction with expectations. The maximal cluster charge per APV shown in the right

plot of Fig. 2.15 exhibits a stable behavior for bx<-20, followed by an increase in charge.

The cluster charge is the highest for the selected HIP as few channels can collect large

charges induced by the HIP energy deposits. After bx=0, the cluster charge drops and

recovers almost immediately after the selected HIP, but to a slightly lower level than

before the HIP event, even though the same level as for bx≪0 is expected.
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Figure 2.15: The averaged cluster multiplicity (left) and maximal cluster charge (right)
as a function of the bunch crossing number for the run 273162. The bunch crossing of the
selected HIP event is translated to the position bx=0.

The mismatch between the cluster properties for bx≪0 and bx≫0, as shown in

Fig. 2.15, can be, at least partially, understood when analyzing the cluster charge dis-

tribution of clusters of the first event in the train and the two other events in the train

in Fig. 2.16. For the first event in the train, the cluster charge distribution exhibits a

double peak structure of similar peak heights with maxima around 50 ADC and 200 ADC,
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while for the other events in the train, the height of the peak around 50 ADC is clearly

dominant. The enhanced population of clusters around 50 ADC for the other events in

the train is coming from out-of-time pileup contributions, which are not present in the

first bunch crossing. In the train there are 3 events triggered, one of them is selected

as a HIP event, so only the first or second event can be set to bx<0 and on the other

hand only the second or third event can be set as bx>0. In consequence, the regions

with bx<0 in Fig. 2.15 are dominated by a population with a lower out-of-time pileup

and also a lower average cluster multiplicity and higher maximal cluster charge than the

regions of the distributions with bx>0. To avoid the mixing of different populations of

events, the first event in the train has been removed from the distributions. The average

cluster multiplicity without the first bunch crossing in the train is shown in the left plot

of Fig. 2.17 and the maximal charge without the first bunch crossing in the train in the

right plot of Fig. 2.17. In both distributions, the removal of the first bunch crossing leads

to a significant equalization between the levels for bx≪0 and bx≫0. The spikes in the

distributions of Fig. 2.16 are coming from the the strip charge saturation, which appears

when the charge on one or multiple strips exceeds 254 ADC.
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Figure 2.16: The normalized distribution of the cluster charge from the first (pink) and
the other (blue) bunch crossings in the train for the run 273162.

The average dead-time for the modules of the first layer of the TOB can be estimated

from the left plot of Fig. 2.17. The dead-time, in this case defined as the time interval

between the selected HIP event and the full recovery of the average cluster multiplicity,

appears to be around 250 ns (10 bx). This dead-time is approximate as no tracking on

these data was performed and thus the hit efficiency cannot be accessed. The recovery

of the cluster multiplicity does not imply the full recovery of the charge collection. For

this purpose the maximal cluster charge distribution as a function of the bunch crossing

number is studied in the right plot of Fig. 2.17. It is expected that the cluster charge
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Figure 2.17: The averaged cluster multiplicity (left) and maximal cluster charge (right)
as a function of the bunch crossing number for the run 273162. The bunch crossing of the
selected HIP event is translated to the position bx=0. Contrary to Fig. 2.15, the events
from the first bunch crossing in the train are not included in these distributions.

drops after the HIP event and then it recovers in the following bunch crossings. But the

cluster charge seems to be recovered almost immediately and no obvious trend is observed.

This effect is most probably caused by the mixing of real and fake clusters, i.e. clusters

respectively associated and not associated with the tracks. This mixing could be reduced

by using on-track clusters only. On the other hand the tracking would bias the analysis

as the tracking efficiency is not 100%.

The fraction of HIP events averaged per APV in the first layer of the TOB, defined

by Eq. 2.5, was estimated to be 4×10−3. This fraction is dependent on the run instan-

taneous luminosity and therefore does not represent the probability of a HIP event as

defined in Eq. 2.4. To estimate the HIP probability, the average number of reconstructed

tracks per event per APV must be known. But even with the number of tracks it is not

straightforward to compute the probability of the HIP event due to the limitations of the

selection and data. The average fraction of HIP events is biased by the used trigger which

forbids to record the second and third bunch crossings in the train, due to the first trigger

rule. The HIP interactions, occurring in the first bunch crossing and fully suppressing the

baseline only in the second and/or third bunch crossing of the train, are therefore never

selected. In contrary, in the events which are not at the beginning of the train, the HIP

events coming from more previous bunch crossings can be selected as the baseline can

saturate for more bunch crossings.
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2.4.2.5 Limitations of the study

Several limitations of the presented study have already been discussed in the text above.

In summary, to the mentioned limitations belongs firstly the different fraction of out-of-

time pileup in different events, this has been solved by removing the events from the first

bunch crossing in the train from the clusters charge and width distributions. Secondly

no tracking is performed in the data, and both real and fake clusters are thus used

in this analysis. If tracking has been introduced, the majority of fake clusters would

have been removed, but the statistics would have been largely reduced because of the

track reconstruction criteria and the fact that no data was recorded in the pixel tracker.

Thirdly, as a consequence of the HIP event, the fraction of real and fake clusters can

change. Fourthly there is also an empty window in the triggered events caused by the

first trigger rule.

A large limitation of this study comes from the ambiguity in the selection of the HIP

events. It can be understood by looking at Fig. 2.18 which shows the σraw per APV as

a function of the bunch crossing number, with bx=0 being the selected HIP event. In

the bottom-right part of the plot, there is a large population of APVs with σraw<2.5 for

bx>0, corresponding to very large energy depositions keeping the baseline fully suppressed

for several bunch crossings. Due to this uncertainty, it is impossible to determine the

exact time of the HIP interaction in the sensor and therefore all distributions shown

above with the selected HIP aligned to bx=0 are spread over several bunch crossings.

Moreover because of this selection uncertainty, the probability of a HIP interaction cannot

be computed.

A possible improvement of the HIP selection was investigated by trying to define

selection criteria on the clusters. A first tentative was to select large charge deposits by

tagging the saturated clusters with an ADC value of at least one channel larger than 254

ADC. Fig. 2.19 shows the fraction of clusters with at least one saturated strip with respect

to all clusters per APV as a function of bunch crossing, where bx=0 corresponds to the

selected HIP by the criterion in Eq. 2.7. The fraction of saturated clusters is significantly

high only for bx=0, which is already a selected HIP event. Moreover as discussed in the

left plot of Fig. 2.17, the average cluster multiplicity per APV is very low for bx=0, so a

requirement on the saturated cluster would only result in a large reduction of statistics.

Another approach was to study the maximal cluster width per APV as a function of

the bunch crossing number, shown in Fig. 2.20, but no obvious trend is observed in the

distribution.
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Figure 2.18: The 2-D distribution of the σraw (y-axis) as a function of the bunch crossing
number (x-axis) for the run 273162. The bunch crossing of the selected HIP event is
translated to the position bx=0. The limit of σRMS<2.5 is indicated by a red line.
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Figure 2.19: The averaged fraction of clusters with at least one saturated strip with
respect to all clusters in an APV as a function of the bunch crossing number for the run
273162. The bunch crossing of the selected HIP event is translated to the position bx=0.

2.4.3 Change of the APV configuration settings

At the end of 2015 and during the first half of 2016, the HIP interaction in silicon sensors

under the CMS conditions was studied from many perspectives. The probability of the

HIP event was found to be too low to explain the magnitude of observed inefficiencies

and the CMS collaboration has thus tried to find other causes of the hit inefficiency. In

August 2016, the major source was found in the settings of the APVs.

For the data taking, the APV’s Preamplifier Feedback Voltage Bias (VFP) was set
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Figure 2.20: The 2-D distribution of the average cluster width versus the bunch crossing
number for the run 273162. On the x-axis, the bx=0 corresponds to the bunch crossing
of the selected HIP event.

according to the recommendations for APV to around 30 V to obtain an ideal CR-RC pulse

shape. This parameter controls the drain speed of the preamplifier, a lower parameter

resulting in a faster drain speed. Because of the increase of the APV occupancy, due to

the shortening the bunch spacing and the increasing of the instantaneous luminosity, the

drain speed was not fast enough anymore, leading to the saturation of the preamplifier by

semi-large charge deposits (10-100 MIPs). The APV chip saturated by this effect became

inefficient up to its recovery at the end of the train or the run. These findings led to a

new setting of the VFP parameter to 0 V. Consequently a significant recovery of the hit

efficiency has been observed as shown in Fig. 2.1 has been observed.

2.4.4 Study of the HIP events after the change of the APV

settings

2.4.4.1 Motivation of the HIP study with the modified APV settings

After having identified and fixed the main source of APV inefficiencies, a new VR data

run was scheduled and taken. This run has provided an opportunity to study a clean HIP

effect, not affected by the incorrect APV settings. The goal of the study with this data

is to check if HIP events can still be observed, if they manifest in a similar way and what

are the consequences of such events.
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2.4.4.2 Experimental setup

A new VR data run 281604 of a duration of 48 minutes and 45 seconds, was taken on 25th

of September 2016. The subdetectors included in this run were both the silicon pixel and

strip tracker, the ECAL, the HCAL and all muon chambers. This run was part of the

fill 5330, during which only four isolated bunches per beam were injected into the LHC.

The peak pileup of the fill was 48 interactions per bunch crossing. The instantaneous

luminosity of the run was around 17×1030cm−2s−1. During the run, APVs were taking

data in the deconvolution mode.

In this run the trigger fired on the fixed bx=2306 in each orbit, further referred to as

the “first event”. After the first trigger was followed by six other ones separated by 75 ns

during 450 ns. This means that per one orbit, 7 events spaced by 3 bunch crossings were

thus triggered, but only the first one contained a bunch collision. The trigger setup was

very special as all trigger rules were violated at the trigger control level except the first

one.

The properties of the run and the data-taking setup resulted in many differences

compared to the study presented in Section 2.4.2, later referred to as the “first study”. As

bunches collided only during the first triggered event in a given orbit, the particle causing

the HIP interaction had to originate from this bunch crossing, so in this sense, the time

of the HIP occurrence is fixed. In addition, because of the fill structure with isolated

bunches, there is no out-of-time pileup for the first event.

2.4.4.3 Methodology

In order to design the selection of HIP events dedicated to this run, the correlation of

baseline and σraw per APV has been analyzed. The distribution presented in Fig. 2.21 is

very similar to the one of the Fig. 2.12 for the first study. This implies that the manifesta-

tion of the HIP events has not changed with the change of the APV settings, consequently

the same HIP selection, defined in Eq. 2.7, can be used. As the time associated to the

creation of the particle causing the HIP event is fixed in this study to bx=2306, no redef-

inition of the bunch crossing position is needed and hence the properties of the selected

HIP event and the other 6 events in the same orbit can be shown as function of their real

bunch crossing number, respectively time.

The average baseline evolution as a function of the bunch crossing number is shown

in Fig. 2.22. The recovery of the baseline occurs in less than 12 bunch crossings, which is

a slightly faster recovery than in the first study. Here also the baseline overshoots from

its nominal value of 127 ADC for the remaining events in one orbit, even to a higher level
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Figure 2.21: The 2-D distribution of the σraw of the raw digis in the APV versus the
baseline for the run 281604.

than in the first study. Note that the baseline decreases between the first and second

event, because not all baselines are fully suppressed yet during the first event. The study

of the first occurrence of the fully suppressed baseline as a function of the bunch crossing

has shown that in approximately half of the cases the baseline is already saturated in the

first event, the remaining half corresponds to the second event.
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Figure 2.22: The averaged baseline evolution as a function of the bunch crossing number
for the run 281604.

The main results of this study, on the HIP probability measurement, are presented first,

in the following Subsection 2.4.4.4. Then the cluster properties per APV are discussed

in Subsection 2.4.4.5. For that purpose, four categories of events are defined, as shown

in Table 2.2. For an APV influenced by a HIP event, the cluster information of the first
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event in a given orbit belongs to the first category, the remaining events to the second

category. The cluster information of APVs for which no HIP event has happened during

the given orbit belongs to the third category in case of the first event in the orbit or to

the fourth category otherwise. Thus in categories 2 and 4, only fake clusters are expected

as no colliding bunches in the CMS were present at these bunch crossings, in contrary

to categories 1 and 3 which are populated by both real and fake clusters. The last two

Subsections (2.4.4.6 and 2.4.4.7) focus on the fake clusters resulting from the HIP and

the origins of these clusters.

Category Name Features
1 HIP Collision event when a HIP occurred
2 After HIP Event in the same orbit of a selected HIP

Not a collision event
Fake clusters

3 Collision non-HIP Collision event without any HIP
4 Non-collision, non-HIP No HIP selected in a same orbit

Not a collision event
Fake clusters

Table 2.2: The four categories of clusters used for the study of run 281604.

2.4.4.4 HIP probability measurement

The probability of a HIP event given by Eq. 2.4 is in this study estimated in average

separately for each layer and wheel or ring of the silicon strip tracker. The fHIP is

calculated according to Eq. 2.5 and the number of tracks traversing the part of the sensor

corresponding to a given tracker APV is computed from simulated events. The final result

can be seen in Fig. 2.23 for the barrel, TID/TEC wheels in the left and rings in the right

plot. The probability of a HIP event per track is of order of 10−3 − 10−2, which is about

one order of magnitude larger than the results provided by the HIP study at the PSI

described in Section 2.3.4. In this CMS study, the simulated number of tracks traversing

the tracker modules does not take into account neutral particles, because they do not

ionize the sensor and thus do not leave hits. Then the probability of the HIP event is

thus increased by not taking into account all particles. The two analyses also differ by

the HIP selection, trigger conditions, and particle and energy spectra.

In the left plot of Fig. 2.23 it can be observed that the probability of the HIP interaction

per track is different for different layers. The probability increases with the module

thickness as the path of the particle in thicker modules is longer. The change of the

probability because of the larger thickness can be typically seen when comparing TIB
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sensors which are 320 µm thick and TOB sensors which have a thickness of 500 µm.

The HIP probability increases also with the module pitch. A possible explanation is that

larger the pitch is, less channels read the HIP charge and thus it is easier to reach the

zero-light level. In the left plot of Fig. 2.23, no clear evolution for the TID and TEC

wheels is observed. This is caused by a mixture of modules with different pitches and

thicknesses in one wheel. On the other hand the rings are composed by the same modules

and it can be noticed that the probability per ring shown in the right plot of Fig. 2.23

has a similar evolution with the ring distance from the beamline as the probability for

the TOB.

The particle flux decreases approximately as a function of the distance from the beam-

line, and therefore when comparing the same modules a decrease in the HIP probability

as a function of distance from the beamline can be expected. Despite the modules are

almost similar in the case of the TOB (change in pitch between layer 4 and 5 from 183 to

122 µm), the HIP probability is increasing as a function of distance from the beamline,

and not decreasing. As the charged particles are bent in the magnetic field, only highly

energetic charged particles reach the outer layers of the tracker, what is not the case for the

neutral particles. Because of this effect, the particle energy spectra as well as the ratio of

charged to neutral particles change with the distance from the beamline. Specifically, the

fraction of neutral to charged particles increases with the distance from the beamline and

as the tracking is reconstructing only charged particles, rescaling by the number of tracks

biases the HIP probability differently as a function of the distance from the beamline.

Moreover, the tracking is not 100% efficient. Due to this issue, the probability evolution

can be the opposite of what is expected. Furthermore, the inelastic cross section of the

nuclear interaction changes with the kind of particle and particle energy and therefore it

can be also responsible for a change in the probability of the HIP event between different

layers.

The estimation of the HIP probability, which is not sensitive to the tracking, is defined

in Eq. 2.6. This probability is defined per pileup interaction and thus should be invariant

with change of the fill structure, given that the pileup is the same. This probability can be

re-computed for different filling schemes by dividing the probability by the PU of the fill

of run 281604 and rescaling it by the PU of the fill of interest. The fHIP rescaled by the

peak fill pileup of 48 is shown in Fig. 2.24 again for layers/wheels (left) and layers/rings

(right) of the TIB, TOB, TID and TEC. The probability has been evaluated to be of

the order of 10−6 − 10−5. As expected from the evolution of fluence with distance from

the beamline, the probability shown in Fig. 2.24 is decreasing with the distance from

the beamline. This is observed for the layers of the TOB. It is also true for the TEC

rings (right plot of Fig. 2.24) from TEC1 to TEC4 and TEC5 to TEC7. The probability
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also increases with the sensor thickness as it can be seen in the right plot of Fig. 2.24

in the probability change between the TEC4 (thickness of 320 µm) and TEC5 (thickness

of 500 µm) rings. The increase of the probability with the sensor thickness can also be

observed when comparing the probabilities for the TIB and TOB. The increase of the

probability due to the pitch size can be seen when comparing the first two and second two

layers of the TIB. The information on the module geometries can be found in Table 1.1.

For the TID and TEC wheels shown in the left plot of Fig. 2.24 there is again no clear

evolution because of mixture of the different modules.

This probability per PU changes from layer to layer because of the differences in

module geometry, particle composition and energy spectra, but the relative change of

probability between given layers for the different fills should remain the same and therefore

the mentioned rescaling by the PU should be sufficient to evaluate this probability for

different filling schemes.

However as previously, both computed probabilities of the HIP events can be biased

by the trigger conditions. Only baselines which are already fully suppressed in the first

event or which are still fully suppressed in the second event (after 75 ns) can be selected

as HIP events, what potentially decreases the probability.
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Figure 2.23: The average probability of a HIP event per track for layers (left, right) of
TIB, TOB, and wheels (left) or rings (right) of the TID and TEC partitions of the silicon
strip tracker, computed from the data run 281604.

2.4.4.5 Comparative study of the cluster properties

In this subsection, we compare the behavior of the different clusters, based on the cate-

gorization presented in Table 2.2, in order to point the impact of the HIP. The average
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Figure 2.24: The average probability of a HIP event per PU for layers (left, right) of TIB,
TOB, and wheels (left) or rings (right) of the TID and TEC partitions of the silicon strip
tracker, computed from the data run 281604.

cluster multiplicity per APV is shown in the left plot of Fig. 2.25 both for orbits influenced

by a HIP event, in triangles (categories 1 and 2), and non-HIP orbits, in rectangles (cat-

egories 3 and 4). The average cluster multiplicity for the first event is non-zero due to

the presence of collisions and it falls then to almost zero for other events where only fake

clusters are present. In the case of the HIP-orbits, the average cluster multiplicity for the

first event is higher than in the standard case because of additional clusters originating

from the HIP event. The other events exhibit also a significantly larger average multiplic-

ity of the fake clusters compared to non-HIP orbits. The average fake cluster multiplicity

is increasing in time up to a constant level and does not diminish during the 6 events,

which translates to 150 ns.

The average cluster charge shown in the right plot of Fig. 2.25 reveals that the charge

is larger for a HIP event than a standard event in the case of the collision event. This

effect appears because large charge clusters can be present during the HIP event. Then

in the remaining bunch crossings, standard fake clusters have a charge around 250 ADC,

which is not the case for the fakes induced by the HIP event. In the latest case, the

average cluster charge of fakes first drops up to ∼ 150 ADC, and then later with time,

grows even above the level of the real clusters.

Distributions of the cluster charge, multiplicity and width for the four categories de-

fined in Table 2.2 are shown in Figs. 2.26 to 2.28, respectively. The left plot of Fig. 2.26

shows the cluster charge distribution for collision events. It can be noticed that the HIP

events often lead to the saturation of one or more channels (spikes) and that a large part of

the population has a cluster charge of around 1400 ADC. These clusters are HIP clusters
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Figure 2.25: The average cluster multiplicity (left) and average cluster charge (right)
as a function of the bunch crossing number for the run 281604. In pink triangles is the
average cluster multiplicity of the HIP event and events later while the blue squares are
for the non-HIP events.

or they originate from baseline distortions induced by the HIP and therefore they bring

a possibility to identify the HIP event as an event with a large charge cluster. But as the

probability of the HIP interaction is low, studying distributions which are not rescaled

to unity reveals that more clusters with such large charge are produced in average in

non-HIP collision events than in the HIP events. Furthermore the positions of peaks at

low cluster charges are different in the two distributions. This can be caused by different

fractions and origins of fake clusters, but also by a loss of the charge when reconstructing

a real cluster in an APV with a dropped baseline. The right plot of Fig. 2.26 shows the

cluster charge distributions for non-collision events. It can be noticed that a large fraction

of the standard fake clusters have one saturated channel.

In Fig. 2.27 the cluster multiplicity, i.e. the ratio per APV of the number of clusters

to number of events, is shown for collision HIP and non-HIP events on the left and for

non-collision HIP and non-HIP events on the right. As discussed before, in average the

HIP event leads to a larger cluster multiplicity because of the HIP cluster or baseline

distortions compared to the non-HIP collision events. The same applies for the fake

clusters after the HIP event w.r.t. the normal fakes. The left plot of Fig. 2.28 reveals

that the cluster width is in average higher and its distribution is broader for HIP events

compared to the non-HIP collision events, which is caused by the different origin of the

clusters. The low cluster width population for the HIP events can appear due the drop

of a baseline which causes that not all channels reading signal from particle can reach the

clustering threshold. Similar conclusion applies for the two distributions in right plot of

Fig. 2.28.
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Figure 2.26: The cluster charge distribution in run 281604 for collision HIP and non-HIP
events (left), and for after HIP and non-collision non-HIP events (right).
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Figure 2.27: The cluster multiplicity distribution in run 281604 for collision HIP and
non-HIP events (left), and for after HIP and non-collision non-HIP events (right).

In this subsection it was shown that the cluster width, charge and multiplicity are

influenced by the occurrence of the HIP event. Especially, we found out that the fake

cluster multiplicity is increased after the HIP event. These fake clusters are further

discussed in following subsections.

2.4.4.6 Characterization and quantification of fake clusters induced by HIP

To understand the properties of the fake clusters and numerically support the conclusions

of the previous subsection, the average cluster multiplicity, charge and width are calculated

in Table 2.3. In the table it can be noticed that the average multiplicity of fake clusters
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Figure 2.28: The cluster width distribution in run 281604 for collision HIP and non-HIP
events (left), and for after HIP and non-collision non-HIP events (right).

appearing after the HIP interaction is higher than the average multiplicity of the standard

fake clusters. This could potentially cause a problem for a tracking algorithm which may

use fake clusters to reconstruct a track. The lower limit on the probability to have at least

one fake cluster which is used to reconstruct a track can be estimated by the following

formula:

pfake(PU) = fHIP /PU1 × T × Nfake/PU1 × PU2
2 × σposition

Nstrips × p
, (2.8)

where fHIP is defined in Eq. 2.5, the time window T is the number of bunch crossings in

one orbit for which the fake clusters are observed, p is the pitch size, Nstrips is number of

strips per APV and the position resolution σposition is the estimate of the space window

around the reconstructed track in which the fake cluster is close enough to be used for the

track reconstruction. Nfake is the average fake multiplicity over the time window T . The

pileup PU1 is chosen to be the currently studied fill peak pileup. The factor (PU1/PU2)
2

can transfer the results of the studied run 281604 with PU1 to different run conditions

with a different pileup PU2. For the studied run, the PU2 is equal to PU1 and therefore

the Eq. 2.8 can be rewritten as

pfake(PU) = fHIP × T × Nfake × σposition

Nstrips × p
. (2.9)

A cluster is used for the track reconstruction if it passes a certain charge threshold,

which depends on the thickness of the sensor and the track inclination. Considering a

normal track, the cluster charge cut for the sensors of the first layer of the TOB, which
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Events/Quantities Average cluster Average cluster Average cluster
charge [ADC] multiplicity width [strip]

HIP 1094 1.254 8
After HIP 254 0.099 9
Collision non-HIP 426 0.712 5
Non-collision, non-HIP 219 0.002 4

Table 2.3: The average cluster charge, multiplicity and width for the four categories
defined in Table 2.2 for the run 281604. These quantities are computed from both on-
track and off-track clusters.

have a thickness of 500 µm, is around 140 ADC in the case of the tightest cut. As shown in

the right plot of Fig. 2.25, all fake clusters pass in average this requirement. The values for

the first layer of TOB needed for the probability estimation in Eq. 2.9 are fHIP = 0.0024,

T = 18, Nfake = 0.099 obtained from Tab. 2.3. The σposition is taking into account the

cluster and alignment position resolutions which are for the first layer of TOB of around

40 µm each and is estimated to be σposition = 2
√

2 × 40 µm. Inserting these values into

Eq. 2.9 gives the lower limit on the probability for the first layer of TOB to have at least

one fake cluster originating from HIP event, which is used to reconstruct a track. This

probability has been calculated for the fill peak pileup PU1 = 48 to to be 0.002% , which

is very low and therefore the impact of these fake clusters on tracking is negligible, but

it is just a lower limit as there are only 7 consecutive events and the behavior of fake

clusters after these events is unknown. Moreover this probability scales with the pileup.

The fake cluster multiplicity is increased after the HIP event as shown in Table. 2.3,

but the HIP probability is low and therefore it is also important to compute the average

multiplicity of the fake clusters in the run by dropping the last term in Eq. 2.8 describing

the position window. To evaluate its impact, this multiplicity can be compared to the

other off-track cluster multiplicities. One of them is the multiplicity of the normal fake

clusters originating mainly from the noise, which is determined in Table 2.3 to be 0.002.

The second off-track contribution is due to OOT PU. The fraction of the OOT pileup

clusters in an event has been computed from the comparison of the cluster multiplicity in

the first and other events in the train for a standard collision run (run 273162) as in the

first event there is no OOT PU. The fraction of the OOT pileup has been evaluated to

be around 50% of all clusters in the other events in the train. Knowing this fraction, the

OOT PU cluster multiplicity can be determined for the run 281604. The average cluster

multiplicities of these three categories for the first layer of TOB are shown in Table 2.4.

It can be noticed that the average cluster multiplicities of normal fake clusters and fake

clusters resulting from the HIP event are of the same order of magnitude. However
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the average multiplicity of clusters originating from OOT PU is around two orders of

magnitude larger than the average cluster multiplicity of the other two categories.

Off-track cluster category average cluster multiplicity
Fakes after HIP 0.004
Normal fakes (noise) 0.002
OOT PU 0.722

Table 2.4: The average cluster multiplicity in the run for three categories of off-track
clusters for the first layer of TOB and run 281604.

The origin and properties of the fake clusters after the HIP event can be studied

in the non-collision events after the HIP. In the distributions of Fig. 2.29, the average

cluster multiplicity and width are shown as a function of the σraw. In the standard case,

the nominal value of the σraw is around 8 ADC. For a σraw value of 8 ADC, the fake

multiplicity is the lowest as shown in the left plot of Fig. 2.29. Compared to this point,

the fake cluster multiplicity is significantly increased when the value of σraw around 2 to

5 ADC and for a σraw larger than 10 ADC, suggesting that the distorted baselines, those

with large σraw, lead to an increased multiplicity of the fake clusters. In the right plot of

Fig. 2.29 it can be noticed that the average cluster width is increasing with σraw.

To understand the occurrence of the fake clusters, the fake cluster multiplicity can

be also shown as a function of the baseline as done in the left plot of Fig. 2.30. In this

distribution it can be seen that after the baseline saturation, the fake cluster multiplicity

remains low for a while and then during the recovery the fake cluster multiplicity starts

to increase up to baseline of about 0 ADC. The multiplicity falls then to its minimum,

which is around the baseline normality (baseline=127 ADC). After that, the baseline

overshoots and the average cluster multiplicity starts to increase significantly. Here it

is important to remind that the clusters are reconstructed as in the ZS data-taking, i.e.

with the truncation to zero. Therefore a highly distorted baseline does not have to lead

to reconstructed cluster(s) if the charges of the cluster channels do not exceed 0 ADC.

As seen in the left plot of Fig. 2.29, the majority of the fake clusters appear for a σraw

larger than 10, but a substantial population is also observed for the RMS of 2-5 ADC.

The distribution of σraw as a function of the baseline in the right plot of Fig. 2.30 shows

that both baselines with value of around 0 ADC and larger than 200 ADC have increased

σraw with respect to normality. σraw of 2-5 ADC corresponds to the baselines between

approximately -70 ADC and -20 ADC.

To conclude, it was shown in this subsection that thanks to the small probability of the

HIP event, in average this fake cluster multiplicity is small and therefore the influence on

the tracking is negligible. It has also been observed that a higher fake cluster multiplicity
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Figure 2.29: The average cluster multiplicity (left) and average cluster width (right) as a
function of σraw of the non-collision events after the HIP for the run 281604.
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Figure 2.30: The average cluster multiplicity (left) and σraw (right) as a function of the
baseline of the non-collision events after the HIP for the run 281604.

happens for distorted baselines (i.e. those with large σraw) which appear for both low and

high values of baseline. Some examples of events inducing fake clusters are illustrated in

the next subsection.

2.4.4.7 Examples of the baseline distortions resulting from HIP

Based on the observations in the previous subsection, several examples of APVs with

different values of σraw and baseline are later shown in order to study the behavior of the

baseline which can lead to the reconstruction of fake clusters. In the five plots in Fig. 2.31,

70



CHAPTER 2 - STUDY OF THE HIGHLY IONIZING PARTICLES IN THE SILICON
STRIP TRACKER

Fig. 2.32 and Fig. 2.33 the evolution of raw digis, pedestal subtracted digis, baselines and

clusters is shown.

A first example of behavior, which can lead to fake clusters is the distorted baseline

due to the partial recovery of the saturated baseline (or not a full suppression) as shown

in sixth APV of the left plot of Fig. 2.31. In this example, σraw is equal to 4.4 ADC

and the baseline value is -57 ADC for this APV. In this case the baseline distortion did

not lead to the cluster reconstruction, because all pedestal subtracted digis are below

zero. But once part of the pedestal subtracted digis is larger than zero, these digis can be

easily reconstructed into a cluster as displayed in the right plot of Fig. 2.31. The second

APV of this module presents a distorted baseline (with a value of -11 ADC and σraw

of 21 ADC) and two clusters are reconstructed, the first one is the HIP cluster and the

second originates from the baseline distortion. This second cluster, reconstructed between

channels 195 and 256, is also significantly larger than expected for a MIP.

Another example of event with a large σraw of 21 ADC and a low baseline value of

-66 ADC can be seen in the sixth APV of Fig. 2.32. In this event, a baseline distortion

appears, but of a different kind, here the baseline exhibits a large dip for few strips.

Another source of fake clusters are baselines with larger than nominal values. Two

examples of APVs with high baseline and σraw values are shown in Fig. 2.33. The baselines

of these APVs are not only sloping but it can be noticed that they are also distorted by

dips. These dips are not understood but they create significant distortions which can lead

to the reconstruction of wide fake clusters.

In these few examples it was demonstrated that the baseline distortions can lead to

the reconstruction of fake clusters. It was also shown that the baseline distortions can

have different shapes and can appear for both baselines with lower and higher value than

the normality.

2.5 Conclusion

The large increase of hit inefficiencies in the silicon strip tracker during 2015 and 2016, has

triggered deep investigations of the highly ionizing particles as a possible cause of these

inefficiencies. In this chapter the VR data are used to perform a qualitative study of the

HIP events as well as a quantitative estimate of the rate of these events. The initial aim

of this study was to understand if the HIP event can be the main cause of the observed

hit inefficiencies. Rapidly it was realized that the HIP event occurrence is not sufficient

to explain the inefficiencies and later the solution was found in the settings of the APV
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Figure 2.31: Examples of data from one tracker module undergoing zero suppression
and clustering. The raw digis are shown in pink. From the raw digis, the pedestals are
subtracted and the resulting digis are shown in blue. The baselines shown in red are
computed and subtracted from pedestal subtracted digis. The final clusters are shown
in green. (left) For the sixth APV σraw is 4.4 ADC and the baseline value is -57 ADC.
(right) The second APV has a baseline with value of -11 ADC and σraw of 21 ADC.
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Figure 2.32: Example of data from one tracker module undergoing zero suppression and
clustering. The raw digis are shown in pink. From the raw digis, the pedestals are
subtracted and the resulting digis are shown in blue. The baselines shown in red are
computed and subtracted from pedestal subtracted digis. The final clusters are shown in
green. The sixth APV has a σraw of 21 ADC and a baseline value of -66 ADC.

parameters. Later, a new VR data-taking was scheduled, which provided an opportunity

to perform the first measurements of the HIP events at the CMS environment, not influ-

enced by the wrong APV settings. Due to the data-taking conditions it is however not
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Figure 2.33: Examples of data from one tracker module undergoing zero suppression
and clustering. The raw digis are shown in pink. From the raw digis, the pedestals are
subtracted and the resulting digis are shown in blue. The baselines shown in red are
computed and subtracted from pedestal subtracted digis. The final clusters are shown in
green. (left) The fourth APV has a σraw of 14 ADC and a baseline value of 446 ADC.
(right) The fourth APV has a σraw of 21 ADC and a baseline value of 257 ADC.

possible to estimate the dead-time in this data, but on the other hand the trigger condi-

tions allowed to study the baseline distortions and the fake cluster properties in detail.

With this data the probability of a HIP event defined by Eq. 2.4 is computed to be of

order of 10−3 − 10−2, which is around an order of magnitude larger than the HIP proba-

bility per track measurement performed at the PSI beam test. The increased probability

is found to be a result of different experimental conditions of the two studies. Because

of the dependency of this probability on the tracking, we defined a second probability in

Eq. 2.6 which is independent of tracking. This probability scales with the fill pileup and

is computed to be of the order of 10−6 − 10−5. The evolution of these probabilities for

different layers/wheels/rings of the tracker was discussed and it was concluded that these

probabilities evolve as expected.
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Chapter 3

Improvement of the silicon strip

tracker simulation

In particle physics, a direct comparison between and theory cannot be made due to the

complex nature of the interactions and the apparatus. By consequence, the reconstructed

event data are directly compared to the ones simulated by the MC technique for mea-

surement or hypothesis test purpose. Further, the simulations are also important for

the development and understanding of specific analysis methods and for derivation and

validation of calibrations. The detector performance indicators such as resolutions and

efficiencies rely as well to a large extent on the simulation.

In Section 3.1 the general simulation workflow of CMS is introduced. In the following

Section 3.2 a deeper explanation of the simulation of particle charge deposits in the CMS

silicon strip tracker is given. In this Section the effects of tracker ageing and simplifications

used in simulation are also discussed. The chapter ends with Section 3.3 presenting a new

measurement of the cross talk parameters in the tracker and their impact in the simulation

on cluster properties.

3.1 An introduction to the CMS simulation

The CMS simulation workflow [64, 65, 66] is divided into several steps. The beginning

of the simulation chain starts with the generation of the physics events. In this step the

particles resulting from the interactions between colliding particles are generated as well

as their kinematics. The final state particles produced by the generator are then sent

to GEANT4 to pass through the “simulated” detector in which these particles interact

and leave energy deposits. The last step is the simulation of the response of the detector

and its electronics to particle traversing the detector. The output of this procedure is
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RAW data, which can be later reconstructed and slimmed for the purposes of the physics

analyses. The overview of the simulation steps, which are described in larger detail in the

following subsections, can be seen in violet in Fig. 3.1 [67]. The official production of the

simulated samples is handled centrally [68] by the CMS collaboration.

Figure 3.1: A diagram of the simulation workflow. The four-vectors of generated particles
together with the detector description enter to the GEANT4 simulation whose output are
simulated hits. Optionally the simulated hits from pileup interactions can be added on
top of the simulated hits from the process of interest and the mixture of these hits is
digitized during the electronics simulation. In this step the description of the electronics,
for example the noise and the detector conditions (like the temperature), is added. The
output of the digitization is the RAW data. Later steps are similar for both data and
simulated events [67].

3.1.1 Step 1: Monte Carlo event generation

The Monte Carlo (MC) generator is a complex software designed to produce physics events

according to a physics model. In the majority of cases three kinds of generators are used

by the CMS collaboration [69, 70].

General-purpose generators: These are for example Pythia 8 [71] or Herwig++ [72].
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They provide the complete description of the result of the proton collision. To generate

outgoing particles originating from the interaction of colliding particles, many theoret-

ical models and aspects have to be plugged in the generation process, such as the de-

scription of soft and hard interactions mainly in the leading order, parton distribution

functions (PDFs), initial and final state radiations (ISR and FSR), multiple parton inter-

actions, hadronization of partons and decay of particles.

Matrix Element calculators: The generators such as Powheg [73] or Mad-

Graph5_aMCatNLO [74] were developed to provide the next-to-leading order (NLO)

calculations. These calculators give the final state description at the parton level and

their output needs to be plugged into one of the general-purpose generators to generate

radiations and proceed with the full hadronization.

Specific generators: These generators are used to generate specific kind of events

e.g. diffractive or cosmic events.

3.1.2 Step 2: Simulation of the particle interactions in the de-

tector

To be able to describe data by simulations, the generated particles need to be propagated

through the volume of the CMS detector. This is achieved via the GEANT4 [75, 76]

toolkit, into which a detailed description of the CMS detector, its active and inactive

material dimensions, layout and properties, are plugged. The GEANT4 toolkit propagates

the generated particles through the detector, simulates the interactions with material and

models the physics processes which happen during the passage of the particles through the

detector. This procedure gives as output the simulated hits left by particles interacting

with the active volumes of the subdetectors. These simulated hits can originate from

primary particles generated by the MC generator, or from the secondary particles which

are the result of the GEANT4 simulation process.

The simulation of the pileup events is done separately from the simulation of the events

of interest. The input to the GEANT4 simulation of in-time and out-of-time pileup is a

pool of Minimum Bias single interaction events. To simulate a given luminosity profile a

specific distribution of the number of interactions per bunch crossing has to be chosen.

The complete simulation performed with GEANT4, also called Full Simulation (Full-

Sim), is very CPU intensive. Due to this a Fast Simulation (FastSim) [77, 78, 79] was

developed as an alternative to the FullSim. The FastSim uses simplified detector geometry

and interactions with material, this speeds the simulation by a factor of around 100. The

interaction with material is in the FastSim taken into account on the hit level. The com-
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parison of physics objects of FullSim and FastSim shows that FastSim is a reliable alterna-

tive that reproduces the FullSim high level objects within around 10% accuracy [77, 80].

The FastSim is widely used to produce for example samples of supersymmetric processes,

where large scans with different parameter values are needed. Typically for one fixed

parameter set, few tens of millions of events are produced.

3.1.3 Step 3: Simulation of the detector and electronics re-

sponse to the particle signal

To obtain the output electronic signal from the detector, the signal hits from GEANT4 are

collected by the subdetectors. Then the response of the readout electronics to the collected

signal is simulated. This step is also called “digitization” and its direct input are hits from

events of interest and pileup events. There are three domains providing digitization of

the given subdetectors, which are SimTracker, SimCalorimetry and SimMuon [81]. The

digitized samples are in the RAW format and can be further reconstructed in a similar

way as data.

3.2 Simulation of the silicon strip tracker response to

the particle signal

In order to rely on the simulated samples, they have to describe the data as well as possible.

In the case of the tracker, the output of the standard simulation is composed of zero

suppressed data, which are further reconstructed into clusters during the reconstruction

step. These clusters are used for tracking and physics object reconstruction, therefore a

good and reliable description of data by simulated samples at the cluster level is necessary.

The following Figs. 3.2 to 3.6 show data and simulation comparisons of several im-

portant cluster quantities. A zero bias data sample recorded in 2017 and corresponding

to run 305064 in fill 6298 is compared to a simulated sample of minimum bias events

produced in the FullSim configuration. Both data and simulated samples were produced

in the deconvolution mode. To avoid fake clusters and clusters originating from out-of-

time pileup, only quantities related to the on-track clusters, i.e. clusters associated to

reconstructed tracks, are used along this chapter.

The charge collected in a sensor from a given track divided by the track length in this

sensor, further referred to as “cluster charge”, is shown in Fig. 3.2. The division of the

cluster charge by the track length gives the cluster charge per unit of length. Therefore
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the cluster charge does not depend on the different track lengths caused by the different

thickness of the sensors or the inclination of the tracks. The data to simulation ratio

fluctuates around 1 within around ±0.1 in the bulk of the cluster charge distribution, but

the description worsens for very small and very large cluster charges. Overall the cluster

charge distribution in simulation is narrower than in data.
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Figure 3.2: Data and simulation comparison of on-track cluster charge divided by the
track length. The simulated distribution is rescaled to the number of clusters in data.
The bottom plot represents the data to simulation ratio.

The cluster width depends on the sensor geometry and therefore has to be shown

separately for different geometries. The possible geometries and their location in the

tracker can be found in Table 1.1. The data to simulation comparisons for inner and

outer barrel geometries are shown in Figs. 3.3 and 3.4, respectively. In all cases there is

a very poor description of the cluster width in data by the simulation. The mentioned

dependency of the cluster width on the geometry can be seen for example when comparing

the cluster width between the different barrel geometries. The IB1 sensors have a smaller

pitch with respect to the IB2 ones and therefore the IB1 clusters are in average wider, as

in the IB1 case a larger number of strips would collect the charge from the same track.

The sensors of IB2 and OB1 have a similar pitch, but the OB1 sensors are thicker which

leads to a larger cluster width in the OB1 than in IB2, because the particle path in a

sensor is longer. Moreover the cross talk is larger for OB1 than IB2, leading to a larger

enhancement in OB1 cluster width compared to IB2.

Another cluster quantity is the charge on the strip having collected the largest charge

among all strips in the cluster rescaled to track path in the sensor, which is later referred

to as “cluster seed charge”. The cluster seed charge shown in Figs. 3.5 and 3.6 is also
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Figure 3.3: Distribution of the on-track cluster width for the IB1 (left) and IB2 (right)
geometries in data and simulation. The simulated distribution is rescaled to the number
of clusters in data. The bottom plots represent the data to simulation ratio for a given
geometry. The pitch of the IB1 sensors is 80 µm and of IB2 sensors 120 µm, all IB sensors
have thickness of 320 µm.
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Figure 3.4: Distribution of the on-track cluster width for the OB2 (left) and OB1 (right)
geometries in data and simulation. The simulated distribution is rescaled to the number
of clusters in data. The bottom plots represent the data to simulation ratio for a given
geometry. The pitch of the OB2 sensors is 122/183 µm and of OB1 sensors 122 µm, all
OB sensors have thickness of 500 µm.

dependent on the module geometry and therefore is presented for the four different barrel

geometries. In these plots, it can be seen that the simulation in average predicts in all

cases a lower cluster seed charge, a clear trend in data to simulation ratio is present. It

can also be observed that with a larger pitch, the seed charge increases, as the charge

from a larger part of the sensitive volume is read by one strip. Moreover, differences in
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the seed charge for IB2 and OB1 are observed. However these two parts of the detector

have a similar pitch size and the difference in the module thickness is taken into account

by rescaling the collected charge by the path length. The difference between the two

geometries comes in fact from a larger cross talk in OB1, leading to a smaller seed charge.
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Figure 3.5: Distribution of the on-track cluster seed charge for the IB1 (left) and IB2
(right) geometries in data and simulation. The simulated distribution is rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratio for a
given geometry.
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Figure 3.6: Distribution of the on-track cluster seed charge for the OB2 (left) and OB1
(right) geometries in data and simulation. The simulated distribution is rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratio for a
given geometry.

To summarize, the simulation tends in general to overestimate the cluster width and

to underestimate the charge on the seed strip. Large variations in the data to simulation
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ratio are observed. Therefore it is necessary to identify the sources leading to the observed

disagreements between data and simulation, and to propose possible corrections.

To achieve such goal, the simulation flow of the silicon strip tracker (step 3) is described

in detail in the rest of this section, starting from GEANT 4 output in Subsection 3.2.1

and going through all the simulation steps in a detector unit up to the final digitization in

Subsections 3.2.2 to 3.2.5. The potential issues in the simulation approach are identified

and discussed at each of these steps. For simplicity, in the majority of cases, the cluster

seed charge and width distributions are shown only for the OB2 geometry which has the

largest number of layers. As the standard data-taking mode is the zero suppression mode

with APVs operating in the deconvolution mode, the simulation steps are described for

these conditions. At the end a possibility of simulating virgin raw data is briefly discussed

is Section 3.2.6.

3.2.1 The GEANT4 output

A simulated hit in the tracker produced by the GEANT4 toolkit is stored in the CM-

STrackerHit [82] object. The later is created for each particle entering in the tracker and

for each sensitive detector unit, which in case of the silicon strip tracker represents one

side of sensors of one module. The CMSTrackerHit object stores the information on the

particle entry and exit points in the reference system of the detector unit (xi, yi, zi). The

other quantities are the energy (Eent) of the particle at the point where track enters the

detector unit and the total amount of energy (Eloss) deposited in the detector unit by

the given particle. The time-of-flight (TOF ) of the particle from the primary interaction

point to the detector unit, the identification number of the detector unit (DetID) and of

the track (trackID) are stored as well. A sketch of a detector unit and the information

stored by GEANT4 per detector unit and track is shown in Fig. 3.7. In the following, the

detector unit will be referred to as “module”.

3.2.2 Dividing the energy deposit simulated by GEANT4 along

the path of the track and the timing of the tracker

GEANT4 provides the information on the total energy Eloss deposited in the detector

unit, in the form of the charge carriers created in the module. But depending on the

arrival time of particle to the module, a different fraction of this total energy is read due

to the electronic signal shape. To determine this fraction, the time-of-flight (TOF ) of

a given particle is compared to the time-of-flight of a reference photon traveling at the

speed of light. The reference photon is assigned to a given bunch crossing and its time-of-
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Figure 3.7: Sketch of a detector unit and the corresponding information saved for
each simulated hit by GEANT4. The hits are stored with the detector unit (DetID)
and track (trackID) identification numbers. They also contain the particle entry en-
ergy (Eent), the total energy deposited (Eloss) by the particle and the time-of-flight (TOF)
of the particle from the interaction point to the detector unit. The entry and exit points
of the particle in the local frame (xi, yi, zi) are stored as well [67].

flight is computed from the speed of light and the distance between the interaction point

and the entry point of the given particle in the given module. The maximum amount

of charge is read when the time-of-flight difference between the reference photon and the

given particle is zero. Larger is the difference from zero, smaller is the collected fraction of

the particle charge. Because of the bunch crossing assignment, the time-of-flight difference

between the reference photon and the particle can be either negative or positive. If the

particle originates from the studied bunch crossing the difference is always negative or

equal to zero, but if it was created before (OOT PU), the difference can be positive as

well. Therefore according to the delay between the reference photon and the particle

at the entry point to the module, the time response of the module to the signal left by

the particle can be determined. The schema of this time response (pulse shape) to the

signal currently used in simulation can be seen in Fig. 3.8. This shape corresponds to the

electronic pulse shape convoluted by a physical signal (flat with a duration of 20 ns). It

can be noticed that the time response of the module to the particle signal can take several

tens of ns. It is longer than the time between collisions, which is 25 ns, and therefore in

the bunch crossing of interest it is possible to read signal from preceding and succeeding

bunch crossings. This effect is one of the sources of the OOT pileup. The other sources

are particles arriving with a delay, for example slow particles and loopers.

GEANT4 hit stores only a total energy deposition information per one module but in

the real data-taking, the particle looses its energy as it traverses the module. To mimic

this effect, the track is divided into a certain number of equidistant segments. Currently

the number of sectors is evaluated as a fixed factor multiplied by the expected number of
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Figure 3.8: The approximated deconvolution pulse shape plugged into the simulation.
This pulse shape was derived from the laser measurements [83] and its maximum was
aligned to the 0 ns corresponding to the reference (photon) time, for which the maximum
of the charge is collected.

strips reading the particle signal. The total energy reduced by the time response value,

as described in the previous text, is then divided into the track segments and for each

segment it is fluctuated according a Landau function. The fluctuated charge per segment

is then normalized to keep the sum of the segment energies equal to the initial energy.

The local coordinates of the track segment together with the fluctuated normalized energy

deposit are saved in an object referred to as “energy deposit unit”.

In the energy division procedure there are several simplifications which can lead to

discrepancies between the properties of simulated clusters and clusters in data. The

GEANT4 provides only the total deposited charge, therefore the charge has to be divided

into discrete and equidistant tracks segments. Moreover it is assumed that the energy

loss is constant along the track, but according to the Bethe-Bloch formula there is an

evolution of the energy loss with the particle momentum. Other issues of this step are

discussed in detail in the following paragraphs.

Cut-off on the delta ray production δ

The charge of each track segment is being fluctuated by the GEANT4 routine. This

routine is initialized with a parameter called δ specifying a cut-off on the delta ray pro-

duction. The delta rays are already part of the previous GEANT4 output and therefore

this cut-off has to be the same as the one in the previous step in order to avoid any mis-

match. The dependency of the cluster charge, cluster seed charge and cluster width on

the delta ray cut-off, which was varied up to ±20% around its default value of 0.120425,
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is shown in Figs. 3.9 and 3.10. From these figures it can be concluded that the change of

distributions of the cluster properties is almost negligible in the given range of the cut-off

variation.
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Figure 3.9: On-track cluster charge in simulation for different values of the delta ray
production cut-off δ. The simulated distributions are normalized by the same factor as
in Fig. 3.2. In the ratio plot the default simulation is divided by different simulation
scenarios.
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Figure 3.10: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the delta ray production cut-off δ. The
simulated distributions are normalized by the same factors as in the left plots of Figs. 3.4
and 3.6, respectively. In the ratio plots the default simulation is divided by different
simulation scenarios.
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Pulse shapes

The deconvolution pulse shape used in simulation, presented in Fig. 3.8, was deter-

mined by the parametrization of results obtained in [83]. These results were obtained

from laser studies of the TOB modules before the start of the LHC operation. Fig. 3.11

presents the results, when a single strip was hit by the laser. In this plot, the resulting

pulse shape from the hit strip and the two neighbors on each side is shown. The neigh-

boring strips read non-zero charge purely due to the electronic cross talk, which is a result

of the coupling of the strips via inter–strip capacitance as shown in Fig. 2.4.
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Figure 3.11: The deconvolution pulse shape obtained from focusing a laser on one strip
of the TOB module. The charge read by the first and second neighboring strips on both
sides are shown as well. The largest signal is collected by the hit strip, a lower fraction
by its first neighbors and the lowest fraction by second neighboring strips. The black
curves correspond to the theoretical fits of the data, while the dots are measured data.
The vertical lines indicate the time of the maximum of the pulse shapes [83].

It can be noticed that there are several differences between the pulse shape obtained

from laser measurements and the one in simulation. First, the times corresponding to the

measured maxima of the pulse shapes are not same for the hit strip and for its neighbors.

This fact is omitted in the simulation. Secondly, measured pulse shape can have negative

values, while it is not the case in simulation. Thirdly, a pulse shape does not take into

account any ageing effects of the modules of the CMS tracker. Moreover in 2016 the

VFP parameter changed in order to avoid saturation of the electronics, which resulted

in a change of the pulse shape in data [84]. This change was not propagated into the

simulation. Therefore the dynamics is not correctly modeled, but in average the on-track

cluster charge is well described. In order to provide more realistic simulation of clusters,

the pulse shapes should be updated in future.

Furthermore there is a dynamics which modifies the pulse shape and which is not

modeled in the simulation. For example, the only charge carriers which are present in the

simulation are holes drifting to the strips, but the presence of electrons is omitted.
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The backplane correction

In 2009, discrepancies in the cluster position between data recorded in peak and de-

convolution modes were observed [85]. The disagreement was found to be worse for thick

sensors and the problem was quickly identified as an issue of the charge collection from

the whole sensor. In the deconvolution mode the charge carriers which are created close

to the backplane are not read as efficiently as those produced close to the strips and there-

fore the cluster position in the deconvolution mode is shifted with respect to the peak

data, where such problem is not present. To correct the cluster position between peak

and the deconvolution data, an ad-hoc correction called “backplane correction” is applied

on top of the deconvolution data during the reconstruction step. The derived backplane

correction is not precise and its inaccuracy is further compensated by the alignment. As

in the deconvolution mode the strip sensor appears effectively thinner, this effect does not

only impact the cluster position, but it could also influence the cluster charge, the cluster

seed charge and the cluster width. However, this effect is not considered in simulation.

3.2.3 Charge drift of the energy deposits through the sensor

To simulate the drift to the electrodes of the charge carriers created after the passage

of a particle through a module, the energy deposits have to be propagated separately

from each track segment to the strips. In simulation the energy deposits are not directly

converted to the charge carriers, but the energy deposits are drifted as the charges would

do.

As in the barrel region the electric field is perpendicular to the magnetic field, the

drift of the charge carriers is deflected from the direction of electric field, i.e. the local

z-axis, by the Lorentz angle. Thus the drift direction of the charges towards the surface

of the sensor must be corrected accordingly to the Lorentz angle and the local magnetic

field.

Moreover the charge carriers undergo diffusion in the silicon volume during the drift

and therefore the energy deposit from each track segment is collected smeared at the

surface due to the diffusion effects. The spread of the energy distribution is computed

from the knowledge of the drift time and a diffusion constant, which depends on the type

of material through which the charge drifts and the temperature of the sensor. The drift

time from the track segment to the sensor surface depends on:

– The sensor thickness: The drift time is longer for thicker sensors

– The depletion and applied voltages: The former is the voltage which fully
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depletes the sensor while the later is the total voltage applied, including the depletion

voltage. Both influence how fast the charge carriers drift

– The charge mobility: Depending on the material properties, its temperature,

the electric field and the concentration of the charge carriers, the charge mobility

influences how fast the charge carriers drift. For example the mobility of holes is

lower than the one of the electrons

– The coordinates of the track segment: They are used to determine the distance

that the charge has to drift through

The output from the previous step, as described in Subsection 3.2.2, is in the form of

energy unit after having applied now the drift and diffusion procedures and is stored as an

object referred to as “signal point”, which contains the information about its coordinates

at the surface, the energy and its spread.

In order to keep the processing time relatively short, the description of the drift is

simplified. It does not take into account any radiation damages of the sensors, ageing of

modules, or non-uniformities of the electric filed. However, the charge drift depends on

several parameters which can be subject of ageing. The description of these parameters

and the impact of a variation around their default values in the simulation is presented

in the following paragraphs.

Applied (AV ) and depletion (DV ) voltages

As mentioned, the spread of the diffused energy distribution depends on the drift time

which depends on the applied and depletion voltages. The depletion voltage changes

during the operation of the tracker because of the ageing of modules, but this information

is not updated in the simulation. The applied voltage has not been changed during the

operation of CMS, but it will become necessary once the depletion voltage will be larger

than the applied one. To evaluate the effect of a voltage change on the cluster charge,

seed charge and width, these distributions are shown for several values of depletion and

applied voltages in Figs. 3.12 to 3.15. The depletion and applied voltages, whose default

values are 170 V and 300 V, respectively, are varied in the figures within a ±20% around

the default. It can be concluded that the following change of the cluster properties is

negligible.

Temperature (T ) and charge mobility (µ)

The diffusion constant D can be expressed as

D =
µkBT

q
, (3.1)
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Figure 3.12: On-track cluster charge in simulation for different values of the applied
voltage AV . The simulated distributions are normalized by the same factor as in Fig. 3.2.
In the ratio plot the default simulation is divided by different simulation scenarios.
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Figure 3.13: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the applied voltage AV . The simulated
distributions are normalized by the same factors as in the left plots of Figs. 3.4 and 3.6,
respectively. In the ratio plots the default simulation is divided by different simulation
scenarios.

where µ is the charge mobility in units cm2/(V · s), kB the Boltzmann constant, T the

absolute temperature of the material and q the electrical charge of the particle. Between

Run 1 and Run 2 the temperature of the tracker was changed from 4◦C to -15◦C and

between 2017 and 2018 from -15◦C to -20◦C. As this change was not propagated into

the simulation, it is therefore important to evaluate its effect. The cluster charge, width

and seed charge are shown in Figs. 3.16 and 3.17 for the default value of temperature
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Figure 3.14: On-track cluster charge in simulation for different values of the depletion
voltage DV . The simulated distributions are normalized by the same factor as in Fig. 3.2.
In the ratio plot the default simulation is divided by different simulation scenarios.
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Figure 3.15: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the depletion voltage DV . The simulated
distributions are normalized by the same factors as in the left plots of Figs. 3.4 and 3.6,
respectively. In the ratio plots the default simulation is divided by different simulation
scenarios.

T = 273 K used in simulation as well as for variations up to ±20%. No dependency of

the cluster charge, width and seed charge on the temperature is observed.

The charge mobility µ intrinsically also depends on the temperature, as well as on

the concentration of defects which change in time and therefore this parameter should

in principle also be adjusted in the simulation. Figs. 3.18 and 3.19 are not revealing
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any change of the cluster charge, width and seed charge when altering the default charge

mobility of 310 cm2/(V · s) by up to ±20%.

In summary, there is almost no change in the simulated cluster properties due to

parameters influencing diffusion of the charge carriers because the magnitude of diffusion

is much smaller than the pitch size.
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Figure 3.16: On-track cluster charge in simulation for different values of the tempera-
ture T . The simulated distributions are normalized by the same factor as in Fig. 3.2. In
the ratio plot the default simulation is divided by different simulation scenarios.

cluster width [strip]

1 2 3 4 5 6 7 8

#
c
lu

s
te

rs

0

20

40

60

80

100

120

140

160

180

3
10×

OB2
T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

0

0.5

1

1.5

2

cluster seed charge over path [ADC/cm]

1000 2000 3000 4000 5000 6000

#
c
lu

s
te

rs

0

10000

20000

30000

40000

50000

OB2
T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

T default =273

T20%

T10%

T+10%

T+20%

0

0.5

1

1.5

2

Figure 3.17: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the temperature T . The simulated
distributions are normalized by the same factors as in the left plots of Figs. 3.4 and 3.6,
respectively. In the ratio plots the default simulation is divided by different simulation
scenarios.
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Figure 3.18: On-track cluster charge in simulation for different values of the charge
mobility µ. The simulated distributions are normalized by the same factor as in Fig. 3.2.
In the ratio plot the default simulation is divided by different simulation scenarios.

cluster width [strip]

1 2 3 4 5 6 7 8

#
c
lu

s
te

rs

0

20

40

60

80

100

120

140

160

180

3
10×

OB2
 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

0

0.5

1

1.5

2

cluster seed charge over path [ADC/cm]

1000 2000 3000 4000 5000 6000

#
c
lu

s
te

rs

0

10000

20000

30000

40000

50000

OB2
 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

 default =310µ

20%µ

10%µ

+10%µ

+20%µ

0

0.5

1

1.5

2

Figure 3.19: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the charge mobility µ. The simulated
distributions are normalized by the same factors as in the left plots of Figs. 3.4 and 3.6,
respectively. In the ratio plots the default simulation is divided by different simulation
scenarios.

Lorentz angle (LA)

The Lorentz angle used in simulation is dependent on the electric and magnetic field

and therefore the Lorentz angle should be updated with the change of voltage. The

effect of the Lorentz angle on the simulated cluster charge, width and seed charge is

shown in Fig. 3.20 and 3.21. The Lorentz angle injected into the simulation is specific for
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each module and it is read from the offline condition database. This database contains

information about tracker conditions, such as Lorentz angle, noise, list of bad modules

and gains. The distribution of the Lorentz angles in the OB2 geometry per cluster was

fitted by a Gaussian distribution to obtain its mean value and standard deviation. Then a

mean value altered by up to twice the standard deviation was injected into the simulation

to obtain the varied simulated samples. It can be concluded that within the range of

injected Lorentz angle values there is a negligible effect on the description of the shown

cluster properties. The Lorentz angle impacts the position of the cluster and therefore

within the tracker local reconstruction group, there are intents to remeasure and update

the Lorentz angle values to improve the cluster position in simulation.
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Figure 3.20: On-track cluster charge in simulation for different values of the Lorentz
angle LA. The simulated distributions are normalized by the same factor as in Fig. 3.2.
In the ratio plot the default simulation is divided by different simulation scenarios.

3.2.4 Induced charge on the strips

Once the energy deposits are drifted to the surface, the amount of electrons induced on

the given aluminium strips is simulated. The energy cannot be divided between strips

purely based on geometrical criteria, due to the capacitive coupling (cross talk) between

the silicon strips. The cross talk induces that the charge collected by one strip is partially

shared with its first and second neighboring strips on both sides. The sharing with second

neighboring strips is larger in the deconvolution mode than the peak mode. In the peak

mode the sharing with second neighboring strips is negligible.

The signal point at the surface is associated to the closest strip. There the energy is
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Figure 3.21: On-track cluster width (left) and cluster seed charge (right) in simulation
for the OB2 geometry and for different values of the Lorentz angle LA. The simulated
distributions are normalized by the same factors as in the left plots of Figs. 3.4 and 3.6,
respectively. In the ratio plots the default simulation is divided by different simulation
scenarios.

converted to a number of electrons corresponding to a given charge. The charge is then

divided between the neighboring strips according to the energy spread originating from

the diffusion. This is repeated for all signal points. If one strip obtains signal from many

signal points, these charge deposits are summed. On top of the assigned charge to the

strips, the cross talk effect is applied. The simulation iterates over all strips from left to

right, and shares the charge of a given strip in between its neighbors.

At this step, several more parameters have to be plugged into the simulation. All

these parameters can evolve with the ageing of the modules and therefore the impact of

their change on the cluster properties is discussed in following paragraphs.

The cross talk (XT )

While in reality the current is already induced on the aluminium strips once the

electrons and holes start to drift to the backplane and silicon strips, respectively, the

simulation is simplifying the description, by decomposing these steps: first only holes

are drifted towards the strips, second the charge on the strips is collected and then the

cross talk is applied. The cross talk could change in time due to radiation damages of

modules. The change in cross talk would have a small impact on the cluster charge, but

the cluster width and cluster seed charge would change largely as the sharing between

strips is impacted. In Figs. 3.2 to 3.6, it was observed that the simulation describes well

the cluster charge in data, but there is a large disagreement between data and simulation

for the cluster width and seed charge, therefore a change in cross talk would be a good
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candidate to explain the observed discrepancies.

To evaluate, what would be the impact of a non-correct description of the cross talk,

Figs. 3.22 and 3.23 show the cluster charge, width and seed charge distributions for several

cross talk configurations. In these plots it can be indeed seen that the cluster width and

seed charge, which are poorly described in simulation, are strongly dependent on the cross

talk.

To evaluate if there is a cross talk parametrization which could be injected into sim-

ulation to describe the measured data, a matrix of simulated samples was produced. In

these samples both the charge sharing between the first and second neighboring strips was

varied. The cluster width distribution of each simulated sample was compared to data,

based on a χ2 test. The sample with the best χ2 is shown in green in Figs. 3.22 and 3.23.

In the figures it can be noticed, that a decrease of the charge sharing between the central

strip and both its first and second neighboring strips, with respect to the values in the

default simulation, is required in order to better describe data. After this procedure the

data and simulation agreement for the cluster width and seed charge is vastly improved,

but it is still not perfect as the parameters and conditions which cause minor source of

discrepancies have to be updated as well. The remaining discrepancies could be then

caused by a simplification of the cluster simulation. More details about the cross talk and

the dedicated measurement performed during this thesis are given in Section 3.3.

cluster charge over path [ADC/cm]

1000 2000 3000 4000 5000 6000 7000 8000

#
c
lu

s
te

rs

0

10000

20000

30000

40000

50000
OB2

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

data

XT default =0.725,0.110,0.027

XT=0.702,0.120,0.029

XT=0.714,0.120,0.023

XT=0.742,0.100,0.029

XT=0.754,0.100,0.023

XT=0.814,0.070,0.023

0

0.5

1

1.5

2

Figure 3.22: Data and simulation comparison of the on-track cluster charge divided by
the track length for the OB2 geometry and for different values of the cross talk XT . The
first of the three XT numbers corresponds to the fraction of charge induced on the seed
strip, the second and third number represent the fractions of charge induced on each first
and second neighboring strips, respectively. The simulated distributions are rescaled to
the number of clusters in data. The bottom plot represents the data to simulation ratios.
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Figure 3.23: Distribution of the on-track cluster width (left) and cluster seed charge
(right) in data and simulation for the OB2 geometry and for different values of the cross
talk XT . The first of the three XT numbers corresponds to the fraction of charge induced
on the seed strip, the second and third number represent the fractions of charge induced
on each first and second neighboring strips, respectively. The simulated distributions
are rescaled to the number of clusters in data. The bottom plot represents the data to
simulation ratios.

The energy to electron conversion factor (Ee)

With the ageing of the modules, the conversion of the energy into a number of electrons

can evolve. The data and simulation comparisons of the cluster charge, width and seed

charge are shown in Figs. 3.24 and 3.25. A set of simulations, produced by changing the

conversion factor by up to ±20% with respect to its default value of 3.61 × 10−9 GeV,

is plotted as well. In these figures it can be noticed that a change in the conversion

factor between the deposited energy and the electron multiplicity by up to ±20% leads

to significant changes in all cluster quantities. However, it can be concluded that a single

change of this conversion factor does not allow to provide a good data and simulation

agreement in all these three quantities at the same time. Moreover as there realistic gains

are applied, the possible evolution of the conversion factor is already taken into account

by the gain calibration procedure. The details are discussed in the next section when the

factor converting electrons to ADCs is introduced.

3.2.5 Conversion of the analog signal to a digital one

Before the digitization of the signal, few more effects must be considered. First, in the

detector around 4% of channels are flagged as bad. The information about bad channels

is stored in the condition database, read by the simulation, and if a bad channel has a
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Figure 3.24: Data and simulation comparison of the on-track cluster charge divided by
the track length for the OB2 geometry and different values of the energy to electrons
conversion factor Ee. The simulated distributions are rescaled to the number of clusters
in data. The bottom plot represents the data to simulation ratios.
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Figure 3.25: Distribution of the on-track cluster width (left) and cluster seed charge
(right) in data and simulation for the OB2 geometry and different values of the energy to
electrons conversion factor Ee. The simulated distributions are rescaled to the number of
clusters in data. The bottom plots represent the data to simulation ratios.

non-zero value of its simulated charge, it is set to zero. Secondly, to mimic real conditions,

the noise, which is stored in the condition database, has to be added to each strip. The

noise per strip is determined from the the fluctuation of the strip charge after pedestal

and CMN subtraction in data runs in absence of collision. The noise is stored in ADCs,

therefore it has to be converted to a number of electrons by a dedicated conversion factor.
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Moreover because of differences between modules in the detector, the noise has to be

rescaled by the gains of the modules to correct for module differences. The gain used in

simulation (Gsim) is set to be the G1 gain described in Section 2.2.5 determined from the

simulation. Another option for the Gsim is to smear randomly the G1 value determined

from data to take into account the fluctuations of G1 over time and the accuracy of its

measurement. The G2 gain for simulation is then calculated from a simulated tt̄ sample

with all the other conditions applied, by targeting the MPV of the MIP response to be

300 ADC/mm.

The sum of signal and noise on the strips in electron units is then converted to ADCs

by a conversion factor and scaled by Gsim gain to mimic the output from the detector.

During the reconstruction step, both data and simulation are corrected by 1/(G1×G2) to

eliminate differences in modules, and compensate for the drop of signal due to losses in

the signal collection and during the signal transmission. Therefore it would be possible

not to apply any gain on the simulated data as in the simulation itself no inefficiencies or

differences between similar modules are introduced. And indeed, for the first simulations,

no gains were applied, but later it was decided to apply gains to be able to simulate

saturation effects. In FED, the charge in ADCs is truncated into 8-bit range, therefore

the Gsim gain is applied to mimic the realistic output of detector. The simulated data in

ADCs are zero suppressed and stored as digis.

The gains, noise as well as the conversion factor between electrons and ADCs change

during the operation of the CMS because of the change of operating conditions and

radiation damage of the modules. The evolution of these quantities is discussed in the

following paragraphs.

Gains and noise

The noise is strongly dependent on the tracker operating temperature and both noise

and gains change with the radiation damage. Therefore they need to be measured several

times per year and updated regularly for needs of the data reconstruction. These values

are not propagated to the simulation, which is using conditions from a different condition

database, updated with a much smaller frequency. The difference of noise and gains be-

tween data and simulation can lead to different zero suppression results and also different

reconstruction results. If the noise is larger in one case than the other, it can appear that

a strip with a given charge can fail the S/N threshold criterion in one case and pass in

the other. This effect can lead to discrepancies in the cluster width and charge between

data and simulation. To evaluate the current status, the cluster seed noise rescaled by

gains, further called only as “seed noise”, is shown in Fig. 3.26. From these plots it is

obvious that the difference in the seed noise between data and simulation is huge. This
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finding triggered the update of these conditions by the responsibles of the tracker local

reconstruction group. The gains in the simulation will be updated during 2018.

For the update of 2018 conditions in simulation, the G1 gain, noise and bad compo-

nents conditions are taken directly from data, the Gsim gain is taken to be a smeared

version of G1 and the G2 gain is recomputed by a strategy similar as before.
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Figure 3.26: Data and simulation comparison of the on-track cluster seed noise rescaled
by gains for the OB2 geometry. The simulated distribution is rescaled to the number of
clusters in data. The bottom plot represents the data to simulation ratio.

The electrons to ADCs conversion factor (eADC)

Similarly, as the conversion factor Ee, the conversion factor from electrons to ADCs

eADC is sensitive to the ageing of modules. The comparisons of data with different

simulations are shown in Figs. 3.27 and 3.28 for the cluster charge, width and seed charge,

the simulations are using an eADC conversion factor within up to ±20% from the default

value of 247 ADC−1. By its nature the impact on the cluster quantities of the variations

of eADC is very similar to the case with varied Ee factor and again the conversion factor

eADC alone cannot be taken as the responsible for the non-description of the data by

simulation.

As already suggested the evolution of the conversion factors is already taken into

account by applying the gains. In data the (G1 × G2) factor corrects for the electronics

effects and the differences at the sensor level by tuning the MPV of the MIP response to

be 300 ADC/mm. The gain calibration procedure then guarantees that the cluster charge

is stable through the operation of CMS even if due to radiation effects the inefficiency,

for example in the charge collection, can increase. In simulation, the (G1 × G2), if well
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calibrated, also targets the charge to be the one of the MIP. Therefore the product of Ee

and eADC conversion factors is already fixed by this calibration procedure.
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Figure 3.27: Data and simulation comparison of the on-track cluster charge divided by
the track length for the OB2 geometry and different values of the conversion factor eADC.
The simulated distributions are rescaled to the number of clusters in data. The bottom
plot represents the data to simulation ratios.
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Figure 3.28: Distribution of the on-track cluster width (left) and cluster seed charge
(right) in data and simulation for the OB2 geometry and different values of the conversion
factor eADC. The simulated distributions are rescaled to the number of clusters in data.
The bottom plots represent data the to simulation ratios.
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3.2.6 Virgin raw simulation

Besides the standard zero suppressed simulation, the tracker digitization step brings a

possibility to simulate Virgin Raw data. In this case, several steps need to be added to

the simulation steps described above. After inducing the charge on the strips, the APV

saturation due to the HIP effect can be simulated. This option is by default switched off.

Then the APV baseline is shifted down from its designed position of 127 ADC, accordingly

to the amount of charge collected by a given APV and the number of channels reading the

charge. The strip noises, CMNs and pedestals are finally added and the result is stored.

3.3 The cross talk measurement to improve the sim-

ulation

As identified in the above sections a change in the cross talk parameters could lead to a

better description of data by simulation. There are several possibilities how to update the

cross talk parameters. The first possibility was already introduced in Subsection 3.2.4,

by tuning the cross talk on data to simulation comparisons. A matrix of samples with

each of the fractions of charge shared to the first and second neighbors changed in steps,

can be produced. Then the cross talk which is best improving the description of data

by simulation is chosen. Before such tuning of the cross talk, it is necessary to perform

an update of the bad channels, noise and gains in the simulation as their update after

the tuning could destroy the obtained data-simulation agreement. Indeed, the noise and

gains are measured conditions, which are influencing the cluster properties and therefore

it is indispensable to update them prior to the cross talk tuning.

The second option is to measure the cross talk parameters from data. The measure-

ment from data has an advantage that it is not sensitive to the other potentially outdated

parameters in simulation like the mentioned tuning. In following Subsection 3.3.1, the

results on a cross talk measurement are presented and then compared with the results

obtained by the tuning of cross talk on data to simulation comparisons. Because of the

low data statistics in TID and TEC, the cross talk could be measured only in barrel. To

obtain new cross talk parameters for TID and TEC, a third option was developed, which

combines measurement from data and the tuning based on data to simulation compar-

isons. It is presented in Subsection 3.3.3.
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3.3.1 The cross talk measurement in the barrel

In this section, the data-taking used for the cross talk measurement is first discussed. It

is followed by a description of the methodology used for the cross talk measurement and a

discussion on the dependence of the cross talk as a function of time. Later, results of the

cross talk measurement and their validation are then presented. In the last subsection,

the evolution of the cross talk with the radiation is studied.

3.3.1.1 Data-taking for the cross talk measurement

The cross talk parameters used in simulation were measured using the 0 T cosmic VR

data at the beginning of Run 1. After having identified that the outdated cross talk values

could lead to large discrepancies between data and simulation, the decision to remeasure

the cross talk was taken. The new data for the cross talk measurement were taken in the

virgin raw mode at the end of March 2018. These data are CRUZET, i.e. cosmic events

recorded with no magnetic field in the CMS solenoid, implying that there was no magnetic

field and no collisions in the detector during the data taking, therefore only cosmic muons

were triggered. The trigger used during this data-taking, was first designed for triggering

cosmics during collisions (CDC), which was requested by the tracker alignment group. Its

advantage is that it increases the probability of triggering muons which passed through

the tracker. The CDC trigger bit [86] assumes that the muon passes through the whole

CMS in around 30 ns, implying that the top leg of the muon, i.e. the part of the muon

track in the top part of the detector, should be seen in the top part of the detector one

bunch crossing before seeing the bottom leg in the bottom part of the detector. Moreover

the two legs should be back to back, leading to the requirement on the angle between the

legs to be π±1/6π. To further enhance cosmics passing through the tracker, the following

criteria on Φ and η are imposed. The top leg must pass the requirement |Φ| < 1/2π±1/3π

and the bottom leg |Φ| < 3/2π ± 1/3π, the pseudorapidity of muon is required to satisfy

|η| < 1.202. The requirement on η results in muons which are almost exclusively measured

by DTs only. In totality 145854 events were collected and saved, corresponding to runs

312627, 312972, 312973, 312974 and 312977.

The absence of the magnetic field is important to decompose the effects of the Lorentz

angle from the cross talk in the data. Furthermore the data need to be in the VR mode

in order not to suppress the strips which have a non-zero charge because of the cross talk

but is small enough to be zero suppressed.
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3.3.1.2 The cross talk measurement method

When there is no cross talk effect, the total charge Q should be collected by only one strip

in case where the track passes only through the sensitive volume of the sensor belonging

to that strip. But as shown in Fig. 3.29, due to the cross talk effect, the charge is shared

with two neighboring strips on each side and the charge collected by this seed strip is not

Q but only a fraction x0 of the original charge Q. The neighboring strips obtain smaller

fractions x1 and x2 of this charge Q. The total charge has to be conserved, leading to the

requirement on the fractions to be

1 = x0 + 2x1 + 2x2. (3.2)

At first attempt, the strategy of the previous cross talk measurement was reused, a

selection on the angle of the track imposed in order to reduce the probability of the track

traversing the sensor area to belong to more than one strip. The selection on the track

was chosen to be the same as in the previous measurement:

| tan θ cos ϕ| < 0.5 × (p/t), (3.3)

where θ and ϕ are the local track angles defined in Fig. 1.6, p is the pitch between the

strips and t is the sensor thickness. This selection is ensuring that the track projected to

the xz plane is close to be perpendicular to the x-axis. The track passing such a criterion

is shown in Fig. 3.30 and is denoted as “accept”. On the contrary tracks like the one

denoted as “reject” are rejected by this criterion. Furthermore, quality criteria on the

number of hits in the track (Nhit > 6) and on the χ2 (χ2/dof < 10) of the track are

imposed to select only good tracks.

The cross talk can then be measured from the strip charges within clusters originating

from the accepted tracks. For the purpose of the cross talk measurement, each cluster is

reconstructed from pedestal and CMN subtracted digis with no truncation of strips with

negative charge. We reconstruct a cluster by forcing it to have five strips, two on each

side around the central one. Then the fraction of shared charge can be computed as

xi =
η±i

1 + 2η±1 + 2η±2

, (3.4)

with ηi defined as

η±i =
q±i

q0

=
xi

1 − 2x1 − 2x2

, with i = 1, 2, (3.5)

where x1 is the fraction of charge received by the first neighboring strip, x2 is the fraction of
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charge received by the second neighboring strip and x0 is obtained from the normalization

condition x0 = 1−2x1 −2x2. q0 is the charge on the seed strip and qi the charge registered

by the neighboring strips. The distributions of q±1/q0 and q±2/q0 are each filled twice per

cluster and fitted separately by a Gaussian function, avoiding the tails. The mean values

of these functions are inserted in the Eq. 3.4 in order to compute the fraction of charge

shared with the neighboring strips. The cross talk depends on the pitch size, strip length

and width, and thus it has to be measured separately for each geometry.
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Figure 3.29: A schema of charge sharing between neighboring strips.

thicknesspitch

accept reject

Figure 3.30: A schematic view of the track selection for the cross talk measurement.

3.3.1.3 The dependence of the cross talk on time

As discussed, the observed pulse shapes for the seed strip and the neighboring strips are

different and they peak at different time (see Fig. 3.11), leading to the conclusion that

the cross talk evolves as a function of time. To test such hypothesis the time information

of the muon is required. The time of the muon is given at the interaction point and

details about its computation can be found in Section 1.2.5. In the data collected in 2018

two kinds of muons were observed: Ones having hits only in the top part of the DTs as

sketched in the left part of Fig. 3.31, further referred to as “top muons”, and the other

having hits only in the bottom part of the DTs as shown in right part of Fig. 3.31, in later
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referred to as “bottom muon”. In around 90% of the cases both top and bottom muons

are present in one event, as they are two legs of the same muon, but both are associated

with a different time.

The goal of this analysis is to find the muons which passed the IP at the same time as a

muon in collision would be produced. Having access to the time information it is possible

to study the evolution of the cross talk as a function of time. The muon originating from

pp collisions would be produced at timeInOut
IP = 0 and would move from the IP outside

similarly as the bottom muon. This is not the case for the top muon, which travels from

outside towards the IP. There can be two times associated to one track reconstructed in

the tracker, one coming from the bottom muon leg and the second from the top muon

leg. Only the time of the bottom muon leg is taken into account as this muon leg has the

same direction as the muon produced in the pp collision.

As also displayed in the right part of Fig. 3.31, there are two kinds of hits left in the

tracker by cosmics: One in the top part of the tracker in green, referred to as “top hits”

and others in blue in the bottom part, referred to as “bottom hits”. The timing of the

tracker, i.e. the sampling of a pulse shape in cosmic events, is the same as in collisions

and is tuned for collisions. The situation is simpler for bottom hits, for which in case

of the collision and cosmic muon being at the IP at the same time, the arrival time to

the given module has to be the same. In case of top hits, the cosmic muon goes from

outside towards the given module and then to the IP, while for the collision muon the

direction is opposite, it starts at IP and then passes through a given module and continues

towards outside of CMS. Therefore in this case both cosmic and collision muons with the

same time at the IP reach the given module in the top part of tracker at a different time,

specifically the cosmic muon arrives there before the collision one. For this reason of

timing mismatch in the top part of the tracker, only hits in the bottom part of the tracker

are used.

The distribution of time for the bottom legs of the muons is shown in Fig. 3.32. In

principle, the time distribution for cosmic muons should be uniform due to the random

arrival time of cosmics to the interaction point. But as mentioned in [87], the trigger

efficiency is the highest for muons arriving to the interaction point in a time window of

±5 ns around the collision time. The time distribution in Fig. 3.32 peaks around −3.5 ns.

The muons with a time equal to zero passed the interaction point at the same time that

a collision muon would be produced at IP. Twice the standard deviation of the time

distribution is 13.2 ns. To evaluate which fraction of the spread is caused by the time

resolution in DTs, the timing distribution from DTs of muons produced in collisions is

shown in Fig 3.33 with a Gaussian fit. The collision muons are produced at a time equal

to zero, therefore there is no ambiguity on the production time as for the cosmic muons.
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O

Muon -top; tracker -top

Muon -top; tracker -bottom

Muon -bottom; tracker -top

Muon -bottom; tracker -bottom

Figure 3.31: A schema of possible configurations of muon legs and hits in the tracker.

But a bias originates from the fact that the muon time is computed with an assumption

that muon travels at the speed of light. Twice the standard deviation of the collision

muon time computed from the fit gives 3.3 ns. The cosmic muon timing distribution is

more than four times larger because of the natural spread in arrival time of the cosmics.

Another bias in the time measurement can appear due to the assumption used in the time

computation that the muon passes through the interaction point.
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Figure 3.32: The distribution of the time timeInOut
IP at the IP of the bottom muon legs

in 2018 CRUZET VR data. In red is displayed the result of a Gaussian fit.
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Figure 3.33: Time distribution of muons originating from pp collisions recorded during
the 2017 era F. In red is displayed the result of a Gaussian fit.

The timing of the pulse shape sampling in the tracker is tuned in such a way that the

cluster seed charge is required to be maximal. Such timing adjustments are done with

particles originating from collisions, their production time is thus fixed to zero. Therefore

to evaluate if the cosmic muon time is synchronized with the collision one, the cluster

seed charge distribution can be studied as a function of the muon time as depicted in

the left plot of Fig. 3.34. As mentioned earlier, there is a bias in the time measurement

coming from the fact that cosmic muons do not have to pass through the interaction point,

but that the muon time computation is extrapolating the muon time to the interaction

point. This effect could shift the maximum of the seed charge away from the time equal

to zero. We can evaluate what is the dependency of the maximum of the cluster seed

charge as a function of the closest distance of track from the IP. This closest distance,

further referred only as “distance”, is determined as the closest approach distance of the

track to the IP. Four different cases of tracks passing at different distances to the IP are

shown in Fig. 3.34 (left). It can be noticed that the maxima of the cluster seed charge

for the four cases are at different positions and none of them is around 0 ns. All cluster

seed charge distributions peak at negative times and larger is the distance, smaller is the

corresponding peak time (larger in absolute value). Because of the observed dependence

of the maximal cluster seed charge with the distance from the IP, the muon time has to

be corrected as a function of this distance. A time correction factor can be estimated

from a linear fit of the time positions (tmax) of the maxima obtained from the Gaussian

fits in the left plot of 3.34 as a function of the distance (d). The fit displayed in the right
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plot of Fig. 3.34 is giving the following relation between time and distance

tmax = (0.05 ± 0.01) × d − (7.9 ± 0.4), (3.6)

leading to the conclusion that the cluster seed charge is maximal for muon which passed

directly through the interaction point at a time equal to −7.9 ± 0.4. The dependency of

the time with the track distance can be resolved by subtracting the factor 0.05 × d from

the muon time.
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Figure 3.34: (left) The cluster seed charge profiles as a function of time for four different
distances of the muon track from the IP in 2018 CRUZET VR data, the results of Gaussian
fits are also displayed. (right) The time of the maxima extracted from the fits performed
in the left plot as a function of the mean track distance from the IP, these points are
fitted with a straight line.

As suggested above, the cross talk depends on time. To prove this hypothesis, the η±1

and η±2 are studied as a function of time. As the available statistics does not allow to

consider the η±1 and η±2 distribution per bin of 1 ns, overlapping time windows of 4 ns

are used for the muons. The η±1 and η±2 distributions are filled for each time window

and then fitted by Gaussians. The estimated means are shown in Fig. 3.35 for the OB2

geometry and allow to evaluate the time evolution of the charge sharing. Each bin of this

figure corresponds to the middle of the 4 ns interval in which the fit was performed, for

example the time equal to zero is in reality integrated over clusters from muons arriving to

the IP in a time window of 0±2 ns. The dependence of η±1 and η±2 as a function of time in

Fig. 3.35 confirms that the time window in which to perform the cross talk measurement

has to be selected with care. The time window −8 ± 2 ns, for which the cluster seed

charge is maximal, is therefore of special interest for the cross talk measurement as it

corresponds to the collision conditions. The width of the time window is also close to
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the time spread in the DTs shown in Fig. 3.33. The η±1 and η±2 distributions resulting

from muons within the −8 ± 2 ns time window are shown in Fig. 3.35, together with the

Gaussian fits. The width of these distributions is due to the strip noise. The tails in

charge sharing are caused by inclination of track or diffusion.
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Figure 3.36: The η±1 (left) and η±2 (right) distributions of bottom muon tracks in the
time window of −8 ± 2 ns for the OB2 geometry in 2018 VR CRUZET data. The results
of Gaussian fits are indicated in red.

3.3.1.4 The results on the cross talk measurement

The cross talk parameters are computed from Eq. 3.4 for all barrel geometries in the time

window of −8±2 ns from the Gaussian fits of the corresponding η±1 and η±2 distributions
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as shown for OB2 in Fig. 3.36. The measured values together with the values currently

used in the simulation corresponding to an old measurement are recorded in Table 3.1.

It can be noticed that in all cases the new sharing of the charge, i.e. the cross talk,

decreases. There is no information in the documentation if, during the previous cross talk

measurement, any timing requirement was taken into account and therefore part of the

change can originate from including the time information to evaluate the cross talk. In

addition, there is also a real change in the cross talk expected from the radiation effects.

Geometry Type x0 x1 x2

IB1 current measurement 0.836 ± 0.009 0.070 ± 0.004 0.012 ± 0.002
IB1 currently in simulation 0.775 0.096 0.017
IB2 current measurement 0.862 ± 0.008 0.059 ± 0.003 0.010 ± 0.002
IB2 currently in simulation 0.830 0.076 0.009
OB2 current measurement 0.792 ± 0.009 0.083 ± 0.003 0.020 ± 0.002
OB2 currently in simulation 0.725 0.110 0.027
OB1 current measurement 0.746 ± 0.009 0.100 ± 0.003 0.027 ± 0.002
OB1 currently in simulation 0.687 0.122 0.034

Table 3.1: The cross talk measured in 2018 CRUZET VR data and the cross talk values
used currently in simulation for barrel geometries.

Ref. [88] discusses that, due to the surface radiation damages of the silicon strip sensors,

the inter–strip capacitance increase and inter–strip resistance decrease, and consequently

an increase in cross talk is expected. In the presented measurement a decrease of the

cross talk is observed contrary to the literature. The cross talk change can also depend

on the change of the strip implant to backplane capacitance, of the strip implant to the

aluminium strip capacitance, and of the depletion and applied voltages. Therefore the

expected direction of the cross talk change is difficult to evaluate as one could thus assume

that the other capacitances may have changed as well.

3.3.1.5 Validation of the new cross talk parameters

To evaluate if the new cross talk measurement contributes to an improvement in the data

and simulation comparison, the cross talk parameters are injected into the simulation and

compared with data and the default simulation. For this validation the 2018 minimum bias

simulated samples and 2018 zero bias data from run 317649 are used. The cluster charge,

width and seed charge distributions for barrel geometries are shown in Fig. 3.37 to 3.42.

In these plots it is obvious, that newly measured cross talk parameters largely improve

the overall cluster width and seed charge description. The cluster charge remains almost

unchanged, as the cross talk influences only the charge sharing between channels, not the

total charge.
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For OB2, the measured cross talk fractions (x0, x1, x2) are (0.792±0.009, 0.083±0.003,

0.020±0.002). When tuning the cross talk parameters in Section 3.2.4 to best describe the

cluster width in data, the best obtained fractions are (0.814, 0.070, 0.023), which suggest

even a smaller cross talk than the measured one, but no uncertainties were evaluated for

these tuned parameters.

Even though the large improvement, there are still discrepancies in the description of

data by simulation. These discrepancies could be caused by the outdated conditions, such

as gains and noise. These conditions can have an impact on the cluster width, charge

and seed charge description and therefore they are as well being currently updated. The

discrepancies can also arise from the fact that the simulation is simplified and many

parameters in the simulation are outdated as discussed previously. Thus the cross talk in

simulation does not have to purely describe the cross talk itself, but it can compensate

for other effects as well.
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Figure 3.37: Distribution of the on-track cluster charge in data and simulation for the IB1
(left) and IB2 (right) geometries for the current (default) and newly measured (updated)
cross talk parameters (XT ). The simulated distributions are rescaled to the number of
clusters in data. The bottom plots represent data to simulation ratios.

3.3.1.6 The cross talk evolution with tracker ageing

Fig. 3.43 shows the ratio of the new x1 parameter to the default value used in the simula-

tion for the four barrel geometries as a function of the distance from the beamline. This

ratio is fitted by a straight line. From the slope of 0.0012 ± 0.0005 it can be seen that

the change in the parameter x1 depends on the distance of a geometry from the beamline

and is the largest for the closest geometry. As the fluence of particles decreases as a

function of distance from the beamline, the closest geometry suffers therefore from the
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Figure 3.38: Distribution of the on-track cluster width in data and simulation for the IB1
(left) and IB2 (right) geometries, for the current (default) and newly measured (updated)
cross talk parameters (XT ). The simulated distributions are rescaled to the number of
clusters in data. The bottom plots represent the data to simulation ratios.
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Figure 3.39: Distribution of the on-track cluster seed charge in data and simulation for
the IB1 (left) and IB2 (right) geometries, for the current (default) and newly measured
(updated) cross talk parameters (XT ). The simulated distributions are rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratios.

largest fluence, its radiation damage is the largest and consequently its cross talk change

is the largest.

But the sensors in different geometries are not the same and therefore for a given

fluence the radiation damage of different sensors is different. To decouple the two effects

and evaluate purely the fluence dependence, the cross talk can be studied for different

layers of a single geometry. The time dependence of the η±1 and η±2 distributions is shown
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Figure 3.40: Distribution of the on-track cluster charge in data and simulation for the
OB2 (left) and OB1 (right) geometries, for the current (default) and newly measured
(updated) cross talk parameters (XT ). The simulated distributions are rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratios.
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Figure 3.41: Distribution of the on-track cluster width in data and simulation for the
OB2 (left) and OB1 (right) geometries, for the current (default) and newly measured
(updated) cross talk parameters (XT ). The simulated distributions are rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratios.

in Fig. 3.44 for the four layers of OB2 separately. The plots were obtained similarly as

the plots in Fig. 3.35, but this time the time window for each bin is 6 ns in order to gain

in statistics. The charge sharing is larger for the first two layers, compared to the layers

three and four. In η±1 distribution there is also a visible difference in the charge sharing

between layer three and four, whose ratio varies from one by up to ±10%.

The first two layers are composed of double-sided modules, while the second two have
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Figure 3.42: Distribution of the on-track cluster seed charge in data and simulation
for the OB2 (left) and OB1 (right) geometries, for current (default) and newly measured
(updated) cross talk parameters (XT ). The simulated distributions are rescaled to the
number of clusters in data. The bottom plots represent the data to simulation ratios.
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Figure 3.43: The ratio of the new measurement of the x1 parameter (updated) to the
default value currently used in simulation (default) as a function of the distance from the
beamline of the four different barrel geometries. The result of a linear fit is indicated in
red.

only one side of sensors. In the double-sided modules, the sensors are back to back,

therefore a particle going from the IP outside the CMS is entering one sensor from the

side of the strips and the second from the backplane. The formation of the signal could

be different depending from which side the particle enters the sensor and therefore there

can be a different cross talk between the mono and stereo sides of one module. The η±1

and η±2 as a function of time, for decomposed mono and stereo sensors of modules in the
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OB2 layers one and two are shown in Fig. 3.45. In these plots, in the majority of bins of

the η±1 and η±2 distributions, the sharing for modules in one layer is similar or larger for

stereo sensors than mono. This would explain that the first two layers of OB2, which are

composed of double-sided modules, exhibit a larger charge sharing to the first neighboring

strips than the second two, which are single-sided, as discussed in Fig. 3.44.
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the 2018 CRUZET VR data. The ratio plots are shown in the bottom, the blue line
corresponds to the ratio of L1 to L2, the violet line corresponds to the ratio of the L2 to
L3, and the gray line corresponds to the ratio of the L3 to L4 distributions.

 [ns]
InOut

IP
time

14− 12− 10− 8− 6− 4− 2− 0 2 4

 1
±

η

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

OB2

TOB L1 mono

TOB L1 stereo

TOB L2 mono

TOB L2 stereo

0.8

0.9

1

1.1

1.2

 [ns]
InOut

IP
time

14− 12− 10− 8− 6− 4− 2− 0 2 4

 2
±

η

0

0.01

0.02

0.03

0.04

0.05

0.06 OB2

TOB L1 mono

TOB L1 stereo

TOB L2 mono

TOB L2 stereo

0.6

0.8

1

1.2

1.4
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3.3.2 The cluster seed charge evolution with time

With the data used for the cross talk measurement, it is also possible to study the evolution

of the charge on the seed strip and the neighboring strips as a function of the muon

arrival time as shown in Fig. 3.46. These charge evolutions can be compared to the past

measurements of the pulse shapes depicted in Fig. 3.11, obtained from focusing a laser

on one strip of the TOB module. In order to compare these figures, the time axis of

the Fig. 3.11 should be reverted (from positive to negative values) so that it represents

the muon arrival time. Indeed a muon which arrives with a positive delay with respect

to the reference (i.e. after the reference) is on the rising part (on the left) of its pulse

shape and has not yet reached its maximum. Similarly to the past measurement, the

neighboring strips peak at the higher arrival times than the seed one, what corresponds

to the earlier positions at the pulse shapes. Moreover, negative contributions are observed

for the second neighboring strips, the time range not being sufficient to observe a similar

behavior for the first neighbors. This undershoot is also clearly visible in Fig. 3.11. The

ratio of the maximal charge on the first to the second neighboring strip is similar for

both measurements, around three. However, there is a large difference between these

two measurements in the ratio of the maximal charge of the first neighbors to the seed

strip: This ratio is around three for the past measurement, but around five for the current

measurement.
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Figure 3.46: The charge on the strip for the seed strip and two neighbors on each side for
the OB2 geometry. The black curve corresponds to the seed strip, blue and red curves to
the first and second neighboring strips respectively. The neighbors on the left side from
the seed are depicted in the lighter shades.
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3.3.3 Evaluation of the cross talk for TID and TEC

Because of the insufficient statistics of clusters for TID and TEC in the available CRUZET

VR data, the cross talk for these partitions had to be evaluated differently. For the barrel,

the change of x1 scales linearly with the distance from the beamline and it can be expected

that the same applies for TID and TEC. But the fluence and module geometries in TID

and TEC are more complicated than in the case of the barrel and the x1 change for the

TID and TEC does not evolve linearly as a function of distance from beamline. Moreover

there is no guarantee that the cross talk currently used in simulation is correct.

The change in cross talk in the TID and TEC rings can be studied in the cluster seed

charge distribution, which is a direct proxy to the x0 parameter. The data to simulation

ratio of the mean cluster seed charge is shown in Fig. 3.47. The ratio is always larger

than one, revealing that the mean seed charge is larger in data than in simulation and

consequently the charge sharing is smaller in data than in simulation. No clear trend as

a function of the distance from the beamline is observed in this ratio.
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Figure 3.47: The data to simulation ratio of the mean cluster seed charge for rings of TID
and TEC.

As the cluster seed charge is a proxy to x0, the updated xu
0 can be evaluated as

xu
0 =

〈Qdata
seed〉

〈Qsimu
seed 〉xd

0, (3.7)

where 〈Qdata
seed〉 and 〈Qsimu

seed 〉 are the mean cluster seed charge in data and simulation,

respectively, and xd
0 is the default value of x0 currently used in simulation.

The change of x2 is found to be constant for all the barrel geometries and it is evaluated
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from a fit to be 0.76. We decided to apply this factor to rescale x2 in TID and TEC. The

updated value xu
2 is computed as

xu
2 = 0.76 xd

2, (3.8)

with xd
2 being the default value of x2 currently used in simulation. The x2 parameter is

small in absolute and therefore the other parameters do not largely depend on it.

The updated value of x1 can then be evaluated from the normalization condition

x1 = (1 − x0 − 2x2)/2. The updated values of cross talk can be seen in Table. 3.2.

Geometry Type x0 x1 x2

W1a new values 0.8571 0.0608 0.0106
W1a currently in simulation 0.786 0.093 0.014
W2a new values 0.8861 0.049 0.008
W2a currently in simulation 0.7964 0.0914 0.0104
W3a new values 0.8984 0.0494 0.0014
W3a currently in simulation 0.8164 0.09 0.0018
W1b new values 0.8827 0.0518 0.0068
W1b currently in simulation 0.822 0.08 0.009
W2b new values 0.8943 0.0483 0.0046
W2b currently in simulation 0.888 0.05 0.006
W3b new values 0.8611 0.0573 0.0121
W3b currently in simulation 0.848 0.06 0.016
W4 new values 0.8881 0.0544 0.0015
W4 currently in simulation 0.876 0.06 0.002
W5 new values 0.7997 0.077 0.0231
W5 currently in simulation 0.7566 0.0913 0.0304
W6 new values 0.8067 0.0769 0.0198
W6 currently in simulation 0.762 0.093 0.026
W7 new values 0.7883 0.0888 0.0171
W7 currently in simulation 0.7828 0.0862 0.0224

Table 3.2: The updated cross talk for rings of TID and TEC.

The validation plots of the cluster charge, width and seed charge are shown in Figs. 3.48

to 3.50 for two chosen examples which are W1a (left) and W5 (right). By definition of the

cross talk update procedure there is an improvement in the description of the cluster seed

charge. The updated cross talk also leads to the large improvement in the description of

the cluster width.
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Figure 3.48: Distribution of the on-track cluster charge in data and simulation for the
W1a (left) and W5 (right) geometries, for current (default) and newly updated cross talk
parameters (XT ). The simulated distributions are rescaled to the number of clusters in
data. The bottom plots represent the data to simulation ratios.
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Figure 3.49: Distribution of the on-track cluster width in data and simulation for the
W1a (left) and W5 (right) geometries, for the current (default) and newly updated cross
talk parameters (XT ). The simulated distributions are rescaled to the number of clusters
in data. The bottom plots represent the data to simulation ratios.

3.3.4 Conclusion

This section presents the results of a new cross talk measurement. The cross talk param-

eters used in simulation were measured at the beginning of Run 1, and as demonstrated

in this section, the cross talk changes with the ageing of the detector, therefore it had to

be remeasured. We show that the cross talk depends on the particle arrival time to the

module, which probably was not taken into account during the Run 1 measurements.
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Figure 3.50: Distribution of the on-track cluster seed charge in data and simulation for
the W1a (left) and W5 (right) geometries, for the current (default) and newly updated
cross talk parameters (XT ). The simulated distributions are rescaled to the number of
clusters in data. The bottom plots represent the data to simulation ratios.

The newly measured cross talk improves the description of the cluster seed charge

and width in simulation although discrepancies between data and simulation can still be

observed. These discrepancies can be caused by the outdated database conditions and

therefore they are being updated for the 2018 simulated samples. If after the update of

database conditions some discrepancies remain between data and simulation, it can be

the sign that the simulation is over-simplified and that the update of the cross talk is not

sufficient to well describe the cluster properties in data.

Due to the limitations of the 2018 CRUZET VR data, it is not possible to measure

the cross talk in the disks and endcaps. A newly designed procedure to update the cross

talk parameters in these regions rescales the cross talk currently used in simulation by

well motivated factors.

The new obtained cross talk parameters considerably improve the cluster width and

seed charge description and therefore they are now integrated into the official release of

the CMS software and are going to be used for the central production of the simulated

samples. The impact of the cross talk change on the high level objects is not expected

to be large as the cluster charge remains the same and only the charge sharing differs,

but there could be a non-negligible impact on tracking due to several reasons. Because

of the different charge sharing and threshold effects in the clustering, the hit position

computation can give different results, this has an impact on the tracking. The change

of the hit position and cluster width also influences the hit resolution, from which the

cluster position error used in the tracking is calculated. Due to the reduced cluster width,
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previously merged clusters might be distinguished, which is also influencing tracking.

Because of the decrease of the cluster width and the smaller sharing of the charge, the

OOT PU clusters which did not pass the clustering threshold can pass it now and vice

versa, again playing a role in tracking.
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Chapter 4

Supersymmetry as a possible

extension of the standard model

In this chapter the basics of the standard model are discussed. In section 4.1 the descrip-

tion of the elementary particles and interactions is presented as well as an idea on how

the standard model was derived. This section ends with a discussion of several shortcom-

ings of the standard model, which motivate physicists to formulate beyond the standard

model theories. Section 4.2 then describes supersymmetry (SUSY), which is a promising

extension of the standard model, due to its ability to solve many of the standard model

issues. In this section, the results of the Run 1 SUSY searches are also presented.

4.1 The standard model and its shortcomings

The Standard Model (SM) of particle physics is based on Quantum Field Theory (QFT)

and gauge symmetries [89]. It was developed during 1960’s, finished in 1970’s, but it was

only in 2012 that the last predicted particle of the SM, the Higgs boson, was discovered

by the ATLAS and CMS collaborations [90, 91]. The SM describes all fundamental

interactions (except gravity), namely the electromagnetic, weak, and strong interactions,

and characterizes all known elementary particles.

The interactions in the SM are mediated via an exchange of (gauge) bosons which

have an integer spin. There are 12 bosons with a spin of one. The mediators of the

electromagnetic and weak interactions are the massless photon γ and the massive W ± and

Z bosons, respectively. The W ± and Z bosons acquire their mass through a spontaneous

breaking of the electroweak symmetry as explained later in the text. The gauge bosons

of the strong interaction are eight massless gluons, each holding an unique color charge

which is a combination of one color and one anticolor. The gluons are massless, indicating
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that the strong symmetry is unbroken. The last boson belonging to the SM is a scalar

boson, the Higgs boson, which arises from the electroweak symmetry breaking.

In addition to bosons, the particles of matter are fermions, thus carrying half integer

spin. Fermions can be divided into leptons and quarks. There are three generations of

leptons formed respectively by the electron e, the muon µ, and the tau τ , with their

corresponding neutrinos (νe, νµ, ντ ). Leptons have an integer charge (0, 1) of ±e with

e being the elementary electric charge and do not carry any charge of color. Therefore

they interact only via electromagnetic and weak interactions as they can have non-zero

quantum numbers with respect to these interactions, which are the weak isospin (t3)

and hypercharge Y . There are also three generations of quarks, the first one is formed by

up (u) and down (d) quarks, the second by charm (c) and strange (s) quarks and the third

one by top (t) and bottom (b) quarks. The u, c, t quarks have a charge of 2/3 e while

the d, s, b quarks have a charge of −1/3 e. Each quark exists in three color versions (red,

green and blue) and thus quarks can participate in the strong interaction. Quarks can

hold weak isospin and hypercharge and thus they can also interact via electromagnetic

and weak interactions. Due to the phenomena referred to as “color confinement” [92],

quarks are always bound inside a composite object called “hadron” and cannot be found

isolated in nature. This is true for all quarks except top quark which decays before the

hadronization. Each SM fermion has an antiparticle denoted with a bar over its symbol.

The antiparticle differs from the particle by the sign of its charge and its projection of

the spin to the z-axis. The overview of all SM particles can be seen in Fig. 4.1.

Figure 4.1: Overview of the particles present in the standard model.
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The symmetry group of the SM is

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (4.1)

where C stands for the color charge of the strong interaction, L for left-handed particles,

which have, unlike the right-handed ones, a non-zero weak isospin, and Y represents the

weak hypercharge. The SM group and the interactions originating from it, are discussed

part by part in the following sections 4.1.1 to 4.1.4. As the standard model is a field

theory which requires invariance towards certain transformations of its Lagrangian, to

better understand the derivation and the features of the SM, the basics of the quantum

field theory and gauge transformations are described in the following sections. Finally,

the last Section 4.1.5 presents the shortcomings of the SM.

4.1.1 Quantum field theory and gauge symmetries

In classical mechanics, the motion of a given system can be calculated by solving the

Euler-Lagrange equation [93]. This equation can be generalized in order to build a rela-

tivistic theory, in which the space and time coordinates must be treated similarly. In the

relativistic case, the Euler-Lagrange equation is given by the formula

∂µ

(

∂L
∂(∂µφi)

)

=
∂L
∂φi

, (4.2)

where the physics describing the system is contained in the Lagrangian L which depends

on the fields φi and their space-time derivatives ∂µφi.

In the case of a scalar (spin-0) field, the Lagrangian LKG can be written in the form

LKG =
1

2
(∂µφ)(∂µφ) − 1

2

(

mc

~

)2

φ2, (4.3)

where φ is a single scalar field, m is its mass, ~ is the Planck constant and c is the

speed of light. From now on, the standard convention of ~ = c = 1 is used. The scalar

field Lagrangian defined in Eq. 4.3 and plugged into the Euler-Lagrange Eq. 4.2 gives the

Klein-Gordon equation

∂µ∂µφ + m2φ = 0, (4.4)

which describes a scalar particle of mass m.

The field of a half-spin particle is a four-component spinor field ψ. The Euler-Lagrange
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equation applied on the field ψ̄, using the Lagrangian LD

LD = iψ̄γµ∂µψ − mψ̄ψ (4.5)

where γµ are the Dirac matrices, gives the Dirac equation describing a half-spin particle

of mass m:

iγµ∂µψ − mψ = 0. (4.6)

Equations for particles with spin one can be derived similarly.

In the above Lagrangians defined by Eq. 4.3 and 4.5, only non-interacting fields are

present. To include interactions between fields, the impact of local and global trans-

formations of the fields on the corresponding Lagrangian must be studied. The Dirac

Lagrangian given by Eq. 4.5 is invariant under the global phase transformation

ψ → eiθψ, (4.7)

with the phase θ being an arbitrary real number. But this Lagrangian is not invariant

under the local phase transformation

ψ → eiθ(x)ψ, (4.8)

where the phase θ(x) is this time dependent on the space-time coordinate x. To preserve

the invariance of the Lagrangian of Eq. 4.5, the term

−(qψ̄γµψ)Aµ, (4.9)

with the field Aµ which transforms as

Aµ → Aµ + ∂µλ (4.10)

can be added to the Dirac Lagrangian. The field Aµ is a new vector (spin-1) field. To

obtain the full Lagrangian, the free field Lagrangian for the vector field Aµ must also be

added to the Dirac Lagrangian in Eq. 4.5. The summed Lagrangian is locally invariant

only in the case when the field Aµ is massless and therefore the term for the free field

Lagrangian of the field Aµ can be written as

−1

4
F µνFµν , where F µν ≡ ∂µAν − ∂νAµ. (4.11)
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The total Lagrangian is then

iψ̄γµ∂µψ − mψ̄ψ − 1

4
F µνFµν − (qψ̄γµψ)Aµ, (4.12)

which generates the quantum electrodynamics (QED), where the field Aµ corresponds to

the electromagnetic potential.

The global transformation of a field ψ can be understood as the multiplication of this

field by an unitary matrix U (ψ → Uψ). In the given example of quantum electrodynam-

ics, the size of matrix is 1 × 1 and therefore the symmetry of this theory is referred to

as “U(1) gauge invariance” as the group of all such matrices is U(1). A similar strategy

of a local phase invariance of the Lagrangian can be applied on other groups, which was

found to be the way how to generate the standard model.

4.1.2 The electroweak interaction

In 1954, Yang and Mills [94] applied local invariance on the SU(2) group to describe

the weak interaction and later Glashow, Salam and Weinberg [95, 96, 97] showed, that

if the group SU(2) ⊗ U(1) is considered, the weak and electromagnetic interactions can

be unified. Moreover they separated the left and right chiral components of the fermion

fields. The doublet ΨL is composed by two left-handed fermion field spinors correspond-

ing to the left-handed charged lepton and its corresponding neutrino. The singlet ΨR

consists of one right-handed fermion field spinor. The locally invariant Lagrangian of

the electroweak (EW) interaction (without symmetry breaking) can be written as the

following

LEW = −1

4

3
∑

a=1

F a
µνF aµν − 1

4
BµνBµν + iΨ̄LγµDµΨL + iΨ̄RγµDµΨR, (4.13)

where Dµ is the covariant derivative, the tensors Fµν are composed of the vector fields

W a
µ and their derivatives, and the tensor Bµν is composed of the derivatives of the vector

field Bµ, similarly as shown in Eq. 4.11.

In the case of the SU(2) group the covariant derivative Dµ is

Dµ = ∂µ − ig
3

∑

a=1

taW a
µ , with a = 1, 2, 3. (4.14)

The matrices ta are the generators of the SU(2) group composed by Pauli matrices and g

is a constant. The t3 component is called the weak isospin. The covariant derivative Dµ
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for the U(1) group is

Dµ = ∂µ − ig′Y Bµ, (4.15)

where Y is the weak hypercharge and g′ is a constant. The charge Q of a particle is then

given by the relation between its weak isospin and hypercharge: Q = t3 + 1
2
Y .

The group of the electroweak interaction is often denoted as SU(2)L ⊗ U(1)Y , where

L is related to the difference of behavior between left-handed (doublet) and right-handed

(singlet) fields w.r.t. the weak interaction. This group produces two massless gauge fields

W 1 and W 2 which mix and create the W + and W − bosons. These bosons interact only

with the left-handed components of the fermion field (maximum parity violation). The

remaining W 3 and B gauge fields interact with both the left- and right-handed fermions

and they mix into the Z boson and the photon γ. As mentioned previously all these bosons

have to be massless in order to preserve gauge invariance, but the W ± and Z bosons were

expected to be massive because the weak interaction is a short range interaction. Later,

the discovery of the W ± and Z bosons confirmed that they are massive and have masses

of 80 GeV and 91 GeV respectively. Because these bosons are massive, the electroweak

symmetry must be broken. It is also important to note that the EW Lagrangian gives a

maximum parity violation for neutrinos because only the left component of the neutrino

field exists.

4.1.3 Quantum Chromodynamics

The theory of strong interaction, called Quantum Chromodynamics (QCD), is based on

the SU(3) group. The corresponding Lagrangian of QCD is

LQCD = −1

4

8
∑

a=1

F a
µνF aµν +

nf
∑

j=1

q̄j(iDµγµ − mj)qj, (4.16)

where the quark fields qj are summed over the number of different quark flavors nf , and

mj are the associated masses. A quark field qj is composed of three quark spinors, one for

each color. The tensors Fµν are a combination of gluon fields ga
µ and their derivatives. The

index a runs over eight independent color charges of the gluons. The covariant derivative

in this case is

Dµ = ∂µ − i
√

4παs

8
∑

a=1

T aga
µ, (4.17)
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where αs is the strong coupling constant and T a are the generators represented by the

Gell-Mann matrices.

The coupling of colored objects is weak at short distances (asymptotic freedom) [98],

but it grows with distance (confinement) [99]. Therefore colored objects always have to

be bound inside colorless hadrons, where they are quasi-free, and can never be observed

separately. There are two kinds of hadrons, the baryons holding three quarks of different

colors and the mesons composed of a quark-antiquark pair.

4.1.4 The electroweak symmetry breaking

As discussed, the W ± and Z bosons are massive, but the mass term for these bosons cannot

be incorporated into the Lagrangian of the electroweak interaction, because it would break

the invariance of the Lagrangian under a local phase transformation. This problem is

solved by the “Brout-Englert-Higgs mechanism” (BEH), based on a phenomenon referred

to as “spontaneous symmetry breaking” of the SU(2) symmetry [100, 101]. This kind of

breaking keeps the equations symmetric, but not their solution. The BEH mechanism

introduces a new scalar doublet field Φ, defined as

Φ =

(

φ+

φ0

)

. (4.18)

The Lagrangian for this field and its interactions can be expressed as

LHiggs = (DµΦ)†(DµΦ) − V (Φ†Φ), (4.19)

where V (Φ†Φ) is the Higgs potential and the covariant derivative Dµ is

Dµ = ∂µ − ig
3

∑

a=1

taW a
µ − ig′Y Bµ, with a = 1, 2, 3. (4.20)

The Higgs potential V (Φ†Φ) is defined by the equation

V (Φ†Φ) = −1

2
µ2Φ†Φ +

1

4
λ(Φ†Φ)2, (4.21)

where µ and λ are real parameters. Because both µ2 and λ are positive numbers, the

potential V (Φ†Φ) takes the shape of a “Mexican hat”, as shown in Fig. 4.2. The shape

of the potential is such that the value of field Φ at the ground state, i.e. the vacuum

expectation value (VEV) of the field Φ, is non-zero. The ground state is degenerated and

can be chosen to be
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Figure 4.2: The shape of the Higgs potential V for the complex field Φ with positive
values of real parameters µ2 and λ. The parameter v denotes the vacuum expectation
value.

〈0|Φ|0〉 =
1√
2

(

0

v

)

, (4.22)

with

v =

√

µ2

λ
(4.23)

being the ground state energy of the field Φ. Then the excitation of the field Φ can be

written as follows

Φ =
1√
2

(

0

v + H

)

, (4.24)

where H is the scalar field called the Higgs boson. The vector bosons W ± and Z become

massive via the interaction with the Higgs field present in the first term of the Higgs

Lagrangian of Eq. 4.19. The masses of the fermions can be also generated via the inter-

action of the fermion field Ψ with the Higgs boson H by adding, to the Lagrangian of the

SM Yukawa, terms of type λY Ψ̄LΦΨR + h.c. with λY representing the Yukawa coupling

proportional to the mass of the fermion. The full Lagrangian of the standard model in

the above defined notation can then be written as

LSM = LQCD + LEW + LHiggs + LY ukawa. (4.25)

It can be noticed that the Yukawa interaction with the Higgs boson flips the chirality

of a fermion from left to right and vice versa. Therefore the masses of neutrinos cannot be

generated in this way, as there are only left-handed neutrinos in the SM. The parameters

µ and λ of the Higgs potential are not predicted by the standard model, i.e. they are free

parameters which are measured experimentally. The mass (mH,0) of the Higgs boson at
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tree level depends on the parameter µ:

mH,0 =
√

2µ, (4.26)

and therefore is as well not predicted by the SM.

4.1.5 Limitations of the standard model

Even though the standard model proved to be very successful in describing and predicting

results of a large part of high energy physics experiments, phenomena which cannot be

explained by the SM are observed as well [89]. For this reason it is widely believed that

the standard model is an effective theory of a more fundamental one. Before discussing

the possible extensions of the SM in Section 4.2, some of the shortcomings and open

questions of the standard model are first briefly described.

The naturalness problem

As mentioned in Section 4.1.4, the mass of the Higgs boson at the tree level is defined

by Eq. 4.26, but this mass must be corrected for contributions of virtual particles. An

example of a virtual fermion loop contributing to the Higgs mass is shown in Fig. 4.3.

The mass of the Higgs boson can be thereby decomposed as mH,0 as:

m2
H ≈ m2

H,0 + ∆m2
H , (4.27)

where ∆m2
H is the correction from the virtual fermion loops. This correction is quadrat-

ically divergent and depends quadratically on the fermion masses due to their Yukawa

couplings. Therefore the largest correction to the Higgs mass comes from the virtual top

quarks which are the heaviest fermions. More precisely, the correction ∆m2
H follows the

relation

∆m2
H ∝ m2

fΛ2, (4.28)

where mf is the fermion mass and Λ is a cutoff on the momentum of the considered virtual

particle. This cutoff is expressing up to which scale the standard model is valid and is

usually taken to be the Planck mass mP ∼ 1019 GeV. Knowing the term ∆m2
H , the Higgs

mass can be written as

m2
H ∼ m2

H,0 + k m2
P , (4.29)
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where k includes constants and SM couplings.

H H

f

Figure 4.3: A virtual fermion contributing to the mass of the Higgs boson.

The mass of the Higgs boson was experimentally measured to be of 125 GeV [90, 91],

which is orders of magnitude lower than Planck mass. This mismatch between the order

of magnitude of the Higgs and the Planck masses, for which there is no physical reason,

is referred to as the “hierarchy problem”. Moreover to obtain this relatively small mass

of the Higgs boson, there must be a large cancellation between the two terms m2
H,0 and

k mP in Eq. 4.29. The cancellation of the terms has to happen in around thirty orders of

magnitude. Such fine-tuning is not natural and this problem of fine-tuning is referred to

as the “naturalness problem”.

Dark matter and dark energy

Cosmological observations suggest that the ordinary matter and energy, described

by the standard model, account for only ∼ 5% of the total mass (energy) of the uni-

verse [102, 103]. The remaining ∼95% is divided between the dark matter (∼27%) and

dark energy (∼68%).

Dark matter has been observed only indirectly as it does not emit any radiation.

Therefore if it is associated to an elementary particle, it should have no color or electric

charge. The first observation supporting the dark matter existence came from the mea-

surement of the rotation curves of galaxies [104, 105]. These curves show the dependency

of the star orbital velocity on the distance of the star from the center of galaxy. From the

knowledge of the distribution of matter in the galaxies, the rotation curves can be theo-

retically computed, and it was found out that the measured and theoretical curves agree

at short distances. With increasing distance the observed curves remain constant, while

theoretically they are expected to decrease [102]. This phenomenon can be explained by

the presence of a halo of new particles which interact by gravitational force. It was also

found out that these particles must be stable and non-relativistic (cold). The requirement

on the cold dark matter comes from the observations of the large scale distribution of the

dark matter in the universe. However it was shortly realized that there is no candidate

for dark matter within the standard model.

Dark energy arises from the need to introduce a cosmological constant in the Einstein

equation [106]. Without it, it would not be possible to explain the accelerated expansion

of the universe. Dark energy can be interpreted as a vacuum energy, but there is a
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mismatch of ∼120 orders of magnitude between the vacuum energy estimation from the

cosmological constant and quantum field theory calculations.

Other shortcomings of the standard model

Another problem of the SM is the asymmetry between matter and antimatter. In our

universe there is an abundance of matter, even though the matter is supposed to have

been produced in the same amount as antimatter during the big bang. Weak interaction

violates the combined charge conjugation and parity (CP) symmetry [107], which could

lead to an asymmetry between matter and antimatter. But the known sources of the CP

violation cannot describe a so large asymmetry and therefore there is no mechanism within

the SM which could explain the observed asymmetry between matter and antimatter.

Then, as mentioned, there are only left-handed neutrinos in the SM and therefore their

masses cannot be generated via the interaction with the Higgs boson, which flips left-

handed fermions to right-handed ones. But neutrino oscillations have been observed [108,

109] and are only possible if neutrinos are massive. Thus one needs to introduce a mech-

anism to generate mass terms for neutrinos in the SM Lagrangian. However, this fact in

itself is not a conclusive argument in favor of a physics beyond the SM (BSM).

As mentioned earlier in this chapter, the gravitation is not included in the SM. This

model is based on a QFT model which is based on the special relativity. Currently, there

are big efforts to combine the general relativity and quantum field theory to formulate a

theory of quantum gravity.

Finally, in the SM, the coupling constants are dependent on the energy. At higher

energies the constants of weak, electromagnetic and strong interactions become of similar

strengths, giving a hope for unification of these interactions at a large energy scale. There

is no certainty that the three forces are unified, but the idea of grand unification is histor-

ically based on the success or previous unifications, such as of electricity and magnetism,

or electromagnetic and weak interactions, and therefore unification of the three forces is

expected. A requirement for the unification of the interactions is the convergence of the

coupling constants at a large energy scale. This unification is not achieved within the SM

and would request a theory beyond the SM.

4.2 Supersymmetry

To address the mentioned shortcomings of the standard model, many extensions of the

SM were proposed over the past decades. In general there are several possibilities how

to formulate theories beyond the standard model. The extension can be achieved by,
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for example, adding “extra dimensions” [110], adding new symmetries, postulating new

particles or proposing new interactions. An example of a theory adding a new symmetry

is SUperSYmmetry (SUSY) [111], which became very popular due to its capability to

solve many issues of the SM. SUSY started to be developed in the 1970’s around an idea

of introducing a spin symmetry relating fermions and bosons.

Supersymmetry introduces the symmetry operator Q, which acts on fermions f and

bosons b in the following way:

Q | f〉 →| b〉, (4.30)

Q | b〉 →| f〉. (4.31)

The operator Q changes the spin of the particle by 1/2, therefore transforms a fermion

to a boson and vice versa, and does not change any other quantum number or particle

property. Within this symmetry Q, each SM fermion has a bosonic SUSY partner with

the same quantum numbers except of the spin, and similarly each SM boson has an

associated fermionic SUSY partner. The supersymmetric partners of the SM particles are

referred to as “sparticles”. To build a theory which takes into account the chiral nature

of the fermions (the left-handed fermions transform differently under the gauge group

than the right-handed ones), the operator Q must satisfy the following (anti)commutator

relations [112, 113]:

{Q, Q†} = P µ, {Q, Q} = {Q†, Q†} = 0, [P µ, Q] = [P µ, Q†] = 0, (4.32)

where P µ is the four-momentum operator. It can be noticed that −P 2, which is the

mass-squared operator, commutes with both Q and Q† and therefore a particle and its

SUSY partner have the same mass. But as no SUSY partners have been observed, this

symmetry must be broken. Many symmetry breaking scenarios can be built, leading to

many possible realizations of the supersymmetric theory.

The naming convention for SUSY particles is to add the prefix “s” to the SUSY

partners of fermions, therefore “sfermions” are bosons. The SUSY partners to bosons get

the suffix “ino”, for example the SUSY partner of gluon is the gluino, which is a fermion.

In addition, the symbols of the superpartners have a tilde.

There are many realizations of supersymmetry, but further in the text only the minimal

supersymmetric standard model, which is the most popular one, is considered.
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4.2.1 The minimal supersymmetric standard model

The Minimal Supersymmetric Standard Model (MSSM) [111] is a supersymmetric ex-

tension of the SM which adds a minimum of new particles, but does not introduce any

additional gauge interactions. For example, in the MSSM there are two Higgs doublets

in order to avoid gauge anomalies and to be able to have Yukawa couplings of both up-

and down-type quarks. Both Higgs doublets have a non-zero vacuum expectation value.

The Lagrangian of the new theory can be written as

L = LMSSM + Lsoft = Lfree + Lint + Lsoft, (4.33)

where LMSSM is the supersymmetric part of the Lagrangian and the term Lsoft introduces

the “soft” breaking of supersymmetry. The breaking of supersymmetry must be mild in

order to end up with only a small tuning of the Higgs boson mass.

The large advantage of supersymmetry is that, in its unbroken form, it is able to solve

the hierarchy problem. The virtual correction from the fermion loop ∆m2
H to the Higgs

boson mass as shown in Fig. 4.4 is in the context of the MSSM proportional to

∆m2
H ∝ (m2

f − m2
f̃ )ln

(

Λ

mf̃

)

, (4.34)

where mf is the mass of the fermion f , mf̃ the mass of the sfermion f̃ and Λ a cutoff.

The ∆m2
H term is equal to zero if the masses of the particle (f) and its partner (f̃) are

the same and therefore no fine-tuning is needed. The virtual contributions to the Higgs

mass in the context of the MSSM are visualized in Fig. 4.4. The fermion and sfermion

loop contributions are of the same value but with an opposite sign and therefore cancel.

H H

f

f

H H

~

Figure 4.4: Virtual fermion and boson loops contributing to the mass of the Higgs boson.

In the broken theory though the masses are not the same anymore and the term ∆m2
H

has a logarithmic divergence. Larger is the mass difference between the particle and

sparticle, more fine-tuning is needed. Therefore to preserve the naturalness of the theory,

it is required that SUSY is broken only slightly and that the supersymmetric partners do
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not have a mass hugely larger than the SM particles. Especially, as the largest virtual

contribution to the Higgs mass comes from the top quark, the mass difference between

the top quark and top squark (also called “stop”) should be reasonably small, leading to

a constraint on the top squark mass to be of order of around 1 TeV [111, 114, 115]. Newly

explored natural SUSY models even permit the stop mass to go up to 3 TeV [116].

The spectrum of the SUSY partners can be seen in Tab. 4.1 both as gauge and mass

eigenstates. Indeed, the left and right components of the third generation of squarks,

associated to the left and right chiral components of the fermion fields, mix together due

to the large mass of the third generation of quarks and therefore large Yukawa couplings

which are proportional to m/v, where m is the fermion mass and v = µ/
√

λ is related

to the Higgs potential. So for example the t̃L and t̃R stop eigenstates mix into the mass

eigenstates t̃1 and t̃2, t̃1 being the lightest one. The same happens for the tau lepton.

As a consequence of the electroweak symmetry breaking, the charged fields W̃1,2 mix

into the positive and negative winos (W̃ ±) and the neutral fields B̃0 and W̃3 mix into the

zino (Z̃) and photino (γ̃). The higgsinos mix with these flavor eigenstates of the SUSY

partners of the SU(2) ⊗ U(1) gauge bosons to give rise to the gaugino mass eigenstates.

Thus the two charged higgsinos (H̃+
u , H̃−

d ) mix with W̃ ± to form four charginos (χ̃±
1,2).

The four neutralinos χ̃0
1,2,3,4 are a mix of the zino, photino and the two neutral higgsi-

nos (H̃0
u, H̃0

d).

Names Spin Gauge Eigenstates Mass Eigenstates

ũL ũR d̃L d̃R (same)
squarks 0 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)
sleptons 0 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 B̃0 W̃3 H̃0
u H̃0

d χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4

charginos 1/2 W̃1,2 H̃+
u H̃−

d χ̃±
1 χ̃±

2

gluino 1/2 g̃ (same)

gravitino 3/2 G̃ (same)

Table 4.1: The gauge and mass eigenstates of the sparticles [111]. The subscripts L, R
denote the left and right chiral components of the sparticle fields. The mixing of the first
two generations of sfermions is assumed to be negligible.

The MSSM brings 105 new free parameters on top of the 19 free parameters in the

standard model. Most of these parameters come from the supersymmetry breaking part

of the Lagrangian. It is not possible to search for SUSY in such a large parameter-space
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and therefore the collider experiments usually search for SUSY in the context of simplified

models, referred to as “Simplified Model Spectra”, which reduce considerably the number

of free parameters. More details on these simplified models are given in Section 4.2.2.

Another option to reduce the number of parameters is to apply well motivated assump-

tions. For example the phenomenological MSSM (pMSSM) allows to reduce the number

of parameters to 19, defined at the electroweak scale [117].

The left (t̃L) and right (t̃R) stop eingenstates mix into the mass eignestates (t̃1, t̃2).

In the pMSSM, the masses of the t̃1 and t̃2 can be determined from the mass matrix Mt̃

in the (t̃L, t̃R) basis [118]. The mass matrix Mt̃ can be written as

Mt̃ =





m2
t̃L

+ m2
t + ∆ũL

mt(A
∗
t − µ cot β)

mt(At + µ cot β) m2
t̃R

+ m2
t + ∆ũR



 , (4.35)

where mt̃L
and mt̃R

are the masses of the left and right component of the stop field, re-

spectively, mt is the top quark mass, µ is the higgsino mass parameter, β is the ratio of

the Higgs VEVs, At is the trilinear coupling and the ∆ terms are coming from the quadri-

linear interactions of the squarks and the Higgs boson which represent small contributions

compared to the other terms.

Through the radiative corrections, the Higgs mass is sensitive to the stop mass. Fig. 4.5

shows the dependence of the Higgs mass on two parameters, mt̃R
and Xt defined as

Xt ≡ At + µ cot β. (4.36)

The other pMSSM parameters are fixed to the physically motivated values. Therefore

the observed value of the Higgs mass puts a constraint on the stop parameters. It can

be noticed, that even when masses of t̃L and t̃R are around 3 TeV a configuration of

parameters being compatible with the observed Higgs mass can be found.

In the total MSSM Lagrangian, in principle there could be terms which would violate

the baryon or lepton number conservation. Under such conditions, the proton could decay,

what was not experimentally observed [119]. To avoid such violation, a symmetry referred

to as “R-parity” (PR) is considered. The PR being defined as

PR = (−1)3(B−L)+2s, (4.37)

where B is the baryon number, L the lepton number and s the spin of the particle. All SM

particles have PR = 1 and their SUSY partners PR = −1. The consequence of R-parity

conservation is that sparticles can be produced only in an even number and each of them

can decay only into an odd number of sparticles. In addition, the lightest supersymmetric
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Figure 4.5: The predicted mass of the lightest Higgs boson Mh as a function of the ratio
of the stop parameters Xt and mt̃R

for three different values of mt̃R
(1 TeV in blue,

2 TeV in red and 3 TeV in green). For the computation the parameters were fixed to
mt̃L

= mt̃R
+ 100 GeV, At =

∣

∣

∣1.3 mt̃R
+ µ cot β

∣

∣

∣, µ=1 TeV and tan β = 50. The gray
horizontal line corresponds to the observed Higgs mass. More details can be found in [118].

particle (LSP) must be stable. In that case the LSP is a dark matter candidate and can be

either the lightest neutralino, sneutrino or gravitino, depending on the specific realization

of the MSSM.

Another advantage of the MSSM is that the energy dependence of the coupling con-

stants of the SM interactions is modified as a result of the introduction of sparticles.

Consequently these coupling constants can be unified at a large energy scale referred

to as the “GUT scale”. Within supersymmetry it is also possible to create models of

supergravity by imposing the locality of supersymmetry.

4.2.2 Simplified Model Spectra

The parameter-space of the MSSM can be reduced by fixing the sparticles decay modes and

branching ratios and the mass hierarchy between sparticles. Such restrictions give only a

limited number of possible SUSY models called “Simplified Model Spectra” (SMS) [120,

121, 122].

A typical SMS scenario for the stop production is illustrated in Fig. 4.6. In this case

only the masses of the stop and the neutralino are considered to be free parameters. All the

other sparticles are assumed to be much heavier and do not influence the studied process.
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The associated branching fraction for the decay of the stop (here tχ̃0
1) is arbitrarily fixed,

most of the cases to 100%.

p

p t̃1

t̃1

t

χ̃
0

1

χ̃
0

1

t

Figure 4.6: An example of diagram of direct stop pair production. In this diagram both
stops decay to a top quark and a neutralino.

At the end of the analysis, the results are interpreted in a 2D plane of the free param-

eters.

4.2.3 Results on the SUSY searches in Run 1

In Run 1, many analyses searching for the SUSY particles were performed. In particular

for the stop production, the naturalness constraint and the mixing of gauge eigenstates

of the stops suggest that the lightest stop t̃1 could be relatively light, of about 1 TeV, and

therefore accessible at the LHC energies. The combined results of stop decaying either

to tχ̃0
1 or cχ̃0

1 are shown in Fig. 4.7. This figure shows the exclusion limits on the stop

and LSP masses in three different kinematic regions categorized as a function of the mass

difference ∆m = mt̃ − mLSP .

For mLSP < ∆m < mW the stop can decay either to cχ̃0
1 or to four bodies where the

intermediate top quark and W boson are off-shell in tχ̃0
1, the region ∆m < mLSP being

kinematically forbidden. The decay of the stop to the cχ̃0
1 is possible via loops or flavor

changing neutral currents. Once mW < ∆m < mt, the decay tχ̃0
1 undergoes a three body

decay via off-shell quark, but with an on-shell W boson. When ∆m > mt the stop can

decay to tχ̃0
1. The analyses whose results are presented in the Fig. 4.7 do not only differ by

the coverage of the kinematic regions, but also by the analysis strategy, for example they

may require a different number of leptons in the final state. In general, less leptons there

are in the final state, larger is the branching ratio, and therefore the expected yield. But

on the other hand the analyses requesting more leptons suffer less from SM background

contributions.

139



CHAPTER 4 - SUPERSYMMETRY AS A POSSIBLE EXTENSION OF THE
STANDARD MODEL

stop mass [GeV]

100 200 300 400 500 600 700 800

L
S

P
 m

a
s
s
 [
G

e
V

]

0

100

200

300

400

500

600

700

W

 =
 m

1

0

χ∼

 - 
m

t~
m

t

 =
 m

1

0

χ∼

 - 
m

t~
m

 = 8 TeVs
CMS

1

0
χ∼ / c 

1

0
χ∼ t →t

~
 production,t

~
-t

~

-1
SUS-14-011 0,1,2-lep (Razor) 19.3 fb

-1
SUS-14-011 0-lep (Razor) + 1-lep (MVA) 19.5 fb

-1
SUS-13-011 1-lep (2 and 3 body decays) 19.5 fb

-1
SUS-13-023 0-lep (2 body decays) 18.9 fb

-1
SUS-14-015 1,2-lep (2 and 3 body decays) 19.5 fb

-1
SUS-14-001 0-lep (2 body decays) 19.4 fb

-1
)18.5 fb

1

0
χ
∼

 c →t
~

SUS-14-006 (
-1

SUS-14-021 1-lep (4 body decays) 19.7 fb
-1

SUS-14-021 2-lep (4 body decays) 19.7 fb
-1

) 19.7 fb
1

0
χ
∼

 c →t
~

SUS-14-001 Monojet (

Observed
Expected

t

 =
 m

1

0

χ∼

 - 
m

t~
m

Figure 4.7: The exclusion limits on the stop and LSP masses for the tχ̃0
1 and cχ̃0

1 decay
modes. The results from several Run 1 analyses are combined in this plot [123].

The strongest exclusion limit on the stop mass was put by the analysis [124] (light

blue in the Fig. 4.7) searching for fully hadronic final states. This analysis is interpreted

in the context of SMS and excludes top squark masses up to 755 GeV for a neutralino

mass below 200 GeV. Probing the higher stop t̃ masses is difficult with the current dataset,

given that the production cross section falls steeply as a function of the mass as illustrated

in Fig. 4.8.

On the diagonals where ∆m ∼ mW and ∆m ∼ mt, the final state topologies for signal

are very similar to the ones of the SM background, the analyses have therefore a low

sensitivity in these regions and are not able to derive limits on them with the Run I data.

The summary plots of excluded masses of SUSY particles obtained by SUSY searches

at Run 1 can be seen in the Fig. 4.9 and Fig. 4.10 both for the ATLAS and CMS col-

laborations, respectively. Depending on the SUSY model and decay channel, the gluino

masses up to around 1.8 TeV, the stop and sbottom masses up to around 700 GeV, the

chargino masses up to around 700 GeV, and the slepton masses up to around 300 GeV

were excluded at Run 1.

The increase of the center-of-mass energy between Run 1 and Run 2, from 8 TeV to
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Figure 4.8: The cross sections of selected SUSY processes [125].

13 TeV, permits to further probe higher SUSY masses thanks to the parton luminosity

increase: for example the pair production of stops of 700 GeV is increased by a factor 8.4

as shown in Fig. 4.11, while the gain of typical SM backgrounds is much smaller.
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*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Figure 4.9: Summary of the masses of SUSY particles excluded by the ATLAS collabo-
ration with the Run 1 dataset [126]. The SUSY models, decay channels and assumptions
are directly indicated in the plot. More details can be seen in the documentation of the
analyses.
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Figure 4.10: Summary of the masses of SUSY particles excluded by the CMS collabora-
tion [123]. The limits in darker shades are given for a massless LSP, while lighter shades
limits are for m(mother)-m(LSP)=200 GeV. More details can be seen in the documenta-
tion of the analyses.

Figure 4.11: (left) The ratios of 13 TeV to 8 TeV LHC parton luminosities as a function of
a produced particle mass MX . (right) The value of this ratio for several SM and beyond
SM processes [127].
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Chapter 5

Search for top squark pair

production in pp collisions at
√

s=13 TeV in Run 2 using single

lepton events

In the previous chapter, we have introduced supersymmetry as the most popular extension

of the standard model, due to its capability to address many shortcomings of the SM.

Among others, it provides a natural solution to the hierarchy problem and a dark matter

candidate. Within supersymmetry each SM particle has a SUSY partner with the same

quantum numbers except the spin which is differing by one half. This chapter focuses on

the direct pair production of the lightest SUSY partner of the top quark, referred to as

the top squark or stop (t̃1), this t̃1 being in fact a mass eigenstate from the mixing of the

two scalar stops t̃R and t̃L as previously described in Section 4.2.1.

In this chapter, SMS scenarios in which the R-parity is conserved are considered,

leading to the stops being produced in pair. The LSP is the lightest neutralino χ̃0
1. As we

will see later, directly produced stop pair decays into two b quarks, two W bosons and two

neutralinos. The neutralinos interact only weakly and escape the detector unmeasured.

Although undetected particles can be spotted by the presence of the missing transverse

energy, which can be especially large in case of final states with more neutralino(s) and

neutrino(s). Therefore SUSY signal can have an unique experimental signature compared

to the standard model processes.

This chapter describes the search for direct top squark pair production in pp collisions

at
√

s=13 TeV using single lepton events [128] corresponding to an integrated luminosity

of 35.9 fb−1 collected during 2016. This analysis is further referred to as the “full 2016
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analysis”. I also worked on the previous versions of this analysis [129, 130], based first

on data from 2015 corresponding to an integrated luminosity of 2.3 fb−1 and referred to

as the “2015 analysis” and then on data from the beginning of 2016 with an integrated

luminosity of 12.9 fb−1 referred to as the “ICHEP2016 analysis” as it was presented at

the ICHEP conference in 2016. Several differences between the three versions are briefly

discussed, but in general the strategy of the analyses remains similar. In the following

sections I especially highlight some chosen personal contributions.

In the Section 5.1 the signal topologies targeted by full 2016 analysis are presented.

The following Section 5.2 defines the strategy of the analysis. Then in Section 5.3 the

background estimation techniques in the search region are discussed, starting from the

estimation of background referred as “Z → νν̄” which I provided during my PhD thesis.

Within the subsections on the relevant backgrounds, the systematic uncertainties on the

background estimates are identified. Finally Section 5.4 summarizes the results of this

analysis and provides their interpretation.

5.1 Signal topologies

As the lighter stop t̃1 is expected in natural SUSY to be lighter than the gluino [131], the

stop pair can be produced either directly as shown in Fig. 4.6 or via the gluino mediated

production (see Fig. 5.1). Only the first process is considered in this thesis, the later

being studied in e.g. [132, 133].

p

p g̃

g̃

t̃1

t̃1

t

t

χ̃
0

1

χ̃
0

1

t

t

Figure 5.1: An example of diagram of gluino mediated stop production. In this case
gluinos are produced in pairs and both decay to a top quark and a top squark. Both stops
decay to a top quark and an LSP.

There are different possible decay modes for the stop depending on the mass difference

between the stop and the neutralino ∆m = mt̃ − mχ̃0

1

. The stops can decay via two, three

or four body decays leading to final states with b or c quarks. In this thesis three decay

modes are considered for the stop pair in the kinematical region ∆m > mW + mb.
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The first of the three considered decay chains of the stop pair is shown in the left part

of Fig. 5.2 and referred to as “T2tt”, in which both stops decay in 100% of cases to a top

quark and a neutralino, followed by the decay of each top quark to a W boson and a b

quark:

t̃1
¯̃t1 → tχ̃0

1t̄χ̃
0
1 → bW +χ̃0

1b̄W
−χ̃0

1. (5.1)

Note that if ∆m < mt, then the decay of the stop is a three-body decay, with the top

quark being off-shell.

p

p t̃1

t̃1

t

χ̃
0

1

χ̃
0

1

t

p

p t̃1

t̃1

χ̃
+

1

χ̃
−

1

b

W−

χ̃
0
1

χ̃
0
1

W+

b

Figure 5.2: The SMS diagrams for the direct stop pair production. In the left diagram
each stop decays to tχ̃0

1 (T2tt), while in the right one they decay to bχ̃±
1 (T2bW) [134].

The second possibility depicted in the right part of Fig. 5.2 is referred to as “T2bW”

and in this case both stop quarks decay in 100% of cases via an intermediate chargino

which decays as χ̃±
1 → W ±χ̃0

1:

t̃1
¯̃t1 → bχ̃+

1 b̄χ̃−
1 → bW +χ̃0

1b̄W
−χ̃0

1. (5.2)

The chargino mass mχ̃±

1

is fixed by the relation

mχ̃±

1

= x mt̃1
+ (1 − x) mχ̃0

1

, (5.3)

where mt̃1
is the stop mass, mχ̃0

1

the neutralino mass and x is a fixed fraction between 0

and 1, which was for CMS searches usually chosen to be 0.25, 0.5 or 0.75 at Run 1, while

x is chosen to be equal to 0.5 at Run 2.

The third decay, shown in Fig. 5.3 and referred as “T2tb” combines the previous two

decay modes of the stop: one of the stops decays to a top quark and a neutralino, while

other one decays to a bottom quark and a chargino:

t̃1
¯̃t1 → tχ̃0

1b̄χ̃
−
1 → bW +χ̃0

1b̄W
−χ̃0

1. (5.4)
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In the T2tb model, the chargino and neutralino are taken as almost mass degenerate, the

chargino mass is fixed by relation mχ̃±

1

= mχ̃0

1

+ 5 GeV. Such model is motivated by the

low mass difference between the chargino and neutralino obtained in the case when bino

and wino masses are larger than the parameter µ [135]. In addition, the results of the

thesis [136] show that if µ = 200 GeV, tan β = 10 and the bino mass is set to 3 TeV,

the mass difference between the lightest chargino and neutralino is lower than 5 GeV,

depending on the mass of the wino. In our case, because of this small difference between

the chargino and neutralino masses, the W boson is produced off-shell, its decay products

have low transverse momenta and are typically not selected or even reconstructed.

p

p t̃1

t̃1

χ̃
+

1

t

χ̃
0
1

χ̃
0
1

W+

b

Figure 5.3: The SMS diagram for the direct stop pair production considering the mixed
decay of the stop pair t̄χ̃0

1bχ̃
+
1 [134].

All decay modes considered by this analysis lead to states with two b quarks, two

W bosons and two neutralinos, the targeted final states having one leptonically and one

hadronically decaying W boson, resulting in one charged lepton (1ℓ) in the final state:

t̃1
¯̃t1 → bb̄ℓνℓqq̄χ̃0

1χ̃
0
1. The advantage of this 1ℓ channel is the low occurrence of the standard

model backgrounds compared to the full hadronic search, and its relatively high branching

ratio compared to the dilepton channel. The stop pair decays in around 32% of cases to

the final states with one prompt lepton (e, µ) or leptonically decaying tau lepton.

The final state kinematics differ depending on the decay mode and ∆m. The ∆m

plane is shown in Fig. 5.4. In the part of the plane where ∆m < mt, often referred to

as the “compressed spectra” region, the decay products are softer and subsequently not

selected. On the other hand when the ∆m is large, boosted topologies can be expected.

5.2 Analysis strategy

Because of the two neutralinos, the signal processes (T2tt, T2bW and T2tb) can have final

state signatures largely differing from the SM background ones. The knowledge about
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Figure 5.4: The plane of stop (t̃1) versus LSP (χ̃0
1) masses [137].

the signal and background signatures is used to define a “baseline region” of the search,

in which the SM backgrounds are suppressed.

In the baseline search region there are three groups of backgrounds present. The

leading background is referred to as the “lost lepton” background which has a final state

with two W bosons, both decaying into leptons and one of the charged leptons being

lost due to acceptance or a problem of reconstruction or identification. This background,

mainly coming from the dileptonic decay of the top pair production (tt̄ → 2ℓ) and single

top quark process, is reduced by applying a veto on the presence of a second lepton

passing looser criteria, but even after this it remains the largest background. The sub-

leading background is the “one lepton” (1ℓ) background, which is predominantly composed

of associated W boson plus jets production (W + jets → 1ℓ) and top pair production

(tt̄ → 1ℓ) with one W boson decaying leptonically. The last relevant background is

denoted as “Z → νν̄” and comes from processes such as tt̄Z and WZ in which the

Z boson decays to two neutrinos and one of the W bosons decays leptonically.

Starting from this baseline region, tighter selections are applied with the help of dis-

criminating variables, to define smaller signal regions. The goal is to define regions in

which the signal to background ratio is enhanced either by an enrichment in signal, or by

a high suppression of the backgrounds. Different signals are expected to populate differ-

ently these signal regions, allowing to discriminate between the signal scenarios in case of

discovery. The remaining backgrounds in each signal region is estimated from data-driven

techniques or simulations.

Hypothesis tests are performed on the signal, estimated background and observed
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data yields in all signal regions. In case of no observed excess from the SM expectation,

the results are interpreted in term of exclusion limits on a given signal models. For the

purpose of the analysis optimization and limit setting, the procedure of hypothesis testing

in the LHC searches is briefly described in the Section 5.2.1. Then the triggers and objects

used in this analysis are introduced in Sections 5.2.2 and 5.2.3.

In the following Section 5.2.4, the variables designed to define the baseline search region

and its categorization in signal regions are introduced and justified on the examples of

signal topologies. The backgrounds behavior with regard to the choice of the variables is

discussed as well. Once the most discriminating variables are identified, the final definition

of the baseline and signal regions is presented in Section 5.2.5 and 5.2.6.

The introduced analysis strategy is general for all types of signal topologies. But to

better target the very challenging signal final state scenario in the compressed region of

T2tt, a separately optimized “compressed” analysis has also been designed. As the signal

regions defined in the nominal and compressed analyses are not exclusive, based on the

sensitivity of both analyses for different ∆m, it has been decided to use the compressed

analysis for T2tt signals in the ∆m range between 100 and 225 GeV and the nominal one

everywhere else. It is interesting to note that this low ∆m range does not cover only the

off-shell decays, but is also relevant for cases when the top quark is produced on-shell.

5.2.1 Hypothesis testing in LHC searches

The hypothesis testing and limit setting procedure chosen by the CMS collaboration

is a modified frequentist method referred to as the “CLs” method [138, 139]. There

are two hypotheses to be tested, the background only hypothesis H0 also referred to

as the “null hypothesis” and the signal plus background hypothesis H1 usually called

as the “alternative hypothesis”. These hypotheses are functions of b + µs, where b and

s are the expected background and signal yields and µ is the signal strength modifier.

In the case of the background only hypothesis H0, the signal strength µ is zero. The

signal and background estimates entering into the hypothesis testing are burdened by

many systematic uncertainties, which are treated as nuisance parameters and collectively

denoted as θ. The expected signal and background yields are dependent on these nuisance

parameters: s → s(θ) and b → b(θ).

Observed limits

To compute the observed limits, a likelihood function L(data|µ, θ) can be built as
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follows [139]

L(data|µ, θ) = Poisson(data|µs(θ) + b(θ)) p(θ̃|θ), (5.5)

where p(θ̃|θ) are the probability distribution functions for the nuisance parameters θ with

θ̃ being the default value of the nuisance parameters, data for this purpose refers to the

information about the observed data yield or generated pseudo-data. In case of a binned

likelihood, the term Poisson(data|µs(θ) + b(θ)) can be expressed as

Poisson(data|µs(θ) + b(θ)) =
∏

i

µsi + bi

ni!
e−µsi−bi , (5.6)

which is a product of Poisson probabilities to observe ni data events in the bin i. Given

the likelihood function, the compatibility of data with the H0 or H1 hypothesis can be

tested with the help of the test statistics q̃µ which has the form of a profile likelihood ratio

q̃µ = −2ln
L(data|µ, θ̂µ)

L(data|µ̂, θ̂)
, (5.7)

where the signal strength µ is a free parameter, θ̂µ are the conditional maximum likelihood

estimators of the parameters θ given the parameter µ and the measured data. The µ̂ and

θ̂ are the parameter estimators at the global maximum of the likelihood.

The observed value q̃obs
µ of the profile likelihood ratio expressed in Eq. 5.7 can be

computed using the measured data and the maximum likelihood estimators of θ which

best describe the observed data, it can be evaluated for both the H0 and H1 hypotheses.

The CLs method defines two p-values, the first one is pµ testing the compatibility of the

observation with H1 and the second one, 1−pb, testing the compatibility of the observation

with the background-only hypothesis H0. The CLs for a given signal strength µ is then

defined as

CLs(µ) =
pµ

1 − pb

, (5.8)

where pµ can be written as

pµ = P (q̃µ ≥ q̃obs
µ |s + b) (5.9)

and 1 − pb as

1 − pb = P (q̃µ ≥ q̃obs
µ |b). (5.10)
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For µ = 1, the H1 is excluded at (1 − α) CLs confidence level if CLs ≤ α. Typically,

the exclusion limits are derived for α = 0.05. In the case that the µ parameter is not fixed

to one, the exclusion limits are set on the cross section given a fixed branching fraction

of a given signal model. In such procedure the signal strength µ is adjusted in order to

correspond to the CLs = 95%. If for a given signal point the cross section is limited to

a lower value than the theoretical cross section, the signal point is excluded. A contour

line is drawn at the place where the limit on the cross section is equal to the theoretical

cross section.

Expected limits

The expected limits can be determined via a similar method using generated background-

only pseudo-data instead of observed data.

Thanks to the relation

p =
∫ ∞

Z

1√
2π

e−x2/2dx, (5.11)

the p-value computed from the test statistics can be converted to the significance Z

with Zσ denoting the significance in terms of the standard deviation σ of a Gaussian

distribution. If considering the background-only hypothesis, the significance of 5 standard

deviations corresponding to pb = 2.8 × 10−7 suggests that the H0 hypothesis is excluded

at 5σ in favor of the H1 hypothesis, therefore the discovery is claimed.

5.2.2 Triggers, data and simulated samples

In the full 2016 analysis several kinds of triggers are used: Emiss
T , single lepton, e − µ

double lepton and single photon triggers. As the online thresholds for the single lepton

triggers are higher than the cut applied offline for the lepton, the use of the Emiss
T triggers

allows to select also events with a lower pT lepton. To guarantee a high efficiency, an

“OR” of these triggers is used in the analysis. The trigger requirements are given in

Table 5.1. The trigger efficiency in the search regions of interest is greater than 99%. The

data triggered by the double lepton trigger are used for checking the kinematics of the

lost lepton background. Similarly the data triggered by the single photon trigger are used

to cross-check the Emiss
T resolution in the 1ℓ background.

The SM background samples are generated by leading-order (LO) or next-to-leading-

order (NLO) generators and processed by the full simulation of CMS. The LO samples

generated by MADGRAPH_aMC@NLO 2.2.2 [74] generator configured to the LO with

MLM matching [140] using the LO NNPDF3.0 [141] parton distribution functions are
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for the tt̄, W+jets, tt̄Z and γ+jets processes. The single top samples are generated

by the NLO POWHEG 2.0 [142] generator. The MADGRAPH_aMC@NLO 2.2.2 in

the NLO mode with FxFx [143] matching and the NLO NNPDF3.0 parton distribution

functions is used to generate the majority of the rare processes, such as WZ and ZZ.

The full hadronization, parton showering and modelling of the underlying events are then

performed by PYTHIA 8.205 [71].

The description of the initial state radiation (ISR) jets in the tt̄ and tt̄Z samples is

improved by reweighting these samples based on the number of the ISR jets (NISR) in

order that the jet multiplicity agrees between data and simulation. Measurements for

NISR between one and six have been done and the data-to-simulation ratio has been

found to be in the range between 0.92 and 0.51. The systematic uncertainty on this

factor is taken to be half the deviation from the unity. The pileup distributions in data and

generated samples largely differ and therefore the simulated samples should be reweighted

for the different pileup profiles in data and simulation. The reweighting procedure is

applied for the lost lepton and W + jets → 1ℓ backgrounds as these processes have

sufficient MC statistics in the signal regions. However for signal and the backgrounds

with small yields in the signal regions it would only unreasonably enlarge the statistical

uncertainty on the yield.

The signal samples are produced by the MADGRAPH_aMC@NLO 2.2.2 generator

at the LO and injected into the fast simulation of the CMS detector. The same NISR

reweighting procedure as discussed above is applied on the signal samples.

5.2.3 Object definition

In this section the object definition and the criteria on their selection for the full 2016

analysis are introduced.

Primary vertex The primary vertices in the event must pass good quality criteria. The

primary vertex corresponding to the hard interaction is identified as the vertex which

leads to the largest sum of p2
T of the physics objects belonging to this vertex.

Lepton The “selected” lepton for this analysis is a large pT electron or muon isolated from

any activity in the detector. The selected lepton must originate from the primary

vertex, both electron and muon have pT >20 GeV, but a different |η| coverage:

|η| < 1.4442 for the electron and |η| < 2.4 for the muon. Within this acceptance

criteria the selection efficiency is more than 85% for electrons and 95% for muons.

This analysis also defines a second category of leptons, called “veto” leptons, which

153



CHAPTER 5 - SEARCH FOR TOP SQUARK PAIR PRODUCTION IN PP
COLLISIONS AT

√
S=13 TEV IN RUN 2 USING SINGLE LEPTON EVENTS

Emiss
T trigger Emiss

T > 120 GeV and Hmiss
T =

∣

∣

∣

∑

(þp jets
T ) + þp

lep

T

∣

∣

∣ > 120 GeV

Single lepton trigger isolated electron (muon): plep
T > 25 (22) GeV, |η| < 2.1 (2.4)

Selected lepton electron (muon): plep
T > 20 GeV, |η| < 1.442 (2.4), medium ID

Selected lepton isolation psum
T < 0.1 × plep

T , ∆R = min[0.2, max(0.05, 10 GeV/plep
T )]

Jets and b-tagged jets pT > 30 GeV, |η| < 2.4
b tagging efficiency medium (tight) WP: 60-70 (35-50)% for 30<jet pT <400 GeV
b tagging mistag rate medium (tight) WP : ∼ 1% (∼ 0.2%) for light-flavor partons

Veto lepton muon or electron with plep
T > 5 GeV, |η| < 2.4

Veto lepton isolation psum
T < 0.1 × plep

T , ∆R = min[0.2, max(0.05, 10 GeV/plep
T )]

Veto track charged particle-flow candidate, pT > 10 GeV, |η| < 2.4

Veto track isolation psum
T < min

(

0.1 × plep
T , 6 GeV

)

, ∆R = 0.3

Veto hadronic tau tau ID, pT > 20 GeV, |η| < 2.4
Veto hadronic tau isolation ∆R = 0.4

Table 5.1: The triggers and the object definition. plep
T is the pT of the lepton and the psum

T

is the scalar sum of the pT of all PF candidates which are located in a cone around the
lepton, but excluding the lepton itself. psum

T for the selected and veto lepton is computed
from the charged and neutral PF particles, while for the veto track only charged particles
are used. The label “light flavor” denotes that the jet originates from u, d or s quarks or
gluons [129].

pass looser pT threshold, isolation criteria, or identification than the selected one.

A common isolation definition used for the majority of the SUSY analyses, differs

from the standard CMS one. It is defined as a function of the sum of the pT of

PF candidates which are within a cone around the lepton. The isolation cone size

parameter depends on the pT of the lepton and the cone size parameter starts at

0.2 for plep
T <50 GeV and then changes to 10.0/plep

T for 50< plep
T <200 GeV. For

plep
T >200 GeV the cone size parameter is of 0.05. This procedure ensures that in

the case of boosted topologies when a lepton and a jet can be close to each other,

the cone size decreases for the lepton not to be affected by the jet fragments in its

proximity.

Jets and b-tagged jets The jets are reconstructed by the anti-kt [42] algorithm with

a cone distance parameter of 0.4. The jet pT is required to be higher than 30 GeV

and the jet must be in the range |η| < 2.4. Either a medium or a tight working

point (WP) of the b-tagging CSVv2 algorithm is used for the definition of the signal

regions.

Veto on isolated tracks The majority of hadronically decaying tau leptons decay into
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one charged track which is predominantly a charged hadron. Therefore the events

with taus can be suppressed by vetoing events which have one isolated charged track

from hadron. This veto also helps to suppress a second muon or electron in the event

originating from the tau decay or the W decay.

Veto on hadronic tau This additional tau veto, using tau identification criteria, helps

to veto the taus which do not pass the isolated track selection. It mainly helps to

reduce the lost lepton background.

Missing transverse energy The missing transverse momentum referred to as “missing

transverse energy” is used as defined in Section 1.3.6. Following the CMS recom-

mendations, several additional Emiss
T filters, e.g. filters for bad or duplicate muons,

are applied.

The summary of the object selection criteria is presented in Table 5.1.

5.2.4 Search variables

Discriminating variables are built from the objects defined in previous section and their

properties, kinematics or multiplicities. The variables considered for the presented stop

analyses to define the baseline search region (see Section 5.2.5) as well as the signal regions

(Section 5.2.6) are introduced in the following subsections.

5.2.4.1 Number of leptons (Nℓ)

The presented search focuses on final states with one charged lepton and therefore a

requirement on the number of leptons to be equal to one must be imposed. The lepton is

either an electron or a muon and the events with tau leptons are rejected. No additional

lepton from the veto lepton category is allowed.

5.2.4.2 Number of jets (NJ)

As shown in blue in the example in Fig. 5.5, at least four jets are expected in the considered

signal final states. But because of the low mass difference between the chargino and the

neutralino in the T2tb model, the two jets from the hadronically decaying W boson have

low pT and thus they may not be selected, therefore only two jets are expected. In the

case of a high ∆m value, the decay products of the stops can be boosted and thus two or

more jets can be merged into one, resulting to a reduced number of selected jets in final
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state. The baseline selection requires to have at least two jets, but this variable is also

later used for the definition of signal regions targeting different topologies.
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Figure 5.5: Diagram of the T2tt signal model supporting the choice of NJ (blue), Emiss
T

(red), MT (magenta), min∆φ(j1,2, Emiss
T ) (brown) and Mℓb (orange) as discriminating

variables [130].

5.2.4.3 Number of b-jets (Nb)

In the diagram of Fig. 5.5 it can also be noticed that two jets in green are originating from

b quarks. For this reason the number of selected b-tagged jets is one of the discriminating

variables, which is in the baseline search region chosen to be larger or equal to one. In

the signal regions where the W + jets → 1ℓ background is dominant, the tight b-tagging

working point is used to further suppress it, as the jets are expected to be mainly composed

of light flavors.

5.2.4.4 Missing transverse energy (Emiss
T )

The red circles in Fig. 5.5 show that there are two neutralinos and one neutrino originating

from the leptonically decaying W boson in the final states of the signal processes. These

particles escape from the detector and lead to missing momentum in the transverse plane.

Emiss
T is very powerful in rejecting the SM backgrounds because they tend to have smaller

values of Emiss
T as the sources of Emiss

T are more limited than in the case of the signal

processes. However, because of the presence of two neutrinos and one lost lepton in the

lost lepton background, the Emiss
T value of this background can be very large. This also

applies for the processes of the Z → νν̄ background, where the source of Emiss
T are three

neutrinos.
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Therefore the baseline selection requires Emiss
T to be larger than 250 GeV. The Emiss

T

distribution in the baseline search region for all relevant backgrounds and three selected

signal scenarios is shown in the left plot of Fig. 5.6. The 1ℓ background is decomposed

into two processes which are later referred to as “1ℓ from top” populated mainly by the

tt̄ → 1ℓ events and “1l not from top” populated by the W + jets → 1ℓ process. The Emiss
T

has also been, as expected, found to be a good variable for the definition of the signal

regions.

5.2.4.5 Transverse mass of the lepton-Emiss
T system (MT )

The MT variable is defined as

MT =
√

2plep
T Emiss

T (1 − cos(φ)), (5.12)

where plep
T is the transverse momentum of the lepton and φ is the angle between the

lepton and the direction of Emiss
T in the transverse plane. The combination of a selection

on the MT and Emiss
T ensures a drastic reduction of the SM background. The MT variable

is designed to suppress backgrounds where both the lepton and Emiss
T come from one

W boson. In that case the Emiss
T corresponds to the neutrino of this W boson and the

the MT has an endpoint at the W boson mass (∼80 GeV). As shown in the diagram

of Fig. 5.5, the leptonically decaying W boson is not the only source of the Emiss
T and

therefore no endpoint is expected for the signal.

The baseline search region requires events with MT larger than 150 GeV, suppressing

mainly the 1ℓ background, as in that case the lepton and Emiss
T in both the W +jets → 1ℓ

and tt̄ → 1ℓ processes originate from one W boson. It can be seen in the right plot of

Fig. 5.6, that indeed the bulk of the one lepton events have a low MT value, but a tail

survives at high MT . For the tt̄ → 1ℓ process, the top quark constraints the kinematics of

the W boson and therefore the tail in MT is mainly caused by the Emiss
T resolution. The

situation is different for the W + jets → 1ℓ background, where the kinematics permits

the off-shell production of W boson and consequently mW ∗ > 80 GeV. For the lost lepton

and Z → νν̄ backgrounds, there is no endpoint as the Emiss
T does not originate from one

W boson.
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Figure 5.6: Data (black dots), background (full colored histograms) and signal (dashed
lines) distributions of the Emiss

T (left) and MT (right) variables after applying the baseline
selection. The cut on MT is not applied in the the right plot, but only indicated by the
black arrow [144].

5.2.4.6 Minimal azimuthal angle between the direction of one of the two

leading jets and the Emiss
T (min∆φ(j1,2, Emiss

T ))

For the background events where a neutrino is the only source of Emiss
T , it is probable that

this neutrino is close to the b quark originating from the same top decay. This appears for

example for the tt̄ → 1ℓ process. To exploit this particularity, one can define the variable

min∆φ(j1,2, Emiss
T ) = min{∆φ(j1, Emiss

T ), ∆φ(j2, Emiss
T )} where ∆φ(ji, Emiss

T ) represents

the azimuthal angle between the direction of the jet i (j1 being the leading jet, and j2 the

subleading one) and þEmiss
T . This variable is shown in the left plot of Fig. 5.7. In the case

of the signal, as depicted in magenta in the diagram of Fig. 5.5, there are more sources of

the Emiss
T and therefore there is no expected constraint on min∆φ(j1,2, Emiss

T ). The chosen

baseline requirement on the min∆φ(j1,2, Emiss
T ) to be larger than 0.8 has been found to

considerably reduce the suggested tt̄ → 1ℓ process but also the tt̄ → 2ℓ background while

leading to a relatively small reduction of the signal.

5.2.4.7 Invariant mass of the system composed by the selected lepton and

the closest b-tagged jet (Mℓb)

When a lepton and a b-jet originate from a one top quark as displayed in Fig. 5.5, the Mℓb

variable, computed as the invariant mass of the system composed by the selected lepton
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Figure 5.7: Data (black dots), background (full colored histograms) and signal (dashed
lines) distributions of the min∆φ(j1,2, Emiss

T ) (left) and Mℓb (right) variables after applying
the baseline selection. The cut on min∆φ(j1,2, Emiss

T ) is not applied in the the left plot,
but only indicated by the black arrow [144].

and the closest b-tagged jet, presents a bound around

mt

√

√

√

√1 − m2
W

m2
t

≈ 153 GeV, (5.13)

where mt is the mass of the top quark and mW the W boson mass. This limit is true

for backgrounds coming from tt̄ decays, but also for the T2tt signal. On the other hand

there is no limit for the W + jets → 1ℓ background and the T2bW signal. Therefore

this variable is not suitable for the baseline region definition, as putting a constraint on

it could considerably reduce one of the targeted signals but it can be used later to define

signal regions which discriminate among the signal scenarios as well as suppress part of

the backgrounds. The distribution of the Mℓb variable for all relevant backgrounds and

three different signals is shown in Fig. 5.7 after the baseline selection. It can be clearly

noticed that the low Mℓb part of distribution is dominated by the lost lepton background

and is more sensitive to the T2tt signal, while in the high Mℓb part the relative fraction of

backgrounds coming from the W + jets → 1ℓ process is increased and the T2bW signal

shows a higher yield than the other signals.

5.2.4.8 Modified topness (tmod)

The topness variable [145] is a χ2-like variable developed to suppress the background

coming from the tt̄ → 2ℓ process with one lost lepton. Its aim is to evaluate how well
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an event agrees with the tt̄ → 2ℓ hypothesis, given that one lepton is lost. It has been

discovered that removing several terms from the topness variable, improves the signal

discrimination in this analysis. The new variable called “modified topness” (tmod) is

obtained by minimization of variable S and is defined as

tmod = ln(minS), where S(þpW , pν,z) =
(m2

W − (pν + pℓ)
2)2

a4
W

+
(m2

t − (pb1
+ pW )2)2

a4
t

, (5.14)

with mW and mt being the masses of the W boson and the top quark, pW , pν , pℓ, pb1

being the momenta of the W boson supposed to be fully invisible due to the lost lepton,

the neutrino, the selected lepton and the b-jet respectively. The parameters aW = 5 GeV

and at = 15 GeV are the resolution parameters. The first term in Eq. 5.14 aims to

reconstruct the mass of the W boson whose lepton is selected. The purpose of the second

term is to reconstruct the top mass of leg, for which the lepton is lost. There are different

options how to chose the b-jet in the event. For this analysis the following procedure is

chosen: The modified topness is computed for the three jets having the highest CSVv2

discriminator values, and then the jet which leads to the smallest modified topness is

chosen.

Different backgrounds and signal models with different ∆m populate the tmod distri-

bution shown in Fig. 5.8 differently, therefore this variable is valuable for the definition

of signal regions. It can be noticed that the tmod variable has a double peak shape. The

left peak is populated by the events where the objects are correctly identified to originate

from the given W boson and top quark, while in the one on the right at least one a object

is wrongly taken for the computation of the modified topness.

5.2.4.9 An alternative variable discriminating against the lost lepton back-

ground (MW
T 2)

The purpose of the MW
T 2 variable is similar to that of the modified topness, i.e. to reduce

the lost lepton background. This variable similarly tries to reconstruct the event under

the tt̄ → ℓℓ hypothesis with one lost lepton. Its definition is

MW
T 2 = min{my, consistent with : [p2

1 = 0, (p1 + pℓ)
2 = p2

2 = m2
W , þp1,T + þp2,T = þEmiss

T

(p1 + pℓ + pb1
)2 = (p2 + pb1

)2 = m2
y]},

(5.15)
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Figure 5.8: Data (black dots), background (full colored histograms) and signal (dashed
lines) distributions of the tmod variable after applying the baseline selection [144].

where my is the fitted mass of the mother particle and the different pi represent the four-

momenta of the neutrino (p1) from the W boson whose lepton is selected, the invisible

W boson (p2), the two b-jets (pb1
and pb2

) and the selected lepton pℓ, respectively. The

constraint on the mass mW of W boson is used. The b-jets b1 and b2 selected from the

three jets with the highest CSVv2 discriminator as the jets which lead to the lowest MW
T 2.

Following the definition of MW
T 2, an endpoint around the top mass is expected for the

tt̄ events with a lost lepton. It would be possible to use this variable for the baseline

selection by requiring a high value of MW
T 2, but it has been found out that signals with

low ∆m also lead to small MW
T 2. In the 2015 and ICHEP2016 analyses [129, 130], the MW

T 2

variable was used in the definition of signal regions. It shows a very similar behavior as

the tmod variable and with more statistics collected it has been found out that the tmod is

more discriminating in the full analysis phase-space than the MW
T 2 variable. Therefore in

the current analysis the MW
T 2 variable is not used anymore.

5.2.4.10 Number of W-tagged jets (NW )

For signals with high ∆m, the top quarks originating from the stop decays are expected

to be significantly boosted. The boost of the top quarks within the SM is less likely and

therefore tagging of boosted objects could help the signal discrimination. As shown in

Fig. 5.9 when the momentum of the hadronically decaying top quark is low, three resolved

anti-kt jets with cone distance parameter of 0.4 are observed. With a growing boost of

the top quark, the jets originating from the W boson or all three jets of the top quark can
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be merged into one “fat” jet. The merged jets can be tagged by special W- or top-tagging

techniques.

top quark pT

Figure 5.9: A schema of the jet configuration of a hadronically decaying top quark
depending on its boost.

I have worked on the evaluation of the potential increase in sensitivity that W-tagging

techniques could bring to the stop analysis. The study is performed in the context of

the 2015 single lepton stop analysis [129] using data collected in 2015 at center-of-mass

energy of 13 TeV and corresponding to an integrated luminosity of 2.3 fb−1.

The standard jets used in the analysis are clustered by the ak4 algorithm. The boosted

W jets are expected to be fat and therefore need to be re-clustered with a different cone

distance parameter. In the study two possibilities are exploited, ak8 jets with a cone

distance parameter of 0.8 and ak10 jets with a cone distance parameter of 1.0. The

merged W jet should have a large transverse momentum and a mass around the mass of W

boson. Therefore a requirement on the jet mass helps to identify a merged jet originating

from a W boson. The raw mass of the jet is contaminated by initial state radiations,

underlying events and pileup and therefore it must be cleaned from these contributions.

Several “grooming techniques” of the jet mass are exploited by CMS collaboration, but

in this study only the “pruned mass” is used, as it was the technique recommended by

CMS for the W-tagging [146]. The pruning procedure [147] rejects large angle and soft

constituents during the re-clustering iterations. Another variable used in W-tagging is

called the N-subjettiness (τN) which aims to discriminate how much the jet is consistent

with the N-jet hypothesis. For example the merged jet of a W boson should contain two

jets and therefore be consistent with the 2-jet hypothesis, but not the with 3-jet one.

The N-subjettiness ratio τ21 = τ2/τ1 has a high discriminating power for merged W jets

and therefore in this study a requirement on τ21 is used to tag merged W-jets. Typical

distributions of the pruned mass and τ21 are shown in Fig. 5.10 taken from [148]. In

the plots it can be noticed that W+jets events mostly contain unmerged W bosons and

therefore they have a low pruned mass and lead to a broad τ21 distribution. The fraction

of the pruned jets around 80 GeV, therefore merged W-jets, is enhanced in the case of tt̄
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events, leading to lower values of τ21. Taking into account the discriminating variables, I

design two selections of the W-tagged jets referred to as “ak8-W” and “ak10-W”, presented

in Table 5.2 and used in the following.

Figure 5.10: Data and simulation distribution of the jet pruned mass (left) and the N-
subjettiness ratio τ21 (right) for W+jets events. The data-to-simulation ratios are shown
at the bottom of the plots [148].

Name Clustering algorithm pruned mass mW,p [GeV] τ21 pT [GeV]
ak8-W ak8 60<mW,p<100 <0.5 >200
ak10-W ak10 60<mW,p<100 <0.5 >200

Table 5.2: The definition of the “ak8-W” tagged and “ak10-W” tagged jet.

The 2015 analysis defines four categories of signal regions targeting signals with dif-

ferent kinematics. In this study, I focus only on the region groups addressing the high

∆m phase space and referred to as “High ∆m” and “Boosted High ∆m” in Table 5.3. I

redefine the signal regions based on the number of W-tagged jets (NW ) instead of Emiss
T ,

but kept the number of the signal regions the same. The new proposed signal regions are

shown in Table 5.4.

To evaluate the benefits of the W-tagging, the expected significances in the default

signal regions of Table 5.3 are compared to the expected significances of the proposed

W-tagging signal regions in Table. 5.4. The significance, described in Section 5.2.1, is the

expected significance when using generated pseudo-data with a signal strength of one,

instead of the observed data. For this comparison all relevant backgrounds as well as

three different T2tt signal points with different stop and neutralino masses (mt̃1
, mχ̃0

1

)

are used. These signal point masses in GeV are (900, 1), (800, 300) and (650, 450). In this
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Name NJ MW
T 2 [GeV] Emiss

T [GeV]
≥4 >200 250<Emiss

T <350
High ∆m ≥4 >200 350<Emiss

T <450
≥4 >200 Emiss

T >450
Boosted High ∆m =3 >200 250<Emiss

T <350
=3 >200 Emiss

T >350

Table 5.3: The signal regions of the 2015 analysis [129].

Name NJ MW
T 2 [GeV] Emiss

T [GeV] NW

≥4 >200 250<Emiss
T <350 –

High ∆m W-tagging ≥4 >200 Emiss
T >350 =0

≥4 >200 Emiss
T >350 =1

Boosted High ∆m W-tagging =3 >200 Emiss
T >250 =0

=3 >200 Emiss
T >250 =1

Table 5.4: Proposed signal regions using the W-tagged jets multiplicity.

study the significances are computed for two different luminosity options (2.3 fb−1 and

10 fb−1) and the two different selections of W-tagging definition in Table 5.2. The default

signal regions and the newly proposed W-tagged signal regions are differently combined,

the best performing combination of the signal regions is the combination of the “High

∆m W-tagging” category with the “Boosted High ∆m” category.

In Table 5.5, the significances of the best performing combination for both ak8-W

and ak10-W are shown together with the significances of the default signal regions for

three signal points and an integrated luminosity of 2.3 fb−1. It can be noticed that using

ak10-W jets leads to a larger significance than ak8-W jets. Although there is an increase

in the significance up to around 20 % in some cases, the increase is not large enough

to support the usage of complicated W-tagger, highly consuming in computing resources

and providing a significant gain only for high ∆m signals. It is important to note that,

compared to what is at the end achieved with the full analysis, many simplifications are

done in this study: an uncorrelated systematic uncertainty of 30% is used in each SR

and per process, and the background yields are taken directly from simulated samples.

Moreover it would be necessary to compute the W-tagging efficiency and eventually derive

scale factors correcting differences between data and simulation. Therefore also a large

effort would be needed to provide data-driven estimations of the backgrounds and the

corresponding systematics.

When studying the significances for an integrated luminosity of 10 fb−1, it has been

found that the gain in significance raises up to around 30% when using the W-tagging
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and therefore the W-tagging can be an interesting option for analyses based on data with

larger integrated luminosity.

L = 2.3 fb−1 ak4 [128] ak8-W ak10-W
Signal points High ∆m + High ∆m W-tagging + High ∆m W-tagging +
(mt̃1

, mχ̃0

1

) Boosted High ∆m Boosted High ∆m Boosted High ∆m

(900,1) 1.43 1.35 1.70
(800,300) 1.93 1.96 2.34
(650,450) 0.21 0.21 0.23

Table 5.5: Significances for three different T2tt signal points (first column) using the
default SRs (second column) and then a mix of SRs defined by using “ak8-W” (third col-
umn) and “ak10-W” (fourth column) tagged jet multiplicity for an integrated luminosity
of 2.3 fb−1.

5.2.5 The baseline selection

Based on how the objects are selected or vetoed and which kinematic variables help to

suppress the SM background while keeping high signal yields, the baseline search region

of the full 2016 analysis is defined as follows:

– One good selected primary vertex

– Exactly one selected electron or muon

– No veto lepton, isolated track or hadronic tau

– At least two selected jets

– At least on b-jet passing the medium WP

– Emiss
T >250 GeV

– MT >150 GeV

– min∆φ(j1,2, Emiss
T ) > 0.8

5.2.6 Definition of the signal regions

In order to increase the sensitivity of the analysis to the signal, the baseline search region

can be further divided into signal regions with the help of the discriminating variables

defined in Section 5.2.4. For the nominal search there are 8 signal region groups denoted
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from A to H, leading to 27 exclusive signal regions in total, which are based on selections

on NJ , tmod, Mℓb and Emiss
T . To further suppress W + jets → 1ℓ background, the tight

b-tagging WP is used in regions where Mℓb >175 GeV. An additional group I of four

signal regions is created for the T2tt compressed spectrum where 100<∆m<225 GeV.

The definition of the signal regions is shown in Table 5.6.

Group NJ tmod Mℓb [GeV] Emiss
T [GeV]

A 2-3 >10 ≤175 250-350, 350-450, 450-600, >600
B 2-3 >10 >175 250-450, 450-600, >600
C ≥4 ≤0 ≤175 250-350, 350-450, 450-550, 550-650, >650
D ≥4 ≤0 >175 250-350, 350-450, 450-550, >550
E ≥4 0-10 ≤175 250-350, 350-550, >550
F ≥4 0-10 >175 250-450, >450
G ≥4 >10 ≤175 250-350, 350-450, 450-600, >600
H ≥4 >10 >175 250-450, >450
I ≥5 – – 250-350, 350-450, 450-550, >550

Table 5.6: The 27 signal regions of the nominal analysis divided into groups A to H. In
the high Mℓb signal region groups B, D, F and H the b-tagged jet must pass the tight
working point instead of the medium one. The group I is composed of 4 exclusive signal
regions for the T2tt compressed analysis, satisfying additional cuts described in the text.

In the compressed T2tt region the top quarks are produced off-shell or with a very low

momentum, limiting the available momentum, and therefore their decay products have

very low pT consequently leading to low Emiss
T . Obviously, such kind of signal has different

kinematics and the baseline selection and categorization into SRs must be adjusted to

account for it. To pass the Emiss
T selection characteristic for SUSY signatures, the stop

pair must be boosted against an initial state radiation (ISR), leading to the requirement

of an additional jet in the event. The ISR jet should have the largest pT , but such

requirement does not help the overall signal discrimination as Emiss
T >250 GeV is already

required. The jet with the highest pT must fail the medium b-tagging working point in

order to increase the probability that it comes from the ISR. The stop system is expected

to be boosted in the opposite direction with respect to the ISR jet and thus the direction

of objects originating from the stop pair decay, like the Emiss
T and the lepton, should

have a similar direction. As the pT of the objects in the compressed region is not large,

putting a limit on lepton pT has been found to be useful for the signal discrimination.

Taking these considerations into account the following additional criteria are imposed for

the compressed regions I:

– At least five jets

– One lepton with plep
T <150 GeV
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– The leading jet is not b-tagged

– ∆φ(Emiss
T , ℓ)<2.0

– min∆φ(j1,2, Emiss
T )>0.5

In the previous versions of the analysis (2015 [129] and ICHEP2016 [130]), there was

a lower number of signal regions, due to the smaller available data statistics. Also as

discussed before in Section 5.2.4.9, the MW
T 2 variable was used instead of tmod in the

definition of the majority of the signal regions. In the presented full 2016 analysis, a new

discriminating variable Mℓb is introduced.

5.3 Background estimations

In this section, the estimations of all relevant background yields in the signal regions

together with their systematic uncertainties are discussed. The lost lepton background,

coming from the tt̄ → 2ℓ, single top (tW ), tt̄V and diboson processes where one of the

two leptons is missing, is the largest contribution in the signal regions with low Mℓb

values and at least four jets. This background is estimated in control regions with two

leptons (dilepton CR). The one lepton background, represented by the W + jets → 1ℓ,

tt̄ → 1ℓ, and single top (s- and t-channel) processes, is largely suppressed by the Emiss
T

and MT cuts. After these cuts, the yield of the 1ℓ background coming from processes

involving top quarks (tt̄ → 1ℓ and single top in the s- and t-channel) is small in the signal

regions and can be estimated from simulations. The W + jets → 1ℓ process leads to a

larger contribution especially in regions with high Mℓb and it is estimated in the control

regions with zero b-tagged jets (0 b-tag CR). The Z → νν̄ background is the last relevant

background group composed by the tt̄Z and WZ processes, in which the Z boson decays

to neutrinos and one W boson decays leptonically. The yields of Z → νν̄ in the signal

regions are estimated from simulation, and corrected by an overall normalization factor

measured in a three lepton control region.

For the full 2016 analysis I was in charge to provide the estimation of the Z → νν̄

background. In this section the estimation of this background is therefore described first

and then built on the knowledge of the Z → νν̄ background estimation method, the other

background estimates are presented.
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5.3.1 The Z → νν̄ background estimation

The Z → νν̄ background represents overall the smallest relevant group of backgrounds,

but it is largely enhanced in signal regions with high Emiss
T and high tmod values. The

main contribution to the Z → νν̄ background comes from the tt̄Z process. However at

low jet multiplicities, the WZ process becomes an important part of this background.

The previous versions of this analysis estimated this background purely from simulation,

because of the low statistics in the three lepton control region. Now with a larger dataset,

the global normalization of these two processes is derived from a data-driven method, but

the relative splitting of events between signal regions (shape) is taken from simulation.

Nevertheless it is important to mention that in case the shapes of the discriminating

variables differ between data and simulation, the background estimation can be influenced

by migration of events between the signal regions. Therefore the target is to define as

many control regions and the signal ones, once there is sufficient statistics, which is

unfortunately not the case for Z → νν̄ background.

5.3.1.1 Principle of the data driven estimate

To explain the data-driven background estimation technique, let’s consider only one sig-

nal region and one control region. The CR is a region enriched in events of the process

under study and is typically defined similarly as the signal region, just changing a certain

requirement. In the case of the Z → νν̄ background, the selection on the lepton multi-

plicity is modified: a three lepton control region is chosen to consider the Z boson decay

into two leptons instead of two neutrinos. The definition of a control region is a trade-off

between applying a selection as close as possible to the SR to avoid extrapolation and the

need to collect enough statistics.

The relationship between the data (NData) and simulation (NMC) yields in the SR

and control CR can be written as follows

NData, SR

NData, CR
=

NMC, SR

NMC, CR
. (5.16)

Therefore the estimated background yield in the SR (NDataEst, SR) can be obtained from

the data yield in control region (NData, CR) and the simulation based transfer factor

(TF MC) transferring the yield from the control region to the signal region. To achieve

this, Eq. 5.16 can be rewritten as

NDataEst, SR = NData, CR × NMC, SR

NMC, CR
= NData, CR × TF MC . (5.17)

168



CHAPTER 5 - SEARCH FOR TOP SQUARK PAIR PRODUCTION IN PP
COLLISIONS AT

√
S=13 TEV IN RUN 2 USING SINGLE LEPTON EVENTS

Alternatively, Eq. 5.16 can be rearranged in terms of simulated yield in the signal

region (NMC, SR) and the normalization factor (NF CR) determined in the CR

NDataEst, SR = NMC, SR × NData, CR

NMC, CR
= NMC, SR × NF CR. (5.18)

However, in the analysis there is not only one single signal region and thus the back-

ground yield estimations in Eq. 5.17 or 5.18 need to be performed for each signal region

separately. Ideally the same number of control regions as of signal regions should be used

to keep the kinematics as close as possible between the SR and CR. Consequently there

should be the same number of transfer factors or normalization factors as of signal regions,

depending which equation is used (Eq. 5.17 or 5.18). The Z → νν̄ background estima-

tion follows Eq. 5.18’s strategy. But the three lepton control regions suffer from a lack

of statistics and therefore only one control region can be used. In addition, ideally, one

designed CR should address the background estimate of only one process. The situation

is a bit more complicated for the Z → νν̄ background as both the tt̄Z and WZ processes

populate the CR. Therefore in that case, two normalization factors, one for each process,

are determined separately from a template fit of the Nb distribution in the three lepton

control region as described in the following subsection. For the Z → νν̄ background the

Eq. 5.18 can be rewritten as

NDataEst, SR
proc = NMC, SR

proc × NF CR
proc, 3ℓ, (5.19)

where proc = tt̄Z or WZ.

5.3.1.2 Scale factors from the three lepton control region

The normalization factors for the tt̄Z and WZ processes are taken from the paper [149]

searching for BSM physics in final states with two leptons of same sign, Emiss
T , and jets.

For this purpose a three lepton control region is defined by the requirements:

– Two leptons passing the nominal isolation and identification criteria as defined

in [149], the leading lepton should have pT >25 GeV and the trailing one a pT

>20 GeV

– A third lepton of pT >10 GeV should pass the tight identification and must have

an opposite sign and the same flavor as one of the leptons above; the formed lepton

pair must have a mass within a ±15 GeV window around the Z boson mass

– HT =
∑

jets

pT >80 GeV
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– NJ ≥ 2 with jet pT >40 GeV

– No requirement on b-tagging

– Emiss
T > 30 GeV.

The tt̄Z and WZ processes are expected to have a different number of b-jets and

therefore a fit of the b-jet multiplicity distribution allows to extract the normalization

factors of tt̄Z and WZ. The CR bin with zero b-jet is composed at ∼70% by the WZ

process, while the tt̄Z process represents around 70% of the rest of the b-jet distribution.

In addition to these two processes, there is also a contribution to the control region from

non-prompt leptons, the tt̄H, tt̄W , and WW processes as well as processes collectively

denoted as “rare SM” and “X + γ”. The rare SM contribution arises mainly from diboson

(ZZ), triboson (WWW, WWZ, WZZ, ZZZ), Higgs (HZZ, VH where V=Z,W), same-sign

WW from double-parton scattering (DPS WW), and rare top (tZq and tt̄tt̄) processes

decaying to three leptons. The “X + γ” group is composed by processes where one of

the selected leptons is an electron from an unidentified photon conversion, such processes

being predominantly Wγ, Zγ, tt̄γ and tγ.

The distribution of the number of b-jets in data is simultaneously fitted by the dis-

cussed simulated components, letting only the normalization of different contributions

free to vary. This fit procedure results in a normalization factor for tt̄Z of 1.14 ± 0.30

and for WZ of 1.26 ± 0.09. The uncertainty on the normalization factors includes both

the statistical uncertainty and an uncertainty on the shape of the b-jet distribution in

the simulation. The post-fit distribution of number of b-jets in the three lepton control

region is shown in Fig. 5.11.

5.3.1.3 Estimation of the Z → νν̄ background

The final estimations of the tt̄Z and WZ yields are computed according to Eq. 5.19 for

which the simulated events are corrected by the object scale factors for the different lepton

and b-tagging efficiencies in data and simulation, which is a standard procedure for all

background estimates. On top of this, the events in the tt̄Z sample are reweighted in

order to improve the modelling of jets coming from the ISR. Because the WZ process is

generated at NLO, its yields in the signal regions can be negative. In this analysis, a SR

with a negative yield is not allowed and its yield is reset to 0. The final tt̄Z and WZ yields

are shown in Table 5.7. The uncertainties on the estimates include both the statistical

and systematic uncertainties, which are described later in the following subsection.
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Figure 5.11: The post-fit distribution of the number of b-tagged jets in the three lepton
control region [149]. The distribution in data is simultaneously fitted by the SM back-
ground components to obtain the normalization factors for the tt̄Z and WZ processes.
The top panel shows the data-to-simulation ratio with an uncertainty composed by the
statistical uncertainty and an uncertainty on the shape of the b-jet distribution in the
simulation.

5.3.1.4 Systematic uncertainties on the Z → νν̄ background estimation

In general, there are three kinds uncertainties entering into the background estimate.

The first one is the uncertainty on the theoretical quantities used for the production of

the simulated samples. The second group arises, for example, from the differences in

modelling of the physics objects in data and simulation. The third category comprises

the uncertainty due to the limited statistics in simulated and control data sample. Many

uncertainties are common to all background estimates and therefore here again, due to

my personal involvement, the systematic uncertainties for the Z → νν̄ background is

described in a detail. The differences for other backgrounds are discussed later.

Theoretical uncertainties

The “theoretical uncertainties” consists of uncertainties arising from the choice of the

factorization and renormalization scale, particle distribution functions (PDFs) and the

strong coupling constant (αS). As for the Z → νν̄ processes the background yields in

signal regions are taken from simulation and only normalized by an overall factor deter-

mined by the data-driven method, this background estimate is sensitive to the migrations

of events between signal regions due to imprecise modelling of the theoretical parameters

in the simulation. Because of the limited statistics in the signal regions, large fluctuations

driven by the statistics are observed when varying the theoretical parameters. To avoid
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ttZ WZ Total
A 250< Emiss

T <350 3.33 ± 0.96 1.38 ± 0.58 4.71 ± 1.21
A 350< Emiss

T <450 1.85 ± 0.53 0.21 ± 0.53 2.05 ± 0.75
A 450< Emiss

T <600 1.15 ± 0.33 0.47 ± 0.39 1.62 ± 0.53
A Emiss

T >600 0.36 ± 0.11 0.36 ± 0.41 0.71 ± 0.40
B 250< Emiss

T <450 0.61 ± 0.18 0.93 ± 0.47 1.54 ± 0.52
B 450< Emiss

T <600 0.15 ± 0.05 0.20 ± 0.34 0.35 ± 0.33
B Emiss

T >600 0.09 ± 0.03 0.02 ± 0.26 0.11 ± 0.26
C 250< Emiss

T <350 14.28 ± 3.84 0.10 ± 0.62 14.38 ± 3.92
C 350< Emiss

T <450 3.83 ± 1.06 0.60 ± 0.48 4.43 ± 1.23
C 450< Emiss

T <550 1.06 ± 0.31 0.73 ± 0.39 1.79 ± 0.52
C 550< Emiss

T <650 0.40 ± 0.12 0.00 ± 0.00 0.40 ± 0.12
C Emiss

T >650 0.20 ± 0.06 0.00 ± 0.00 0.20 ± 0.06
D 250< Emiss

T <350 2.06 ± 0.56 0.95 ± 0.63 3.01 ± 0.91
D 350< Emiss

T <450 0.62 ± 0.18 0.55 ± 0.40 1.18 ± 0.41
D 450< Emiss

T <550 0.24 ± 0.07 0.21 ± 0.22 0.45 ± 0.24
D Emiss

T >550 0.09 ± 0.03 0.00 ± 0.00 0.09 ± 0.03
E 250< Emiss

T <350 7.88 ± 2.14 0.40 ± 0.44 8.27 ± 2.21
E 350< Emiss

T <550 3.34 ± 0.94 0.52 ± 0.39 3.87 ± 1.07
E Emiss

T >550 0.26 ± 0.08 0.03 ± 0.25 0.29 ± 0.26
F 250< Emiss

T <450 0.98 ± 0.27 0.13 ± 0.17 1.11 ± 0.33
F Emiss

T >450 0.21 ± 0.06 0.00 ± 0.00 0.21 ± 0.06
G 250< Emiss

T <350 2.89 ± 0.78 0.14 ± 0.15 3.03 ± 0.81
G 350< Emiss

T <450 2.51 ± 0.71 0.16 ± 0.18 2.67 ± 0.77
G 450< Emiss

T <600 1.80 ± 0.50 0.16 ± 0.16 1.96 ± 0.54
G Emiss

T >600 0.70 ± 0.20 0.00 ± 0.00 0.70 ± 0.23
H 250< Emiss

T <450 0.37 ± 0.11 0.00 ± 0.00 0.37 ± 0.11
H Emiss

T >450 0.33 ± 0.10 0.16 ± 0.17 0.49 ± 0.20
I 250< Emiss

T <350 3.66 ± 1.01 0.66 ± 0.43 4.33 ± 1.16
I 350< Emiss

T <450 1.57 ± 0.45 0.35 ± 0.34 1.93 ± 0.59
I 450< Emiss

T <550 0.58 ± 0.17 0.19 ± 0.20 0.77 ± 0.27
I Emiss

T >550 0.41 ± 0.13 0.17 ± 0.17 0.58 ± 0.22

Table 5.7: The estimated tt̄Z and WZ yields in the signal regions A to I with their
uncertainties.

this, for the evaluation of the systematic uncertainties, the binning of the signal regions

in Mℓb and tmod is removed and only a binning in Emiss
T and NJ is kept. Effectively, we

group signal regions across the groups A–B and C–H, the compressed region I is treated

separately. To be sure that the uncertainty is not underestimated due to the grouping

in Mℓb and tmod, the distributions of these variables are studied for different values of

the theoretical parameters. Only small variations (less than 2%) in the shape of Mℓb

and tmod are observed when varying the theoretical parameters, while the variations are

large in the shapes of Emiss
T and NJ . First the relative uncertainties are evaluated in the

grouped regions for tt̄Z and WZ separately, they are then used to compute the absolute

uncertainties per process in the corresponding signal regions. The absolute uncertainties

per process are propagated to evaluate the total absolute and relative uncertainty on the

Z → νν̄ estimate in the signal regions. The theoretical uncertainties are discussed one by

one in the following paragraphs.

Factorization and renormalization scales The cross section of a given process has a
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remaining dependence on the choice of the factorization and renormalization scales.

The theoretical tt̄Z cross section at 13 TeV is 839.3 fb [150], with a quoted scale un-

certainty around 10%. As the normalization of the background estimate is derived

from data, the scale uncertainty should only influence the shapes and consequently

the migration of events between the signal regions. In this analysis both renormal-

ization and factorization scales are varied simultaneously, while keeping the cross

section constant. The uncertainty is then evaluated from the change of background

estimate when varying the scales. The scale uncertainty on the Z → νν̄ estimation

in each signal region is shown in Table 5.8, overall it is lower than 10%.

Parton distribution functions The NNPDF3.0 [141] set of parton distribution func-

tions (PDF) is used for the production of simulated samples. To evaluate the un-

certainty arising from the PDFs, 100 parameters of the PDFs are varied and each

variation is used to calculate an event weight yi,n, where i denotes the i-th event

and n the n-th variation. Then the standard deviation of the PDF variations for an

event i, computed as

σi =

√

√

√

√

1

99

100
∑

n=1

(yi,n − ȳi)2, with ȳi =
1

100

100
∑

n=1

yi,n, (5.20)

is used to evaluate the PDF uncertainties. Here again only the shape uncertainties

are taken into account by keeping the normalization constant. The uncertainties

due to PDFs go up to 10% as shown in Table 5.8 for the Z → νν̄ estimate in all

signal regions.

Strong coupling constant αS The uncertainties on the background estimate coming

from αS are as well evaluated with the help of event weights. The constant αS is

varied from its default value of 0.118 within its uncertainty to 0.117 and 0.119 [110].

The interest is in the shape uncertainties and therefore again the normalization is

forced to be constant when varying αS. The final uncertainties are of the order of

3% and are show in Table 5.8 for Z → νν̄ background estimate.

Figure 5.12 shows the Emiss
T distribution for the tt̄Z process in the grouped regions

A–B (left) and C–H(right) with a band corresponding to combined uncertainties on the

scales, PDFs and αS. It can be noticed that the uncertainties are very small for low Emiss
T ,

but grow with Emiss
T up to around 10%.

Experimental uncertainties

The second group of systematic uncertainties is referred to as the “experimental uncer-

tainties”. Part of the uncertainties originate from a non-perfect modelling in the simulation
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Figure 5.12: The predicted Emiss
T distribution of the tt̄Z process with a band coming

from the combined uncertainties on scales, PDFs and αS. The regions A–B (left) and C–H
(right) are grouped in the Mℓb and tmod variables. The ratio plots depict the maximal
variations from the default.

of the efficiency to tag a jet (coming from a b quark or from a light parton) as a b-jet, or

of the lepton ID/isolation efficiencies. These mis-modellings are corrected in simulation

by the use of scale factors delivered by the CMS collaboration. The uncertainties on

the background yield are evaluated from the variations of these scale factors within their

uncertainties. The impact on the yields is presented in Table. 5.8 for the Z → νν̄ back-

ground estimate. The uncertainties on the b-tagging and lepton scale factors are typically

of the order of a few percent, except for a few outliers caused by limited statistics in the

simulated samples.

Another source of uncertainties arises from the Jet Energy Scale (JES). Jet Energy

Corrections (JEC) must be applied on the reconstructed jets to obtain the correct energy

of the jets. The uncertainties from the variations of the JES are of the order of a few

percent, although in few signal regions with small statistics they can reach up to three or

four tens of percent.

The uncertainty arising from differences in the pileup profile in data and simulation

has been found to be extremely sensitive to the limited statistics and therefore, for the

Z → νν̄ processes, one global uncertainty is evaluated by varying the PU in the baseline

search region only. The systematic uncertainty on the PU is determined to be lower than

one percent in the baseline region, but a conservative estimate of 3% is used to take into

account variations due to categorization.

As, for the tt̄Z process, a ISR reweighting is applied, the uncertainty arising from this

procedure has to be evaluated by varying the ISR weight. The uncertainty introduced by

the ISR reweighting is evaluated to be lower than 10%.

The systematic uncertainty on the luminosity is provided by the CMS and is 2.5% [151].
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The normalization uncertainty is computed by varying the normalization factors NF CR
proc, 3ℓ

within their uncertainty.

Uncertainty due to the limited statistics in samples

The dominant uncertainty comes from the limited statistics in the simulated samples.

The statistical uncertainty varies from around 5% to 90%.

Break-down of the systematic uncertainties

The break-down of the systematic uncertainties on the Z → νν̄ background estimate

is shown in Table 5.8 for all signal regions. The summarized typical order of magnitude of

these uncertainties is presented in Table 5.9. As only the normalization factors are derived

by a data-driven method and the shapes are taken from simulation, the uncertainties are

very sensitive to the modelling of shape in the simulation. With one CR per each SR, a

large part of the uncertainties would largely cancel in the NMC, SR/NMC, CR ratio. For

now, as the statistics in the three lepton control region is small, only one CR can be used,

but with a higher integrated luminosity, a splitting of the three lepton control regions

should be possible.
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MC stat. SFl SFb(light) SFb(heavy) PU PDFs αS Scales ISR JES Norm. Total
A 250< Emiss

T <350 11.88 0.31 1.58 1.23 3.00 0.23 0.86 3.86 7.12 2.55 20.70 25.60
A 350< Emiss

T <450 25.04 0.35 3.63 0.77 3.00 3.33 0.61 1.31 9.09 0.37 24.38 36.61
A 450< Emiss

T <600 23.87 0.37 1.34 1.34 3.00 0.45 0.39 2.47 7.02 0.46 20.77 32.71
A Emiss

T >600 51.43 0.41 2.87 1.74 3.00 8.04 0.36 2.37 5.13 10.54 16.77 56.17
B 250< Emiss

T <450 29.98 0.50 1.67 1.23 3.00 1.17 0.76 2.86 3.97 1.01 14.74 34.01
B 450< Emiss

T <600 86.04 0.77 5.28 1.26 3.00 0.45 0.40 2.47 4.00 32.62 15.46 93.63
B Emiss

T >600 228.31 2.65 19.40 1.64 3.00 8.03 0.36 2.37 8.12 44.04 22.72 234.76
C 250< Emiss

T <350 4.56 0.45 0.06 0.68 3.00 0.81 0.60 1.77 0.40 4.78 26.18 27.26
C 350< Emiss

T <450 10.85 0.35 0.48 0.66 3.00 2.01 1.23 5.00 0.99 6.85 23.73 27.73
C 450< Emiss

T <550 20.70 0.31 4.53 0.26 3.00 1.89 1.34 4.86 2.03 4.52 18.54 29.25
C 550< Emiss

T <650 9.20 0.38 0.77 0.38 3.00 4.90 1.86 3.67 3.67 2.14 26.32 29.09
C Emiss

T >650 12.73 0.45 0.20 0.40 3.00 8.11 3.08 4.23 4.92 5.74 26.32 31.85
D 250< Emiss

T <350 19.82 0.31 0.72 0.41 3.00 0.81 0.60 1.76 0.82 9.76 20.24 30.20
D 350< Emiss

T <450 27.58 0.32 1.82 1.08 3.00 2.02 1.23 4.99 1.63 10.79 17.33 34.98
D 450< Emiss

T <550 47.40 0.33 4.96 0.22 3.00 1.88 1.33 4.85 2.24 17.87 17.31 54.17
D Emiss

T >550 18.94 0.44 0.06 0.83 3.00 7.53 2.44 2.55 7.31 7.15 26.32 35.14
E 250< Emiss

T <350 5.55 0.42 0.65 0.74 3.00 0.81 0.60 1.77 2.52 3.80 25.40 26.66
E 350< Emiss

T <550 10.40 0.40 0.01 0.83 3.00 1.97 1.26 4.96 0.66 7.23 23.72 27.63
E Emiss

T >550 87.72 0.77 7.05 0.02 3.00 7.55 2.47 2.51 2.26 1.66 24.61 91.86
F 250< Emiss

T <450 16.02 0.42 0.06 0.31 3.00 1.16 0.78 2.70 2.10 4.41 24.07 29.63
F Emiss

T >450 12.82 0.47 0.40 0.57 3.00 3.72 1.70 3.91 2.22 3.37 26.33 30.26
G 250< Emiss

T <350 5.75 0.39 0.01 1.71 3.00 0.81 0.60 1.77 2.09 3.44 25.42 26.68
G 350< Emiss

T <450 7.06 0.43 0.05 1.35 3.00 2.01 1.23 5.00 1.79 9.62 25.14 28.63
G 450< Emiss

T <600 9.01 0.37 0.19 1.27 3.00 2.63 1.54 4.72 0.51 5.15 24.77 27.64
G Emiss

T >600 7.00 0.47 0.19 1.01 3.00 8.01 2.34 1.74 0.68 15.62 26.32 32.70
H 250< Emiss

T <450 9.94 0.49 0.05 0.07 3.00 1.17 0.79 2.72 2.06 4.60 26.32 28.91
H Emiss

T >450 34.01 0.43 0.04 0.88 3.00 3.71 1.70 3.91 0.93 2.41 19.94 40.03
I 250< Emiss

T <350 9.76 0.38 0.78 0.47 3.00 0.21 0.32 3.91 4.30 5.32 23.38 26.72
I 350< Emiss

T <450 17.91 0.35 0.76 0.60 3.00 1.99 1.41 5.88 4.56 6.05 22.78 30.79
I 450< Emiss

T <550 25.04 0.51 4.83 0.35 3.00 1.89 1.62 4.90 5.38 4.89 21.64 34.80
I Emiss

T >550 29.62 0.40 0.22 0.68 3.00 1.82 1.55 7.48 4.76 6.34 20.76 37.98

Table 5.8: The break-down of the relative systematic uncertainties in % on the Z → νν̄
background estimation in each signal region (first column). The columns two to twelve
report the uncertainties on MC statistics, the scale factor for lepton, for b-tagging applied
on light jets, on heavy-flavor jets (i.e. originating from b or a c quark), pileup, PDFs, αS,
scales, ISR jets, JES and normalization, respectively.

5.3.2 The lost lepton background estimation

5.3.2.1 Data-driven estimation

The lost lepton background, is the dominant background due to the large tails in the Emiss
T

and MT distributions caused by the two neutrinos and the missing lepton. The majority

of the lost lepton background arises from the tt̄ → 2ℓ process. The background yields

in the signal regions are estimated according to Eq. 5.17 from dilepton control regions.

These control regions have a purity above 95% in the tt̄, tW , tt̄V and diboson processes

and therefore no correction for contamination from other processes is needed.

Events in the control regions pass the same selection as in the signal regions, except

the veto on the second lepton which is reversed. Because of the small yields in the control

regions with high Emiss
T , several control regions differing only by the Emiss

T range are

merged together. Due to this combination of control regions, the background estimate
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Source Typical range of values [%]
MC statistics 5-88
Lepton SF <1
b-tagging SF (light flavor) 1-7
b-tagging SF (heavy flavor) <2
Pileup 3
PDFs 1-8
αS 1-3
Scales 1-8
ISR 1-9
Jet energy scale 1-33
Normalization 15-26
Total 26-94

Table 5.9: The typical order of magnitude of a given uncertainty for the Z → νν̄ back-
ground.

in a given signal region has to be multiplied by a corresponding factor correcting for the

Emiss
T extrapolation. The lost lepton background estimate in the signal region can then

be written as

NDataEst, SR
lost ℓ = N

Data, CR, Emiss
T

ext.

2ℓ × N
MC, SR, Emiss

T
ext.

lost ℓ

N
MC, CR, Emiss

T
ext.

2ℓ

× NMC, SR
lost ℓ

N
MC, SR, Emiss

T
ext.

lost ℓ

, (5.21)

where the Emiss ext.
T denotes regions extrapolated in Emiss

T , i.e. the merged regions by

removing the Emiss
T requirement. The first term on the right side is the observed yield in

the control region, the second term corresponds to the transfer factor from the CR to the

SR and the third factor is the simulation based Emiss
T extrapolation factor, which is equal

to one if a given control region is not merged with another one.

The described extrapolation of control regions in the Emiss
T could lead to an imprecise

estimate if the Emiss
T shapes in data and simulation differ. For this reason the shape of

Emiss
T is checked in an region enriched top quark events. Contrary to the control regions

using single lepton triggers, data used for the study of the Emiss
T shapes are triggered by

a double lepton trigger with an electron-muon pair in the final state. Then the data-to-

simulation ratio in Emiss
T bins is used as a correction of the simulated Emiss

T spectra.

The final estimates of the lost lepton background per signal region are shown in Ta-

ble 5.10, together with their uncertainties including both the statistical and systematic

uncertainties as described in following subsection.
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5.3.2.2 Systematic uncertainties on the lost lepton background estimation

As for the Z → νν̄ background, the uncertainties on the lost lepton background estimate

include the uncertainties due to limited statistics in simulation, lepton and b-tagging

scale factors, PU, PDFs, αS, scales, ISR reweighting and JES, although many of them

largely cancel in the NMC, SR
lostℓ /NMC, CR

2ℓ ratio used for the estimation of the lost lepton

background yields in the SRs.

In addition to these uncertainties, the following uncertainties are evaluated:

– The uncertainty arising from the trigger efficiency in the dilepton CR

– The uncertainty on the Emiss
T resolution which can cause a migration of events

between signal regions: It cancels in the NMC, SR
lostℓ /NMC, CR

2ℓ ratio in case no Emiss
T

extrapolation is needed. However in the case that the Emiss
T extrapolation is applied,

the corresponding extrapolation factor is computed purely from the simulation and

is directly sensitive to the Emiss
T resolution.

– The uncertainty arising from the different Emiss
T shapes in data and simulation:

Because of the extrapolation in Emiss
T , the differences in Emiss

T shapes can also cause

migration of events between the signal regions as described for the Emiss
T resolution

– The uncertainty on the efficiency of the hadronic tau and the isolated track vetoes:

As the control region is defined by requiring a second lepton, the differences of effi-

ciency for the hadronically decaying tau leptons between signal and control regions

must be taken into account. Any variation on these efficiencies is propagated to the

background yield to quantify its corresponding uncertainty.

As previously, the dominant uncertainty arises from the limited statistics in data and

simulations which can go up to around 60%.

5.3.3 The one lepton background estimation

5.3.3.1 Data-driven estimation

The W + jets → 1ℓ background represents the largest part of the 1ℓ background and is

estimated from control regions with zero b-tagged jets. The control regions are defined in

the same way as the signal regions, but no b-tagged jet is allowed in the event. When the

medium b-tagging WP is used in the SR, this requirement is simply inverted in the CR.

For the SRs requesting a tight b-tagging WP, a veto against tight b-tagged jet is applied
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in the majority of cases. But in some control regions of high Mℓb, a veto against medium

b-tagged jets is used to reduce the systematics uncertainty and increase the purity. The

tt̄ → 1ℓ represents only a small contribution to the one lepton background and therefore

is taken directly from the simulation.

In the zero b-tagged jet control regions, the Mℓb variable needs to be redefined as

there is no b-tagged jet in the event. Instead of the closest b-tagged jet, the jet with

highest CSVv2 discriminator is used to define Mℓb in this case. Contrary to the previous

background estimations there is enough statistics to define a corresponding zero b-tag

control region to each signal region. Unfortunately, the control regions are not pure

in the W + jets → 1ℓ process and the background estimate have to account for the

contamination by other processes in the control regions. The W + jets → 1ℓ background

estimate in the signal regions can be then written as

NDataEst, SR
W +jets, ≥ 1btag = NData, CR

W +jets, 0btag × NMC, SR
W +jets, ≥ 1btag

NMC, CR
W +jets, 0btag

, (5.22)

where the first term on right side denotes the observed yield in the control region and the

second term corresponds to the transfer factor from CR to SR for the W+jets process.

Because of the contamination in the control regions by other processes, the NData, CR
W +jets, 0btag

obtained from the yield measured in the CR (NData, CR
all, 0btag ) is corrected by a simulation

based purity factor:

NData, CR
W +jets, 0btag = NData, CR

all, 0btag × NMC, CR
W +jets, 0btag

NMC, CR
all, 0btag

, (5.23)

where NMC, CR
all, 0btag = NMC, CR

W +jets, 0btag+ the contaminating processes.

Because of the different Mℓb definition, a study based on simulation, comparing the

shapes of this modified Mℓb between control and signal regions, has confirmed that these

two shapes are in agreement.

As the contribution to the total background from the tt̄ → 1ℓ process is lower than

10%, it is therefore reasonable to estimate the background yields directly from simulation.

The tt̄ → 1ℓ process appears in the signal regions mainly due to the Emiss
T resolution.

As this background is purely estimated from simulation, a mis-modelling of the Emiss
T

resolution could cause an imprecise estimate. The Emiss
T resolution is checked with the

help of γ+jets data and simulated samples. The pT spectrum of the photon in data

and simulation is reweighted to match the pT spectrum of the neutrino in the tt̄ → 1ℓ

process. Then a modified Emiss
T is computed as the sum of reweighted pγ

T and the originally

reconstructed Emiss
T . The data-to-simulation ratio for the modified Emiss

T distribution can
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then reveal any Emiss
T resolution mis-modelling. It has been found out that the difference

between data and simulation for the modified Emiss
T is large, up to 40%, but no scale factor

is derived and this mis-modelling is only taken into account as a systematic uncertainty

which is conservatively assessed to be 100%.

The final estimates of the one lepton background in the signal regions are shown in

Table 5.10, together with their uncertainties including both the statistical and systematic

uncertainties as described in the following subsection.

5.3.3.2 Systematic uncertainties on the one lepton background estimation

The uncertainties on the W + jets → 1ℓ background estimate are very similar to the

previous cases as they contain uncertainties due to the limited statistics in simulation,

PU, JES, PDFs, scales, αS, b-tagging and lepton scale factors, although here as well many

of them largely cancel in NMC, SR
W +jets, ≥1btag/NMC, CR

W +jets, 0btag ratio used for the estimation of 1ℓ

background yields in the SRs.

In addition to these already mentioned uncertainties, the following ones are evaluated:

– The uncertainty on the W+heavy flavors (W + b, W + c, W + bb, ...) cross section:

For the background estimation, the simulation is used to determine a factor which

transfers the data yield from the control to the signal region as can be seen in

Eq. 5.22. Therefore the background estimate is sensitive on the modelling of the

W+heavy flavors fraction in the simulation.

– The uncertainty on the contamination of control regions by other processes.

In this case, the dominant uncertainties arise not only from the limited statistics in

data and simulation but also from the contamination in control regions by other processes

than W + jets → 1ℓ. These uncertainties can reach up to 90%.

The uncertainty on the tt̄ → 1ℓ estimate is evaluated to be 100% from the mentioned

studies of the Emiss
T resolution. All the other sources of uncertainties are negligible.

5.4 Results and interpretation

5.4.1 Results

The results on the background estimates together with the observed data in the signal

regions are shown in Table 5.10 for the full 2016 analysis. These results are graphically
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presented in Fig. 5.14. In this figure the yields of three different signal models for a chosen

signal point are also shown.

NJ tmod

Mℓb Emiss

T
Lost

1ℓ (top)
1ℓ (not

Z → νν̄
Total

Data
[GeV] [GeV] lepton top) background

≤ 3 > 10 ≤ 175 250 − 350 53.9±6.2 < 0.1 7.2±2.5 4.7±1.2 65.8±6.8 72
≤ 3 > 10 ≤ 175 350 − 450 14.2±2.4 0.2±0.2 4.1±1.4 2.1±0.8 20.5±2.9 24
≤ 3 > 10 ≤ 175 450 − 600 2.9±0.9 0.1±0.1 1.7±0.7 1.6±0.5 6.4±1.3 6
≤ 3 > 10 ≤ 175 > 600 0.6±0.5 0.3±0.3 0.8±0.3 0.7±0.4 2.4±0.8 2
≤ 3 > 10 > 175 250 − 450 1.7±0.8 < 0.1 5.6±2.2 1.5±0.5 8.9±2.4 6
≤ 3 > 10 > 175 450 − 600 0.02±0.01 < 0.1 1.6±0.6 0.4±0.3 1.9±0.7 3
≤ 3 > 10 > 175 > 600 0.01±0.01 < 0.1 0.9±0.4 0.1±0.3 1.0±0.5 2
≥ 4 ≤ 0 ≤ 175 250 − 350 346±30 13.2±13.2 9.7±8.6 14.4±3.9 383±34 343
≥ 4 ≤ 0 ≤ 175 350 − 450 66.3±7.9 2.3±2.3 2.5±1.7 4.4±1.2 75.5±8.5 68
≥ 4 ≤ 0 ≤ 175 450 − 550 12.1±2.8 0.6±0.6 0.5±0.5 1.8±0.5 15.0±2.9 13
≥ 4 ≤ 0 ≤ 175 550 − 650 3.4±1.5 0.1±0.1 0.3±0.2 0.4±0.1 4.1±1.5 6
≥ 4 ≤ 0 ≤ 175 > 650 5.9±2.8 < 0.1 0.4±0.4 0.2±0.1 6.6±2.9 2
≥ 4 ≤ 0 > 175 250 − 350 26.0±4.3 3.1±3.1 7.5±3.0 3.0±0.9 39.7±6.2 38
≥ 4 ≤ 0 > 175 350 − 450 10.4±2.6 0.6±0.6 1.6±0.7 1.2±0.4 13.7±2.8 8
≥ 4 ≤ 0 > 175 450 − 550 1.7±0.9 0.4±0.4 0.6±0.3 0.5±0.2 3.1±1.1 2
≥ 4 ≤ 0 > 175 > 550 1.1±0.8 < 0.1 1.0±0.6 0.09±0.03 2.2±1.0 1
≥ 4 0 − 10 ≤ 175 250 − 350 43.0±5.9 1.7±1.7 5.7±3.0 8.3±2.2 58.7±7.2 65
≥ 4 0 − 10 ≤ 175 350 − 550 9.1±2.0 0.5±0.5 1.2±0.5 3.9±1.1 14.7±2.4 23
≥ 4 0 − 10 ≤ 175 > 550 0.6±0.3 0.3±0.3 0.3±0.2 0.3±0.3 1.5±0.6 1
≥ 4 0 − 10 > 175 250 − 450 4.4±1.4 0.3±0.3 3.1±1.3 1.1±0.3 8.9±1.9 9
≥ 4 0 − 10 > 175 > 450 0.10±0.17 < 0.1 0.2±0.3 0.2±0.1 0.6±0.2 0
≥ 4 > 10 ≤ 175 250 − 350 9.5±2.3 0.8±0.8 1.1±0.9 3.0±0.8 14.3±2.7 12
≥ 4 > 10 ≤ 175 350 − 450 5.9±1.8 0.7±0.7 0.7±0.5 2.7±0.8 10.0±2.1 9
≥ 4 > 10 ≤ 175 450 − 600 3.8±1.3 0.1±0.1 0.4±0.3 2.0±0.5 6.3±1.5 3
≥ 4 > 10 ≤ 175 > 600 0.8±0.6 0.7±0.7 0.3±0.4 0.7±0.3 2.4±1.0 0
≥ 4 > 10 > 175 250 − 450 0.5±0.3 < 0.1 1.0±0.6 0.4±0.1 1.9±0.7 0
≥ 4 > 10 > 175 > 450 0.2±0.2 0.1±0.1 0.5±0.3 0.5±0.2 1.3±0.4 2

Compressed region 250 − 350 67.5±8.9 5.3±5.3 5.0±1.8 4.3±1.2 82±11 72
Compressed region 350 − 450 15.1±3.5 1.0±1.0 0.8±0.3 1.9±0.6 18.9±3.7 30
Compressed region 450 − 550 2.4±1.3 0.1±0.1 0.4±0.2 0.8±0.3 3.7±1.4 2
Compressed region > 550 3.9±2.0 0.1±0.1 0.2±0.2 0.6±0.2 4.8±2.0 2

Table 5.10: Observed data yields and background estimations in the 31 signal regions of
the analysis, corresponding to an integrated luminosity of 35.9 fb−1. The uncertainties of
background include both the statistical and systematic parts [128].

5.4.2 Uncertainties on the signal yields

5.4.2.1 Uncertainties for the full 2016 analysis

The signal uncertainties are evaluated similarly as the background ones. As previously,

the largest source of uncertainty is the limited statistics in the simulated samples which

varies from 5 to 25%. The signal uncertainties with their typical values are summarized

in Table 5.11.
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Source Typical range of values [%]
MC statistics 5–25
b-tagging SF 1–7
Pileup 1–4
Scales 2–4
ISR 2–15
Jet energy scale 1–20
Integrated luminosity 2.5
Trigger 2–4
Lepton SF 1–4
Emiss

T modelling 1–10
Total 7–38

Table 5.11: The typical order of magnitude of systematic uncertainties on the signal
yields [128].

5.4.2.2 Discussion on a pileup uncertainty estimate for the 2015 analysis

For the 2015 version of the analysis [129] I performed studies of the dependency of the

MT and Emiss
T distributions in signal samples on the pileup. The results of this study are

used to assess one of the systematic uncertainties on the signal yields.

The difference in the MT and Emiss
T distributions as a function of pileup is evaluated

starting for events passing the baseline selection except the requirement on the MT and

Emiss
T variables, respectively. The total number of events N is divided in bins according to

the number of primary vertices (Nvtx) present in the event. In each bin i of the Nvtx dis-

tribution, the number of events passing the criterion MT >150 GeV (Ni,MT >150) is divided

by the total number of events (Ni) in bin i and scaled by N . The same computation is

performed for the number of events in bin i passing Emiss
T >250 GeV (Ni,Emiss

T
>250). The

evolution of the variables N ·Ni,MT >150/Ni and N ·Ni,Emiss
T

>250/Ni is shown in Fig. 5.13 as

a function of Nvtx for the T2tt signal points with mt̃1
=225 GeV and 25<Mχ̃0

1

<150 GeV.

In the plots it can be noticed that the distributions are not flat. Varying Nvtx by five

units, which is the difference between the maxima of data and simulation pileup profiles,

leads to an uncertainty up to around 7%. This value is used as an uncertainty for the low

∆m signals. The variations are smaller for high ∆m signals, leading to an uncertainty up

to 2%.

In the full 2016 analysis, the pileup uncertainty is applied according to standard CMS

SUSY group recommendations based on a study of Nvtx distribution [152].
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Figure 5.13: The evolution of the fraction of events with MT > 150 GeV (left) and
Emiss

T >250 GeV (right), multiplied by the total number of events, as a function of the
reconstructed primary vertex multiplicity. The study has been performed in the context
of the 2015 analysis.

5.4.3 Interpretation

In the signal regions of the full 2016 analysis, no significant excess is observed in data

with respect to the SM expectation. Therefore the CLs method described in Section 5.2.1

is used to interpret the results as exclusion limits on the considered SMS signal models.

These limits on model production cross-sections are given as a function of the SUSY

particles masses, in this case the stop and neutralino masses. They are obtained by

combining all signal regions for a given signal point. A contour line is drawn when

the upper limit on the NLO+NLL cross section is equal to the theoretical cross section

computed in [153]. The signal points with an upper limit on the cross section which is

lower than the theoretical cross section are considered as excluded. The signal yields

entering the statistical procedure are corrected for a possible contamination in the control

regions by SUSY signal, these corrections are around 5% to 10%.

The 95% confidence level (CL) upper limits on the T2tt (pp → t̃1
¯̃t1 → tt̄χ̃0

1χ̃
0
1 )

and T2tb (pp → t̃1
¯̃t1 → tb̄χ̃0

1χ̃
−
1 ) models are shown in Fig. 5.15 and 5.16 respectively.

The results are displayed for both the 2015 analysis [129] corresponding to an integrated

luminosity of 2.3 fb−1 (left) and the full 2016 analysis [128] corresponding to an integrated

luminosity of 35.9 fb−1 (right). Both models assume unpolarized top quarks originating

from stops.

The analysis of 2015 data combines searches for the stop quark pair production in

all-hadronic final states and in the 1ℓ final state. Therefore in the left plots of Figs. 5.15

and 5.16, the expected limit from the 0ℓ (magenta dashed line) and 1ℓ (blue dashed line)

are depicted. In the 2015 analysis, both observed (black line) and expected (red dashed

line) limits are computed from the combination of the signal regions of both analyses,
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Figure 5.14: The presentation of the observed data (black dots), background estimates
and expected signal for three different signal models in the 31 signal regions. The lost
lepton background is shown in green, the 1ℓ background from W + jets → 1ℓ (i.e. not
from top) in yellow, the Z → νν̄ background in violet and the tt̄ → 1ℓ contribution in red.
The T2tt model (t̃1 → tχ̃0

1 ) with a stop mass of 900 GeV and an LSP mass of 300 GeV
is shown in blue dashed line. The T2tb (t̃1 → tχ̃0

1/t̃1 → bχ̃±
1 ) and T2bW (t̃1 → bχ̃±

1 )
scenarios for a stop mass of 600 GeV and a neutralino mass of 300 GeV are shown in pink
and green dashed lines, respectively. The red dashed line separates the signal regions of
the nominal and optimized compressed analyses [128].

which are mutually exclusive. In the case of the T2tt model in Fig. 5.15, the 0ℓ analysis

outperforms the 1ℓ analysis in the part of the mass plane where the stop is heavy and

the LSP light, because of the larger signal acceptance. On the other hand the 1ℓ analysis

is more sensitive in the region of a heavier LSP and an intermediate stop mass. The

combined analysis of data corresponding to an integrated luminosity of 2.3 fb−1 excludes

the stop masses between 280 and 830 GeV when the LSP is massless and LSP masses up

to 260 GeV for a stop mass of 675 GeV.

The full 2016 analysis corresponding to an integrated luminosity of 35.9 fb−1 combines

the four signal regions of the compressed analysis in the region 100 ≤ ∆m ≤ 225 GeV

and the 27 signal regions of the nominal analysis everywhere else. The exclusion limits

purely based on the 1ℓ search exclude stop masses up to 1120 GeV for a massless LSP

and LSP masses up to 515 GeV for a stop mass of 950 GeV.

For comparison, ATLAS searches for the stop pair production in the single lepton final

state [154] based on data corresponding to an integrated luminosity of 36.1 fb−1 exclude
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the stop masses up to 940 GeV for a massless LSP in the T2tt model.

In both analyses, a region where the LSP is light and ∆m is around the mass of

the top quark appears as white in the T2tt plane and it is not interpreted because of a

problematic modelling of quickly changing kinematics in this region. As mentioned, the

signal samples are produced with FastSim and in this kinematic regime, large differences

between FastSim and FullSim are observed. Therefore we have decided not to interpret

in this region. Along the diagonal where the ∆m is around the mass of the top quark, the

neutralinos are produced almost at rest, leading to small Emiss
T and therefore the signal

final state is very similar to these of the SM backgrounds. The 2015 analysis has almost

no sensitivity there. The full 2016 analysis improved highly its sensitivity in this region

by requiring a boost of the stop pair against an ISR jet which is enhancing the Emiss
T value

of the event, but also due to an increase in the luminosity. A similar situation happens

in the region where ∆m is around the mass of W boson, but moreover this region suffers

from a large contribution from the W + jets → 1ℓ background. The sensitivity is also

improved in the full 2016 analysis compared to the 2015 analysis due to an increase in

the luminosity and thanks to the compressed selection.

Different signal regions bring different sensitivities in the ∆m plane. For example,

the signal regions with high Emiss
T are sensitive mainly to the signals with high ∆m and

push the limits for high stop and low LSP masses. The signal regions are also differently

sensitive to different signal decay modes, the signal regions with a low modified topness

are more sensitive to the T2tt signals, while the regions with a high modified topness

target signals with intermediate charginos as in the T2bW scenario.

In the full 2016 analysis, the observed limit is stronger than the expected one. This is

caused by upward fluctuations of the predicted SM backgrounds in the signal regions. In

case of downward fluctuations, the expected exclusion limit would be stronger than the

observed one.

The exclusion limits of the 2015 [129] and full 2106 analysis [128] are shown in Fig. 5.16

for the T2tb signal, for which the branching ratios of t̃1 → tχ̃0
1 and t̃1 → bχ̃±

1 are 50%

each and mχ̃±

1

= mχ̃0

1

+ 5 GeV. The combined analysis corresponding to an integrated

luminosity of 2.3 fb−1 excludes stop masses up to 700 GeV for intermediate LSP masses,

and LSP masses up to 210 GeV for a stop mass of around 500 GeV. This exclusion is

mainly driven by the fully hadronic analysis due to its larger signal acceptance. The full

2016 analysis [128], corresponding to integrated luminosity of 35.9 fb−1, excludes stop

masses up to 980 GeV for a massless LSP and LSP masses up to 400 GeV for a stop mass

of 825 GeV. There is a loss of sensitivity for regions of low ∆m where the neutralinos are

produced at rest and which might suffer by large SM backgrounds.
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Figure 5.15: The exclusion limits at 95% CL on the T2tt model corresponding to an
integrated luminosity of 2.3 fb−1 [129] (left) and 35.9 fb−1 [128] (right). The interpretation
is provided in the context of SMS, in the plane of the stop mass vs the LSP mass. The
color code shows the 95% CL upper limit on the cross section assuming a branching
ratio of 100% in t̃1 → tχ̃0

1. The red and black contours represent the expected and
observed exclusion limits, respectively. The blue and magenta lines in the left plot show
the expected limits of 1ℓ and 0ℓ analyses, respectively. The area below the black thick
curve indicates the excluded region of the signal points.

The last considered model is T2bW where pp → t̃1
¯̃t1 → bχ̃+

1 b̄χ̃−
1 → bW +χ̃0

1b̄W
−χ̃0

1

in 100% of the cases and for which the chargino mass is fixed by the condition mχ̃±

1

=

(mt̃ +mχ̃0

1

)/2. The 95% CL upper limit on this model obtained by the full analysis [128] is

shown in Fig. 5.17. In this model stop masses are excluded up to 1000 GeV for a massless

LSP and LSP masses up to 450 GeV for a stop mass of 800 GeV.

5.5 Conclusion

The excluded stop mass in the T2tt model has increased by around of 50 GeV in early

Run 2 based on 2015 data compared to the strongest exclusion results of Run 1 presented

in Fig. 4.7, despite the lower integrated luminosity. This increase in sensitivity is caused by

the change of the center-of-mass energy from 8 TeV to 13 TeV as well as by an improvement

in the optimization of the analyses. The analysis of data corresponding to an integrated

luminosity of 35.9 fb−1 outperforms the combined analysis of data corresponding to an

integrated luminosity of 2.3 fb−1 by almost 300 GeV in the stop mass exclusion of the

T2tt and T2tb models for a massless LSP. The exclusion limit on the stop mass reaches

the TeV range which is usually considered close to the naturalness boundary. But the
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Figure 5.16: The exclusion limits at 95% CL on the T2tb model corresponding to an
integrated luminosity of 2.3 fb−1 [129] (left) and 35.9 fb−1 [128] (right). The interpretation
is provided in the context of SMS, in the plane of the stop mass vs the LSP mass. The
color code shows the 95% CL upper limit on the cross section assuming a branching ratio
of 50% in t̃1 → tχ̃0

1 and 50% in t̃1 → bχ̃±
1 . The red and black contours represent the

expected and observed exclusion limits, respectively. The blue and magenta lines in the
left plot show the expected limits of 1ℓ and 0ℓ analyses, respectively. The area below the
black thick curve indicates the excluded region of the signal points.

exclusion of the stop masses around 1 TeV happens only for the low LSP masses and there

are still configurations in the ∆m plane, which are uncovered and where the stops can

have relatively low masses. Moreover, this limit is interpreted in terms of simplified model

spectra and when considering more complex models the limits can become considerably

weaker. For example Ref. [155] suggests that natural SUSY models might lead to final

states with very soft visible particle spectra which would therefore be very difficult to

be extracted from the SM backgrounds, making the search for them at the LHC very

challenging.
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Figure 5.17: The exclusion limits at 95% CL on the T2bW model corresponding to an
integrated luminosity of 35.9 fb−1 [128]. The interpretation is provided in the context of
the SMS, in the plane of the stop mass vs LSP mass. The color code shows the 95% CL
upper limit on the cross section. The red and black contours represent the expected and
observed exclusion limits, respectively. The area below the black thick curve indicates the
excluded region of the signal points.

5.6 Perspectives

As the exclusion limits on the stop mass are reaching the naturalness bound, a lot of

efforts have recently been made to revisit this bound and find natural SUSY scenarios

which are not excluded by the experiments. In this section I mainly present the ideas

developed in Ref. [116], starting with a discussion on how the definition of the naturalness

itself can impact the result. Then, I present some scenarios in the context of the MSSM

and then I finish with briefly introducing the possibility of SUSY beyond the MSSM.

Ref. [116] first reflects on how to determine the naturalness. It discusses that if an

observable O can be written as

O = a + b + f(b) + c, (5.24)

it is claimed to be natural if all terms on the right hand side are of comparable values

or smaller than O. If they are larger than the observable O, some degree of fine-tuning

would then be needed to cancel the large terms between each other in order to end up

with a small value of O. However in Eq. 5.24 the terms b and f(b) are correlated and

their sum should be used in place of the two terms alone. For example, if f(b) = −b,
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the sum b + f(b) is always equal to zero independently on the value of b without any

fine-tuning. Therefore when evaluating the fine-tuning, only the independent terms or

group of the terms should be compared between each other. The naturalness measure of

the observable O can be defined as

∆ =
|largest term on the right hand side|

|O| . (5.25)

We can now apply this naturalness criterion on the Higgs boson mass and find that the

terms m2
H,0 and ∆m2

H in Eq. 4.27 are independent. So to avoid the fine-tuning, each of

them should be of the order of the measured mass of the Higgs boson. Within the MSSM,

the SM Higgs boson mass, denoted as mh, is given by the relation

m2
h ≈ −2µ2(Λ) + m2

Hu
(Λ) + δm2

Hu
(Λ), (5.26)

where all the terms are dependent on the energy cut-off Λ, µ is the higgsino mass pa-

rameter, mHu
is the mass of Hu (gauge eigenstate of the Higgs bosons within the MSSM)

and δm2
Hu

is its radiative correction. In Eq. 5.26 the terms m2
Hu

and δm2
Hu

are correlated.

Therefore when evaluating the naturalness, we must compare the independent terms −2µ2

and (m2
Hu

+ δm2
Hu

). For further details see Ref. [116].

In Ref. [116] it is shown that requiring that the naturalness measure ∆EW at the

electroweak scale to be lower than 30, leads to a 3% fine-tuning or better. When we

impose this criterion, the upper bound on the gluino mass is found to be 4 TeV and on

the lighter stop to be 3 TeV. In that case, the lightest neutralinos and the lightest chargino

are higgsino-like, these three sparticles are almost mass degenerate and their mass can go

up to 300 GeV. The masses of the other charginos and neutralinos are expected to be at

the TeV scale.

Requiring ∆EW <30, we can also examine the mass spectrum of the lighter stop vs

the LSP. For this purpose, the two-extra-parameter non-universal Higgs model (NUHM2)

[156, 157] is used. The theoretical parameters in this model are varied but forced to obey

the constraint ∆EW < 30 as well as the constraints from the measurements obtained by

the LHC experiments: the lightest chargino is imposed to be heavier than 103.5 GeV, the

masses of the gluinos and all other squarks, except t̃1, are imposed to be larger than the

masses excluded with the Run 1 LHC data, and the Higgs boson mass is set to be equal

to 125 ± 2 GeV.

The possible configurations of the t̃1 and LSP masses obtained by the described model

are shown in Fig. 5.18. In this figure, the possible scenarios with ∆EW < 15 and ∆EW < 30

are shown with the red and blue crosses, respectively, together with the exclusion limits
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based on the 12.9 fb−1 of data recorded in 2016 from the CMS collaboration [158] (red line)

and a combination of analyses corresponding to 13.3 fb−1 [159, 160, 161] and 3.2 fb−1 [162]

by the ATLAS collaboration (black line). The predicted exclusion limit and the discovery

potential to be reached by the ATLAS collaboration in the fully hadronic search assuming

an integrated luminosity of 3000 fb−1, which is expected at the end of the HL-LHC

program, is shown as the orange curve [163]. In this figure it can be first noticed that this

model does not predict many scenarios in the compressed region. Then it can be seen

that many signal scenarios are already excluded, but as well many scenarios will remain

uncovered even analyzing the HL-LHC data. The predicted reach of the HL-LHC is up to

around 1.4 TeV for the stop mass. More recent CMS projections, based on a luminosity

extrapolation of the full hadronic search results using data up to the end of 2016, show

that a stop mass up to 2 TeV can be excluded at HL-LHC with an integrated luminosity

of 3000 fb−1 [164]. However, natural SUSY scenarios predict stop masses up to 3 TeV as

seen in the Fig. 5.18

Figure 5.18: The plane of the t̃1 vs LSP masses. The natural SUSY scenarios with
∆EW < 15 and ∆EW < 30 are shown in the red and blue crosses, respectively. Exclusion
limits are depicted in red or black for the LHC results with an integrated luminosity of
∼ 13 fb−1 and the orange curve shows the extrapolation at the end of the HL-LHC. The
green curve shows the discovery potential for the HL-LHC. The dotted line is drawn for
the situation when the stop and the LSP have the same masses [116].

Ref. [116] also examines prospects for the stop discovery beyond HL-LHC and presents

also the exclusion potential for HE-LHC and FCC as depicted in Fig. 5.19. The figure

reveals that to probe a high stop mass of 3 TeV, a machine delivering collisions at a

center-of-mass energy of 33 TeV would be needed.
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Figure 5.19: Potential of discovery (5σ) and exclusion (95%) of the stop t̃1 mass for
the past LHC searches with an integrated luminosity

∫ L ∼ 13 fb−1 and a center-of-mass
energy

√
s of 13 TeV, HL-LHC with

√
s = 13 TeV and

∫ L = 3000 fb−1, HE-LHC with√
s = 33 TeV and

∫ L = 3000 fb−1, and a pp collider (FCC) with
√

s = 100 TeV and
∫ L = 3000 fb−1 [116].

One may also examine what are the expectations on the SUSY mass spectrum from

measurements other than the direct searches for the SUSY particles. One of the options

is to study the branching ratio of the b quark to the s quark plus photon BR(b → sγ).

This decay is possible in the SM via loops with W bosons and top quarks. Within the

SUSY other loops are possible as well: these are mainly loops involving the stop and the

chargino, and loops with the b quark and the charged Higgs boson. The branching ratio is

measured to be BR(b → sγ) = (3.01±0.22)×10−4 [165], the theoretical predictions within

the SM give BR(b → sγ) = (3.36±0.23)×10−4 [166]. The observed BR can be compared

with the prediction of the BR for each scenario in the t̃1 vs LSP plane. The compatibility

of the measured and predicted branching ratios excludes stop masses lower than 500 GeV.

In the majority of scenarios with a stop mass higher than 1.5 TeV, the predicted and

measured BR are in agreement within 2σ. But lighter stops than 1.5 TeV in the majority

of cases lead to the branching ratios not compatible with the observation [116].

One can also obtain constraints on the masses of the SUSY particles from the ob-

served average cold dark matter density ρDM ≈ 1.2 × 10−6 GeV/cm3 [167, 110]. In the

early universe, there should have been a thermal equilibrium between the SM and SUSY

particles. As the universe cooled down, heavier sparticles could not be produced any-

more, they only annihilated into the SM particles or decayed to the LSP which is in this

paragraph considered to be a neutralino. Eventually, the LSPs also annihilated into the

SM particles. With a continuous expansion of the universe, the annihilation rate became

small and the LSPs experienced a “freeze-out”. If the LSP is mostly higgsino- or wino-like,

the LSP needs to be very heavy, of the order of 1 TeV or more, in order to reproduce the

observed dark matter density. This model is not yet excluded by the LHC, but on the

other hand, it is not natural. Another option is a bino-like LSP, but the mass of such LSP
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is in the majority of parameter space already excluded by the LHC, given the constraint

on the cold dark matter density. The non-excluded bino-like LSP leads to a too large

cold dark matter density, but if making other assumptions, the dark matter density can

agree with the observation. For example, we obtain an agreement if one of the sleptons

is not too heavy. A large part of such light slepton scenarios is already excluded at the

LHC (current measurements exclude slepton masses up to around 400 GeV). The cold

dark matter density for the bino-like LSP scenario is also in agreement with observation

in the compressed scenario, when the LSP mass is between mt and mt+100 GeV, where

mt is the mass of the top quark . The t̃1 mass is required to be around 150 GeV larger

than the LSP mass. In order to make this model natural, the obtained gluino and wino

mass parameters ratio does not allow the unification at the GUT scale [131]. Although

many possible scenarios are already ruled out by the requirements on the cold dark matter

density, there are still parts of the parameter space which are uncovered. Moreover, the

described considerations assume only simple thermal mechanism for the production of the

LSP. If, for example, there are other production mechanisms or if the R-parity is broken,

the conclusions do not have to hold.

There is also a possibility that the MSSM is not the realization of the SUSY chosen

by nature and we should examine the non-minimal SUSY theories. For example in the

MSSM, the R-parity is conserved, which protects the protons to decay. But there is

no fundamental reason that R-parity should be conserved and it could be replaced by

another symmetry which also protects protons to decay, like for example a symmetry

which conserves the baryon number but not the lepton one. In the case R-parity is

violated, the LSP can decay and therefore the signal production and final states differ

from the ones assuming the R-parity conservation. Both pair and single SUSY particle

productions are expected. Depending on the R-parity violation scenario, the LSP could

decay to leptons or/and jets resulting in final states with a large number of charged leptons

or/and jets. Another possibility is that the LSP has a long lifetime and produces a special

signature in the detector (appearing tracks, ...). Several analyses targeting the R-parity

violation scenarios are already in place and produced exclusion limits. But again, these

models are simplified and the limits in more general models can be significantly weaker.

As discussed in the previous paragraphs, there are many realizations of SUSY which

are already excluded. But on the other hand, it has been shown that there is still some

room for natural SUSY. It has been discussed that the lighter stop could have mass up

to 3 TeV and be beyond the reach of the LHC. It might be also needed to go beyond the

MSSM and focus our searches on more general models.
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This thesis presents three different studies based on the Run 2 data. The first two are

measurements of the cluster properties in the CMS silicon strip tracker related respectively

to the highly ionizing particles (HIP) and the charge sharing among neighboring strips

(also known as cross talk). The last topic discussed in this document is the search for the

supersymmetric partner of the top quark, called the stop.

In the first study of this thesis, I was interested in the highly ionizing particles in the

silicon strip tracker. Already before the beginning of the Large Hadron Collider (LHC)

operation, the highly ionizing particles were studied and identified to cause dead-time in

the front-end electronics leading to a hit inefficiency in the silicon strip tracker. In the

beam tests of the tracker modules, it was found that by decreasing the inverter resistor

value of the front-end electronics, the dead-time can be shortened and therefore the design

of the electronics was adjusted to mitigate this issue. Later no analysis with LHC collisions

had been performed yet. So when an increase of the hit inefficiency in the strip tracker

was observed in 2015-2016, a HIP was immediately identified as a possible explanation

of it. I studied the HIP effect with collision events recorded in 2016 using a special data

format in which no subtraction and suppression were applied at the back-end electronics

level and therefore full information about all channels was available. They allowed me to

confirm that the HIP induces a large charge on few channels and drives the remaining

channels belonging to the same front-end electronics, the APV chip, towards lower charges

up to the point when the signal is too small to be converted into light. Reaching this

zero light level also induces a decreased spread of the charges on all channels within one

APV, when excluding the channels reading a large charge. With these data I was able to

measure the rate of the HIP events, i.e. the number of events with a HIP interaction to

all events, to be around 4 × 10−3 for the first layer of Tracker Outer Barrel (TOB). I also

evaluated the dead-time for this layer to be up to around 250 ns. It is of the same order

as the dead-times evaluated in previous studies performed at the PSI beam test, namely

a mean and maximal dead-times for the TOB modules of 100 ns and 275 ns, respectively.

However the HIP effect was not responsible for the observed inefficiencies and after the
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largest source of inefficiency was found and fixed, a new set of data provided an opportu-

nity to study the HIP effect in a greater detail disentangled of the previous issue. Because

of the data-taking conditions, these new data permitted to perform a measurement of the

HIP probability in a cleaner environment. The HIP probability was computed per pp

interaction, i.e. rescaled by the peak pileup of the fill, in order to have the possibility to

apply this probability to any LHC fill. The HIP probability in the silicon strip tracker was

measured to be of the order of 10−4 − 10−3% depending on the tracker layer/wheel/ring.

The HIP probabilities, already evaluated in the past from simulations and using beam

test data, were derived per particle and therefore they cannot easily be compared with the

current measurement. Moreover during the beam test, a different particle composition

and energy spectra were present compared to the CMS environment.

The HIP probability itself cannot be decreased but we might investigate if the dead-

time, and consequently the hit inefficiency, could be reduced. An option how to decrease

the dead-time was identified and studied in the past [168]. This option is to maximize

the pedestal subtracted data in order to decrease the chance that the channel charges are

shifted beyond the measurable range. The pedestal is the mean strip activity when no

particle is present and in the standard data-taking mode, not pedestals themselves are

subtracted by the back-end electronics, but the pedestals minus a fixed offset, resulting in

the positive mean channel charges after this subtraction. This offset can be further max-

imized, but it was found out that this option only increases the fake cluster multiplicity

without improving the hit efficiency. Moreover this option reduces the dynamic range,

resulting in larger charges to be truncated faster. However this test was performed before

the fix of the largest source of inefficiency and it could be worth to repeat it now.

A measured HIP probability of 10−4 − 10−3% means that in case of a dead-time of

250 ns obtained from the first data and bunch spacing of 25 ns, an APV chip would never

be fully efficient if the pileup were of the order of 104 −105. The current pileup during the

summer 2018 is of the order of 40 interactions per bunch crossing and therefore far from

the fully inefficient chip scenario. The inefficiency resulting from the HIP was recently

calculated, using the dead-time of 250 ns and the measured HIP probability, to be of

the order of 0.1-1%, for a pileup of 30 as in the representative run used for the 2018 hit

efficiency measurement. This is of similar order as the measured 2018 hit inefficiency.

Therefore the main source of the measured inefficiency now seems to come from the HIP

effect. This inefficiency is not considered during the event simulation.

The second set of data also permitted to study the cluster charge, multiplicity and

width in presence of a HIP event or right after. I found out that the fake cluster multi-

plicity is increased after the HIP event compared to a standard event not influenced by

a HIP. However the HIP probability is low and therefore in average over the runs the
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fake cluster multiplicity resulting from the HIP is of the same order of magnitude as the

fake cluster multiplicity when no HIP had occurred. I observed that fake clusters induced

by the HIP originate from the baseline distortions. For the first layer of TOB, I also

estimated a lower limit on the probability that a track is reconstructed with at least one

fake cluster originating from a HIP event. This probability was computed to be 0.002%

and therefore is negligible. These fake clusters are not included in the simulation either,

but as discussed, their impact is negligible and therefore it is reasonable to omit them

from simulation.

Unfortunately, because of the data-taking conditions of the second data-taking period,

it was impossible to measure the dead-time in them. The first data provided a better

opportunity to measure the dead-time, but with the difficulty to precisely fix the time of

the HIP occurrence. There are not any simple options of data-taking conditions suitable

to measure the dead-time in future, in this paragraph I propose two more complex ideas

of data-takings which could be considered. The first option would be to arrange data-

taking in which events would be recorded every 25 ns during at least 15 bunch crossings

not respecting any trigger rule, in order to have the possibility to track a given HIP in

time. On top of it, it would be needed to reconsider the analysis strategy. For example,

as we would not be interested in the HIP probability anymore, we could spot the HIP

event by presence of a large peak, which appears only for few ns and therefore should

better fix the time of the HIP event. But this approach could overload the system and

therefore it would be needed to evaluate if such data-taking would be reasonable and how

we could possibly avoid the overload. The second option would be to have a special fill

and partially violate the trigger rules as well. In such fill we would need trains of two

bunches and in each train we would need different time gap between the two bunches: in

the first one 25 ns, the second one 50 ns, the third one 75 ns, etc. In these data we would

have the time of HIP event fixed by the first bunch crossing in train and in the second one

we could measure the hit efficiency. The dead-time would be the time gap between two

bunch crossings in the same train in which the same hit efficiency is measured. In both

these proposed data-takings, it would be needed to make sure, that the fake clusters from

baseline distortions are not considered as real clusters by tracking and therefore that the

fake clusters do not artificially increase the hit efficiency.

In the future upgrade of the silicon strip tracker for the High Luminosity LHC project

(HL-LHC), we must pay attention to the HIP effect already at the design level. Ideally, it

would be desired that the electronics is designed in a way that if a large charge is read by

one channel, it does not affect the other channels belonging to the same chip as it is the

case now. The HIP probability computed in this thesis is related to the module geometry

and its distance from the interaction point and therefore cannot be easily extrapolated to
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the future detector. Assuming that the tracker would remain the same and for a pileup

of around 200 interactions per bunch crossing, the HIP rate per chip could be expected

to be of the order of 10−2 − 10−1 %. In the reality, the detector will be upgraded and

therefore the HIP probability and induced dead-time will change depending on the design

of the tracker modules and the readout electronics.

The second study presented in this thesis focuses on the simulation of the CMS silicon

strip tracker and the tracker conditions used in simulation in order to provide realistic

results. These conditions change with the tracker operating conditions, e.g. the tempera-

ture, but also evolve with tracker ageing resulting from the radiation damage, for example

the cross talk, i.e. the charge shared with the neighboring strips. As the majority of these

conditions was never updated since the beginning of the Run 1, we decided therefore to

revise the simulation and study the impact of the outdated conditions on the simulation

of the clusters in the tracker. I found out that the change of conditions (except noise and

gains) has a negligible impact on the cluster properties in many cases, but the change of

the cross talk parameters largely impacts the cluster width and seed charge.

After having identified that the cross talk parameters cause large discrepancies in

cluster shape distributions between data and simulation, a cosmic data-taking period was

arranged in absence of magnetic field, dedicated to re-measure the cross talk parameters.

As for the HIP studies, no subtraction and suppression of channel charges were applied

on the back-end electronics level. In these data I spotted that the cross talk parameters

evolve as a function of the time when the particle arrives to a given module. Therefore the

cross talk needs to be measured at the correct timing, i.e. as when a particle originating

from the pp interaction would reach a given module. Due to the trigger conditions,

there was only sufficient statistics to measure the cross talk parameters in the barrel. I

measured that the cross talk decreased for all barrel module geometries compared to the

previous measurement. The sharing to the first neighboring strips in barrel decreased by

around 18-27%, the change being larger for geometries closer to the interaction point i.e.

with larger fluence and consequently larger radiation damage. The sharing to the second

neighboring strips diminished by around 24%. To determine the cross talk parameters in

disks and endcaps, I corrected the old cross talk parameters based on the change of the

cross talk parameters in barrel and data to simulation comparisons of the mean cluster

seed charge in collision events.

The cross talk parameters influence profoundly the cluster shape, but not the total

cluster charge. The change of the cross talk might cause that the clusters which were

slightly above the clustering threshold before do not have to pass it now and therefore are
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not reconstructed anymore and vice versa. In addition, with the change of the cross talk

parameters, the cluster position and its resolution change in simulation, resulting in small

changes in tracking. Therefore the effect of a change of the cross talk may propagate up

to some of the physics analyses, e.g. in searches for appearing/disappearing tracks. The

object discriminators, mainly the b-tagging discriminators, which are strongly dependent

on the tracking, are also influenced by it. The impact on the other physics objects and

analyses, not largely dependent on tracking, is expected to be negligible.

It was shown that the cross talk parameters evolve as a function of the fluence and

therefore they should be remeasured and updated regularly. Also more frequent mea-

surements of the cross talk parameters could help us to understand why the cross talk

is decreasing with respect to the previous measurement. The literature is stating that

with an increasing fluence, the inter-strip capacitance should increase and the inter-strip

resistance decrease. Both these changes should lead to the increase of cross talk, what was

not observed. However the inter-strip resistance and capacitance are not the only factors

influencing the signal formation, but there is more complex network of capacitances and

resistances which has its impact on the cluster shape. Note that the cross talk was mea-

sured only in the deconvolution mode, so it should be updated for the peak mode as well.

Nevertheless, the peak mode is not used in standard data-taking, but it could help us to

investigate the decrease of the cross talk, by disentangling the effects of the deconvolution

from other effects.

The cosmic data recorded in absence of magnetic field, which were used for the cross

talk measurement, posed several constraints and difficulties. First, due to the trigger

conditions there is insufficient statistics in the disks and endcaps. Even if the trigger

would be re-designed, due to the η distribution of the cosmics, the data-taking would

have to be long in order to collect sufficient statistics, which is difficult to arrange in

the tight CMS schedule. The second large issue is related to the tracker timing when

it samples the collected signal. The tracker has no special timing configuration for the

cosmics and therefore the collision timing is always used. As the cross talk depends

on timing, we need to use for the cross talk measurement only cosmics which arrive to

the given module at the same time as a particle produced in the pp collision. Another

ambiguity comes from the computation of the particle arrival time, which extrapolates all

particles to the interaction point, even though they do not have to pass through there.

Both the pseudorapidity coverage and the timing issues would be solved if it is possible to

arrange a new data-taking of non suppressed collision data without magnetic field. But

such data-taking is not compatible with the CMS program and priorities.

After the update of the cross talk parameters and conditions such as gains and noise

updated by other members of the tracker local reconstruction group, the description by
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the simulation of the in-time clusters in data was largely improved. It was identified that

there are still several parameters which are outdated and could be updated in future,

however these parameters do not largely change the cluster description. In this thesis

on one hand I found out that the simulation is simplified and sometimes not realistic,

but on the other hand developing more sophisticated models would not largely improve

the description of the clusters in data by simulation. I also identified that already some

existing parts of the simulation have only a negligible impact, i.e. the diffusion, and it

could be good to evaluate what parts of the simulation are really needed in order to reduce

the time needed for the event simulation.

Several improvements could be still included in the simulation of the out-of-time clus-

ters. First, the pulse shape has changed due to the change of the APV parameter and

therefore the pulse shape should be updated in order to reduce the simulated charge by

a correct fraction. Secondly, it was shown that the cross talk depends on timing. The

cross talk parameters were derived for in-time clusters and are not correct for out-of-time

clusters. Ideally, the cross talk parameters should be parameterized as a function of the

particle arrival time to the module. The out-of-time clusters need also to be well simu-

lated as these clusters might be used by the tracking algorithm to reconstruct the tracks

of the particles.

Few other interesting studies could be performed with the taken cosmic data and here

I discuss few examples. In the past it was observed that there is a left-right asymmetry in

the charge sharing. This effect could be as well studied with these data. Moreover, it is

possible to study the cross talk and cluster properties as a function of the position where

the track intercepts the strip plane, close and far from the strip. In the past it was also

observed that there is an evolution of the cluster seed charge as a function of the strip

number within one APV chip, this study could be repeated with these data. All these

studies could help to better understand the formation of the signal, the features of the

sensors such as non-uniformities in the electric field, and also the changes in the sensors

properties resulting from their irradiation.

In the future tracker for the HL-LHC, the clustering will be largely different, only

the binary information from the strip/macro-pixel will be sent, therefore the cluster seed

charge and cluster charge will not be available and just the cluster width will be known.

As the cluster width depends on cross talk, it will also be needed to measure the cross

talk in the new tracker. Moreover it will be important to determine and monitor the

cross talk in order to design and maintain the threshold for strip/macro-pixel charge to

198



CONCLUSION

be correctly set to one or zero.

The last part of the thesis is discussing a search for physics beyond the standard model.

Despite its capability to well describe the majority of observed physics phenomena, the

standard model (SM) of particle physics suffers from several shortcomings such as the

hierarchy problem or the absence of a dark matter candidate. Due to these shortcomings,

theories beyond the SM were proposed and one of them, the supersymmetry, became the

most promising one because of its ability to address large part of the SM issues. In this

thesis I presented a search for the supersymmetric partner of the top quark, the stop, with

the CMS Run 2 data. This search targets the stop pair production, with three different

possibilities for the decays of the stops: the two stops decay each to a top quark and a

neutralino, or the two stops decay to a bottom quark and a chargino, or each stop decays

differently as a mixture of the two previous cases. In all cases, the targeted signal final

states contain one lepton, jets and missing transverse energy.

I was involved in three public releases of this search: one based on the data recorded

in 2015 corresponding to an integrated luminosity
∫ L of 2.3 fb−1 [129], the second one

based on the data recorded at the beginning of 2016 (
∫ L = 12.9 fb−1) [130] and the

last one corresponding to
∫ L = 35.9 fb−1 collected during the full 2016 pp data-taking

period [128]. I was mainly involved in the last analysis, where I was responsible for the

estimation of one of the SM backgrounds, in which a Z boson decays to two neutrinos.

In this thesis I also exploited a technique for tagging of merged jets originating from a

W boson and I showed that the gain of implementing such technique is growing with the

integrated luminosity.

The searches for the stop pair production in different final states were already per-

formed with the Run 1 data. The analyses exclude stop masses in terms of simplified

model spectra with stops decaying to a top quark and a neutralino up to around 755 GeV

for a neutralino mass below 200 GeV. With the increase of the center of mass energy and

then also the integrated luminosity, it was soon possible to further probe the stop masses.

No excess was found in the full 2016 data (
∫ L = 35.9 fb−1) with respect to the SM back-

ground predictions and therefore exclusion limits were derived. This analysis excluded

stop masses up to 1120 GeV for a massless neutralino in terms of simplified model spectra

where both stops decay to a top quark and a neutralino. In the case where both stops

decay to a bottom quark and a chargino or in the case of mixed decay, the stop masses

were excluded up to 1000 GeV and 980 GeV, respectively.

Despite the stop exclusion in the TeV range, there is still room for the natural super-

symmetry and therefore the effort to search for stops is not diminishing. According to the
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CMS predictions, with an integrated luminosity of 3000 fb−1 envisioned to be collected

at the HL-LHC, it will be possible to probe the stop masses up to 2 TeV. An upgrade of

the LHC to higher center of mass energies would permit us to go even further in the stop

masses.

Before migrating to future projects, there are several directions how to improve the

presented stop analysis for its future update based on data with a larger integrated lumi-

nosity. On the side of the SM backgrounds it is desired to use the data-driven methods

for the background estimations in order to minimize a dependence on the simulation and

consequently reduce the systematic uncertainties. The data-driven estimates are based

on control regions, these control regions should be defined very similarly as the signal

regions to avoid uncertainties due to extrapolations in variables. These extrapolations

rely on the shapes of variables in simulation, and if not well modeled they largely increase

the systematic uncertainties on the background estimates. On the side of the signal we

discussed that the simplified event simulation is not reliable in the region of the 2D mass

plane where ∆m(stop, neutralino) ∼ m(top) at low neutralino mass. This could be solved

by using the full simulation of the detector in this particular kinematic region. Then also

the analysis strategy can be reoptimized. It is possible to reoptimize the signal regions

by finding optimal cuts but also trying to find better discriminating variables. Another

option is to use more object taggers. Nowadays there is a variety of taggers targeting the

W boson and top quark identification, not only targeted as a single merged jet, but also as

completely resolved jets or partially merged jets. We could also consider not to perform

a cut and count analysis but move to machine learning techniques providing discriminant

between signal and background we can cut on.

Within the CMS collaboration a large variety of SUSY searches is performed. The

stops are being sought in several different final states and the other predicted SUSY

particles are targeted by dedicated searches as well. Many analyses search for SUSY within

the context of the minimal supersymmetric standard model but there are also several

searches which go beyond, e.g. searches allowing violation of the R-parity. In general the

SUSY searches are interpreted in terms of simplified spectra. A lot of efforts are being

done to reinterpret these searches in more realistic models. Another part of activities is

the combination of searches to reach a better discovery/exclusion potential. The CMS

experiment and in general the collider experiments do not provide the sole opportunity

to search for supersymmetry. For example, supersymmetry can also be studied via direct

dark matter detection experiments.

In summary, there are still many options for natural SUSY in term of parameter space

and also many options how to search for it. Collider experiments are one of these options,

and with increasing luminosity, energy and optimization of analyses they are providing
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great opportunities to go beyond the current limits and further probe the uncovered

phase-space.
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Chapter A

Résumé en français de mes travaux

de thèse: résultats principaux et

discussion

Pendant ma thèse, je j’ai travaillé dans une équipe qui fait partie de la collaboration CMS.

Le détecteur “Compact Muon Solenoid” (CMS) montré à la Fig. A.1 est un détecteur de

physique des particules situé au CERN en Suisse, auprès du Large Hadron Collider (LHC),

un accélérateur circulaire de particules de 27 km de long qui fournit des collisions de

protons à une énergie dans le centre de masse de 13 TeV depuis 2015 (Run II).

Le programme de physique de CMS couvre principalement des mesures de précision

du Modèle Standard (MS) avec un énorme effort dédié aux études du boson de Higgs,

ainsi que la recherche de phénomènes au-delà du MS aussi appelée recherche de “nouvelle

physique”.

A.I Introduction

Cette thèse a commencé en octobre 2015, la même année que le début de la période de

prise de données appelée Run 2 (2015-2018) au cours de laquelle l’énergie dans le centre de

masse, la luminosité instantanée et la fréquence des collisions ont augmenté par rapport

au Run 1 (2008-2013). Par conséquent, les possibilités d’analyses de processus physiques

ont été largement étendues au prix d’une plus grande fluence du côté du détecteur, en

particulier sur le trajectographe qui est le détecteur interne. Avec cette fluence croissante,

le détecteur souffre d’une irradiation plus importante qui pourrait être à l’origine de

problèmes de performance. De plus, le détecteur vieillit avec l’irradiation, entraînant une

modification de certaines de ses caractéristiques. Par conséquent, il est très important de
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Figure A.1: Schéma du détecteur de CMS [13].

surveiller de près le détecteur, afin de conserver des performances stables et d’éviter tout

impact négatif sur les analyses de physique. Dans les sections suivantes, je traiterai de

deux groupes d’études sur lesquelles j’ai travaillé dans le cadre du trajectographe.

La physique des particules est décrite par le modèle standard dont la dernière pièce, le

boson de Higgs, a été découverte en 2012 par les collaborations CMS et ATLAS. Bien que

le modèle standard soit maintenant complet et décrive en général très bien les phénomènes

physiques, il souffre de plusieurs défauts. Ce problème nous pousse à croire que le mo-

dèle standard est une théorie effective à basse énergie d’une théorie plus fondamentale à

déterminer. Au fil des ans, de nombreuses théories ont été proposées et l’une d’entre elles,

appelée supersymétrie, a suscité un intérêt particulier en raison de sa capacité à répondre

à de nombreuses lacunes du modèle standard.

La supersymétrie introduit un nouveau partenaire pour chaque particule de mod-

èle standard et, par conséquent, des recherches approfondies sur ces particules ont été

et sont encore actuellement effectuées par la collaboration CMS, ainsi que par d’autres

collaborations. La particule qui nous intéresse dans le cadre de cette thèse est le parte-

naire supersymétrique du quark top, le stop, qui devrait avoir une masse inférieure à

environ 1 TeV en supersymétrie naturelle [111, 114, 115] et donc être accessible aux én-
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ergies du LHC. Aucun signe de l’existence de stop n’a été observé au Run 1 [123], mais

l’augmentation de la luminosité ainsi que l’énergie dans le centre de masse au Run 2 nous

permettent de sonder des masses de stop au-delà de l’exclusion du Run 1.

A.II Dispositif expérimental

La description du détecteur Compact Muon Solenoid est donnée dans le premier chapitre,

Chapitre 1, avec une brève introduction du Large Hadron Collider (LHC). Ce chapitre

se concentre sur le trajectographe à pistes de silicium montré à la Fig. A.2, dont la

compréhension approfondie est requise pour les chapitres suivants. Ce chapitre présente

également la reconstruction des objets physiques correspondant aux particules traversant

le détecteur.
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Figure A.2: Schéma de la vue longitudinale de la moitié supérieure du trajectographe à
pistes de silicium CMS et de la disposition de ses partitions. L’étoile représente le point
de interaction. Les modules en bleu sont en stéréo, alors que les modules mono sont en
noir [20].

A.III Étude des particules hautement ionisantes dans

le trajectographe de CMS

Dans le Chapitre 2, je me suis intéressée aux particules hautement ionisantes (HIP) dans le

trajectographe à pistes de silicium. Déjà avant le démarrage du Large Hadron Collider, les

particules hautement ionisantes ont été étudiées et identifiées comme pouvant causer un

temps mort dans l’électronique frontale, entraînant une inefficacité dans le trajectographe
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à pistes de silicium. Lors les tests en faisceau des modules du trajectographe, il avait

été constaté qu’en diminuant la valeur de la résistance du convertisseur de l’électronique

frontale, le temps mort pouvait être diminué [53] comme indiqué dans le Tableau A.1, et le

design de l’électronique avait donc été ajustée pour atténuer ce problème. En 2015-2016,

lorsqu’une augmentation de l’inefficacité de reconstruction des hits dans le trajectographe

a été observée pouvant aller jusqu’à 7%, les HIP ont immédiatement été identifiés comme

une explication possible.

J’ai étudié l’effet des HIP pour la première fois avec des données de collisions LHC.

Les événements de collision enregistrés en 2016 dans un format de données spécial dans

lequel aucune soustraction ni suppression n’ont été appliquées au niveau de l’électronique

arrière, donnant accès aux informations complètes sur tous les canaux. Cette étude m’a

permis de confirmer que le HIP induit une charge importante sur quelques canaux et a

forcé les canaux restants connectés à la même puce électronique frontale, la puce APV,

vers des charges plus faibles jusqu’au moment où le signal est trop petit pour être converti

en lumière comme on peut l’observer sur la Fig. A.3. Lorsqu’on atteint ce niveau sans

lumière émise, on observe également une réduction des différences entre les charges de tous

les canaux d’un APV, en excluant les canaux lisant une charge associée du HIP. A partir

de ces données, j’ai pu mesurer le taux d’événements HIP, c’est-à-dire le rapport entre

le nombre d’événements ayant une interaction HIP et tous les événements. Ce taux est

de 4 ×10−3 pour la première couche de Tracker Outer Barrel (TOB), trop bas pour être

responsable des inefficacités observées en 2015 et 2016. J’ai également évalué le temps

mort pour cette couche à environ 250 ns. Il est du même ordre que les temps morts

évalués dans des études antérieures effectuées lors de tests en faisceau à PSI, à savoir un

temps mort moyen de 100 ns et un temps mort maximal de 275 ns pour les modules TOB,

respectivement.

Au cours de l’été 2016, la plus grande source d’inefficacité de reconstruction des hits

dans le trajectographe a été identifiée et corrigée en modifiant la configuration de la

puce APV. Selon les conditions de run, l’inefficacité de le reconstruction des hits après

correction de la configuration APV est d’environ moins de 1%. Suite à cela un nouvel lot de

données a été enregistré afin d’étudier l’effet HIP de manière plus détaillée. En raison des

conditions de prise de données, ces nouvelles données ont permis de mesurer la probabilité

d’avoir un HIP dans un environnement plus propre. La probabilité d’avoir un HIP (pHIP )

a été calculée par interaction proton-proton, c’est-à-dire que la fraction d’événements avec

un HIP (fHIP ) été divisée par le taux maximal d’interactions simultanées (peak pileup:

PU), pHIP = fHIP /PU , afin de pouvoir appliquer cette probabilité à toute configuration

de structure des faisceaux du LHC. La probabilité d’avoir un HIP dans le trajectographe

à pistes de silicium est représentée sur la Fig. A.4 et les mesures varient entre 10−4
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Type de capteur et Rinv [Ω] Γmean [ns] Γmax [ns]
TIB 100 Ω 99.5 ± 12.0 200 ± 25
TIB 50 Ω 69.6 ± 9.4 250 ± 25
TOB 100 Ω 122.5 ± 12.6 275 ± 25
TOB 50 Ω 100.5 ± 3.6 275 ± 25
TIB Γmean(50 Ω)/Γmean(100 Ω) 0.70 ± 0.13
TOB Γmean(50 Ω)/Γmean(100 Ω) 0.82 ± 0.09

Table A.1: Le temps mort moyen (Γmean) et le temps mort maximal (Γmax) de la puce
APV induits par les événements HIP pour les lignes de base (i.e. la médiane calculées sur
l’ensemble des 128 pistes lues par une puce APV) qui sont entièrement supprimées (σraw <
1 ADC). Les temps morts ont été évalués pour deux géométries de module différentes (TIB
et TOB) ainsi que pour deux valeurs de résistance de convertisseurs (100 et 50 Ω). Ces
résultats ont été obtenus avec des données de tests en faisceau à PSI avant le début de
l’exploitation du LHC [53].
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Figure A.3: Exemple de distributions du signal vu par les 512 pistes (strip) d’un module,
sous format raw digis (en rose), après soustraction du piédestal (en bleu), après sous-
traction de la ligne de base (en rouge) et après soustraction des amas (en vert). Chaque
ensemble de 128 pistes est lu par une puce APV. Le troisième APV dans le module montre
un comportement induit par un événement HIP: une faible variation de charge pour les
raw digis et un grand signal observé pour quelques canaux.

et 10−3% selon sur la position dans les différentes partitions du trajectographe. Les

probabilités d’avoir un HIP, déjà évaluées par le passé à partir de simulations et utilisant

des données de tests en faisceau, ont été dérivées par particule et ne peuvent donc pas

être facilement comparées à la mesure actuelle. De plus, lors des tests en faisceau, la

composition des particules et leurs spectres en énergie étaient différents par rapport à

l’environnement CMS.
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Figure A.4: Probabilité moyenne d’avoir un événement HIP par unité du pileup (PU)
pour les couches du TIB et du TOB (aussi bien sur la figure de gauche que de droite)
et pour les roues (à gauche) ou les anneaux (à droite) des partitions TID et TEC du
trajectographe de silicium. Ces probabilités ont été calculées à partir du run 281604
enregistré en 2016 (2e étude des HIP).

La probabilité d’avoir un HIP ne peut pas être diminuée, mais nous pourrions chercher

si le temps mort et par conséquent l’inefficacité de reconstruction du hits des traces pour-

raient eux être réduits. Une option permettant de réduire le temps mort a été identifiée

et étudiée dans le passé [168]. Cette option permet de maximiser les données après sous-

traction du piédestal1 afin de réduire le risque que les charges des canaux soient décalées

trop bas, au-delà de la plage mesurable. En réalité dans le mode de prise de données stan-

dard, c’est le piédestal moins un certain décalage fixe qui est soustrait par l’électronique

back-end. Le choix de ce décalage pourrait être optimisé, mais il a été constaté que cette

option ne fait qu’accroître la multiplicité des “faux” amas sans améliorer l’efficacité de

reconstruction des hits. De plus, cette option réduit la plage dynamique, ce qui se traduit

par des charges plus importantes à tronquer plus rapidement. Cependant, ce test a été

effectué avec l’ancienne configuration de la puce APV et il pourrait être utile de le répéter

maintenant.

Une probabilité d’avoir un HIP mesurée de 10−4 − 10−3% signifie que dans le cas d’un

temps mort de 250 ns (obtenu grâce à la première étude de cette thèse), d’un espacement

de 25 ns entre les paquets des particules du faisceau, la puce APV ne serait jamais pleine-

ment efficace uniquement si le pileup était de l’ordre de 104 − 105. Le pileup actuel au

cours de l’été 2018 est de l’ordre de 40 interactions par croisement de faisceau et donc

loin du scénario d’une puce totalement inefficace. L’inefficacité de reconstruction des hits

1Le piédestal est l’activité moyenne sur une piste quand aucune particule n’est présente.
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résultant des HIP a récemment été calculée en utilisant un temps mort de 250 ns et la

probabilité d’avoir un HIP mesurée, elle est de l’ordre de 0.1-1% pour un pileup de 30

comme pour le run représentatif utilisé pour la mesure de l’efficacité de reconstruction des

hits en 2018. Cet ordre de grandeur est similaire à l’inefficacité mesurée en 2018. Par con-

séquent, la principale source de l’inefficacité mesurée semble désormais provenir de l’effet

HIP. Cette inefficacité n’est pas prise en compte lors de la simulation des événements.

Le deuxième ensemble de données m’a également permis d’étudier la charge et la

multiplicité des amas, présentées à la Fig. A.5, en présence d’un événement HIP ou juste

après. J’ai découvert que la multiplicité de faux amas augmente après l’événement HIP

par rapport à un événement standard non influencé par un HIP. Cependant, la probabilité

d’avoir un HIP est faible et, par conséquent, en moyen sur le run, la multiplicité de faux

amas résultant du HIP est du même ordre de grandeur que la multiplicité de faux amas

en l’absence de HIP, le nombre étant deux ordres de grandeur inférieur au cas du out-of-

time pileup. J’ai observé que les faux amas induits par le HIP proviennent de distorsions

de la ligne de base. Pour la première couche du TOB, j’ai également estimé une limite

inférieure sur la probabilité qu’une trace soit reconstruite avec au moins un faux amas

provenant d’un événement HIP. Cette probabilité est de 0.002 % et donc négligeable. Ces

faux amas ne sont pas non plus inclus dans la simulation. Mais comme on l’a vu, leur

impact est négligeable, il est donc raisonnable de les omettre de la simulation.
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Figure A.5: Nombre d’amas moyenne (à gauche) et charge moyenne portée par les
amas (à droite) en fonction du numéro d’identification du croisement de faisceau pour
le run 281604. Le premier triangle rose représente l’événement HIP, les triangles suivants
représentes les événements successifs (post HIP), tandis que les carrés bleus sont pour les
événements non affectés par un HIP.

Malheureusement, en raison des conditions de prise de données utilisée pour la 2eme

étude, il était impossible de mesurer du temps mort. Les premières données ont fourni
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une meilleure occasion de mesurer le temps mort, mais avec la difficulté de déterminer

précisément le temps de l’occurrence du HIP. Il n’existe pas d’options simples de conditions

de prise de données permettant de mesurer le temps mort à l’avenir. Dans ce paragraphe,

je propose deux idées plus complexes de prises de données qui pourraient être envisagées.

La première option consisterait à organiser la prise de données dans laquelle les événements

seraient enregistrés tous les 25 ns pendant au moins 15 croisements de paquets, sans

respecter aucune règle de déclenchement, afin de pouvoir suivre un HIP donné dans le

temps. De plus, il serait nécessaire de reconsidérer la stratégie d’analyse. Par exemple,

comme nous ne serions plus intéressés par la mesure de la probabilité d’avoir un HIP,

nous pourrions repérer l’événement HIP en présence d’un grand pic, qui n’apparaît que

pour quelques instants et devrait donc mieux déterminer le temps de l’événement HIP.

Mais cette approche pourrait surcharger le système d’acquisition de CMS et il faudrait

donc évaluer si une telle prise de données serait raisonnable et comment nous pourrions

éventuellement éviter la surcharge. La deuxième option serait d’avoir un structure spéciale

de remplissage du faisceaux du LHC et de violer partiellement les règles de déclenchement

de CMS. Dans un tel scénario, nous aurions besoin de trains contenant uniquement deux

paquets et pour chaque train, nous aurions besoin d’un intervalle de temps différent entre

les deux paquets: pour le premier train les deux paquets seraient séparés par 25 ns, pour

le second par 50 ns, pour le troisième par 75 ns, etc. Grâce à de telles données, nous

aurions le temps de l’événement HIP fixé par le premier croisement du train et le second,

nous permettrait de mesurer l’efficacité de reconstruction des hits. Le temps mort serait

obtenu comme l’intervalle de temps entre deux croisements de paquets d’un même train

pour lesquels la même efficacité de hit est mesurée. Pour ces deux propositions, il serait

nécessaire de s’assurer que les faux amas issus des distorsions de la ligne de base ne sont

pas considérées comme de bons amas lors de la reconstruction des traces et que, par

conséquent, les faux amas n’augmentent pas artificiellement l’efficacité.

Pour future mise à niveau du trajectographe à pistes de silicium dans le cadre du

projet High Luminosity LHC (HL-LHC), nous devons prêter attention à l’effet HIP dès

la conception. Idéalement, il serait souhaitable que l’électronique soit conçue de telle

manière que si une charge importante est lue par un canal, cela n’affecte pas les autres

canaux appartenant à la même puce comme c’est le cas actuellement. La probabilité

d’avoir un HIP calculée dans cette thèse est liée à la géométrie du module et à sa distance

par rapport au point d’interaction et ne peut donc pas être facilement extrapolée à un

futur détecteur. En supposant que le trajectographe resterait le même et pour un pileup

d’environ 200 interactions par croisement de paquets, le taux de HIP par puce pourrait

être de l’ordre de 10−2 − 10−1% . En réalité, le détecteur sera mis à niveau et, par

conséquent, la probabilité d’avoir un HIP et le temps mort induit changeront en fonction

de la conception des modules du trajectographe et de l’électronique de lecture.
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A.IV Amélioration de la simulation du trajectographe

et mesure de la diaphonie

Le troisième chapitre, Chapitre 3, se concentre sur la simulation du trajectographe à

pistes en silicium de CMS et sur les paramètres de trajectographe utilisés dans la simu-

lation afin de fournir des résultats réalistes. Ces paramètres changent avec les conditions

de fonctionnement du trajectographe, par ex. la température, mais évoluent également

avec le vieillissement résultant des dommages causés par le rayonnement, par exemple la

diaphonie (“cross talk”), c’est-à-dire la charge partagée avec les pistes voisines comme le

montre la Fig. A.6. La majorité de ces conditions n’ayant jamais été mise à jour depuis

le début du Run 1, nous avons donc décidé de réviser la simulation et d’étudier l’impact

des paramètres obsolètes sur la simulation des amas dans le trajectographe. J’ai décou-

vert que le changement de conditions (à l’exception du bruit et des gains) a un impact

négligeable sur les propriétés des amas dans de nombreux cas, mais le changement des

paramètres de la diaphonie affecte largement la largeur de l’amas et la charge de la piste

collectant le signal maximal servant de graine à la formation de l’amas.
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Figure A.6: Un schéma de partage de charge entre pistes voisines.

Après avoir identifié que les paramètres de la diaphonie provoquent des écarts impor-

tants dans les distributions de forme des amas entre les données et la simulation, comme

le montre la Fig. A.7, nous avons utilisé des données correspondant au passage de muons

cosmiques, dans le détecteur pour mesurer les paramètres de la diaphonie. Comme pour

les études des HIP, aucune soustraction ni suppression de charge de canal n’ont été ap-

pliquées au niveau de l’électronique back-end. Dans ces données cosmiques, j’ai remarqué

que les paramètres de la diaphonie évoluent en fonction du moment où la particule arrive

dans un module donné. Par conséquent, la diaphonie doit être mesurée au bon moment,

c’est-à-dire comme si une particule provenant de l’interaction proton-proton atteint un

module donné. Ceci est particulièrement difficile pour des muons cosmiques arrivant de
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façon aléatoire.

J’ai mesuré que la diaphonie diminuait pour toutes les géométries de module dans la

partie centrale de CMS (ou tonneau) par rapport à la mesure précédente. Les paramètres

nouvellement mesurés ainsi que les paramètres actuels utilisés dans la simulation sont

indiqués dans le Tableau A.2. Le partage de charge avec les premières pistes voisines

a diminué d’environ 18-27%, le changement étant plus important pour les géométries

plus proches du point d’interaction, c’est-à-dire avec une plus grande fluence et, par

conséquent, des dommages plus importants. Le partage de charge avec les deuxièmes

pistes voisines a diminué d’environ 24%. En raison des conditions de déclenchement, il

n’y avait pas suffisamment de statistiques pour mesurer les paramètres de la diaphonie

dans les disques (TID) et les bouchons du trajectographe (TEC). Pour déterminer les

paramètres de la diaphonie dans ces partitions, j’ai corrigé les anciens paramètres de la

diaphonie en fonction du changement observé des paramètres dans le tonneau et tenant

compte des comparaisons entre données et simulation de la charge moyenne des amas

dans les événements de collision. Les résultats des mesures de la diaphonie sur les disques

et les bouchons sont résumés dans le Tableau A.3. En mettant à jour les paramètres de la

diaphonie dans la simulation, nous avons découvert que les nouvelles mesures améliorent

largement la description de la forme des amas dans les données par simulation, comme

illustré à la Fig. A.8.

Géométrie Type x0 x1 x2

IB1 nouvelle mesure 0.836 ± 0.009 0.070 ± 0.004 0.012 ± 0.002
IB1 simulation 0.775 0.096 0.017
IB2 nouvelle mesure 0.862 ± 0.008 0.059 ± 0.003 0.010 ± 0.002
IB2 simulation 0.830 0.076 0.009
OB2 nouvelle mesure 0.792 ± 0.009 0.083 ± 0.003 0.020 ± 0.002
OB2 simulation 0.725 0.110 0.027
OB1 nouvelle mesure 0.746 ± 0.009 0.100 ± 0.003 0.027 ± 0.002
OB1 simulation 0.687 0.122 0.034

Table A.2: Valeurs de la diaphonie mesurées en 2018 comparées aux anciennes mesures
de diaphonie utilisées actuellement pour la simulation des géométries du tonneau.

Les paramètres de la diaphonie influencent profondément la forme des amas, mais pas

leur charge totale. Le changement de la diaphonie pourrait faire en sorte que les amas

qui étaient précédemment légèrement au-dessus du seuil de clustering soient à présent

en dessous et ne soient donc plus reconstruits, et vice versa. De plus, avec la modifi-

cation des paramètres de la diaphonie, la position de l’amas et sa résolution changent

lors de la simulation, entraînant de petits changements dans la reconstruction des traces.

Par conséquent, l’effet d’une modification de la diaphonie peut se propager jusqu’à cer-
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Figure A.7: Distributions de la largeur des amas (à gauche) et de la charge portée par la
piste collectant le plus de signal dans l’amas (à droite) pour la géométrie OB2. Les don-
nées de collision sont représentées par les points noirs, différentes valeurs de la diaphonie
XT sont utilisées dans la simulation (chaque set correspondant à une couleur différente).
Le premier des trois nombres XT correspond à la fraction de charge induite sur la piste
principale, les deuxième et troisième nombres représentent les fractions de charge induites
sur les premiers et seconds voisins, respectivement. Les distributions simulées sont renor-
malisés au nombre d’amas dans les données. Les graphique inférieurs représentent le
rapports des distributions des données par la simulation.
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Figure A.8: Distribution de la largeur de l’amas (à gauche) et de la charge portée par
la piste collectant le plus de signal dans l’amas (à droite) dans les données et la simula-
tion pour la géométrie OB2, pour les paramètres de la diaphonie (XT ) actuels (défaut,
en rouge) et nouvellement mesurés (updated, en bleu). Les distributions simulées sont
renormalisés au nombre d’amas dans les données. Les graphiques inférieurs représentent
le rapport des données et simulation.
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Géométrie Type x0 x1 x2

W1a nouvelle mesure 0.8571 0.0608 0.0106
W1a simulation 0.786 0.093 0.014
W2a nouvelle mesure 0.8861 0.049 0.008
W2a simulation 0.7964 0.0914 0.0104
W3a nouvelle mesure 0.8984 0.0494 0.0014
W3a simulation 0.8164 0.09 0.0018
W1b nouvelle mesure 0.8827 0.0518 0.0068
W1b simulation 0.822 0.08 0.009
W2b nouvelle mesure 0.8943 0.0483 0.0046
W2b simulation 0.888 0.05 0.006
W3b nouvelle mesure 0.8611 0.0573 0.0121
W3b simulation 0.848 0.06 0.016
W4 nouvelle mesure 0.8881 0.0544 0.0015
W4 simulation 0.876 0.06 0.002
W5 nouvelle mesure 0.7997 0.077 0.0231
W5 simulation 0.7566 0.0913 0.0304
W6 nouvelle mesure 0.8067 0.0769 0.0198
W6 simulation 0.762 0.093 0.026
W7 nouvelle mesure 0.7883 0.0888 0.0171
W7 simulation 0.7828 0.0862 0.0224

Table A.3: Valeurs de la diaphonie actualisées pour les anneaux du TID (W1a, W2a,
W3a) et du TEC (restant), comparées aux anciennes mesures utilisés dans la simulation.

taines des analyses de physique, par exemple dans les recherches de signatures de nouvelle

physique qui cherchent des traces qui apparaissent tardivement ou disparaissent dans le

trajectographe. L’identification des objets de physique, qui dépendent fortement du tra-

jectographie, comme par exemple le b-tagging (identification des jets comme issus de

quarks b) , peut également être influencée par un changement des paramètres de la di-

aphonie. L’impact sur les autres objets et analyses de physique, qui ne dépendent pas

fortement du trajectographie, devrait être négligeable.

Il a été montré que les paramètres de la diaphonie évoluent en fonction de la fluence

et doivent donc être réévalués et mis à jour régulièrement. De plus, des mesures plus

fréquentes des paramètres de la diaphonie pourraient nous aider à comprendre pourquoi la

diaphonie diminue par rapport à la mesure précédente. La littérature [88] indique qu’avec

une fluence croissante, la capacité entre les pistes devrait augmenter et la résistance

inter-pistes diminuer. Ces deux changements devraient entraîner une augmentation de

la diaphonie, ce qui n’a pas été observé. Cependant, la résistance et la capacité entre

les pistes ne sont pas les seuls facteurs qui influencent la formation du signal. Il existe

un réseau plus complexe de capacités et de résistances qui ont un impact sur la forme
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de l’amas. Notez que la diaphonie a été mesurée uniquement pour le mode principal

d’échantillage du signal (mode déconvolution). Il faudrait donc également la mettre à

jour pour le mode “peak”. Bien que ce dernier mode ne soit pas utilisé dans la prise

de données standard, il pourrait nous aider à étudier la diminution de la diaphonie en

distinguant les effets de la déconvolution des autres effets.

Les données cosmiques enregistrées en l’absence de champ magnétique, qui ont été

utilisées pour la mesure de la diaphonie, ont posé plusieurs contraintes et difficultés. Tout

d’abord, en raison des conditions de déclenchement, les statistiques sur les disques et les

bouchons sont insuffisantes. Même si le déclenchement était re-conçu, en raison de la

direction d’arrivée des cosmiques, la prise de données devrait être longue afin de collecter

suffisamment de statistiques dans ces zones-là, ce qui est difficile à organiser dans le

calendrier serré du CMS. Le deuxième problème important est lié à la synchronisation

du trajectographe lorsqu’il échantillonne le signal collecté. Le trajectographe n’a pas

de configuration de synchronisation spéciale pour les cosmiques et, par conséquent, la

synchronisation des collisions est toujours utilisée. Comme la diaphonie varie en fonction

du temps dans l’échantillonnage du signal, nous ne devons utiliser pour la mesure de la

diaphonie que les cosmiques dont le temps d’arrivée au module donné coïnciderait avec

celui d’une particule produite lors d’une collision proton-proton. Une autre ambiguïté

provient du calcul du temps d’arrivée des particules, qui extrapole toutes les particules

au point d’interaction, même si elles ne sont pas passées par là. Tous ces problèmes

pourraient être résolus s’il était possible d’organiser une nouvelle prise de données de

collision en mode spécial d’acquisition (sans soustraction ni suppression de charge) et

sans champ magnétique. Mais une telle prise de données n’est pas compatible avec le

programme et les priorités de CMS.

Après la modification des paramètres de la diaphonie et des conditions tels que les

gains et le bruit mis à jour par les autres membres du groupe de reconstruction locale

du trajectographe, la description par la simulation des amas synchronisés avec les croise-

ments de faisceaux (“en temps”) dans les données a été grandement améliorée. Il a été

identifié qu’il existe encore plusieurs paramètres qui sont obsolètes et pourraient être mis

à jour à l’avenir, mais ces paramètres ne modifient pas largement la description des amas.

Dans cette thèse d’une part, j’ai découvert que la simulation est simplifiée et parfois non

réaliste, mais d’autre part, le développement de modèles plus sophistiqués n’améliorerait

pas grandement la description des amas dans les données par simulation. J’ai également

constaté que certaines parties de la simulation ont un impact négligeable, à savoir la dif-

fusion, et il pourrait être utile d’évaluer quelles parties de la simulation sont réellement

nécessaires pour réduire le temps nécessaire à la simulation d’événements.

Plusieurs améliorations pourraient encore être incluses dans la simulation des amas
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non synchrones avec des collisions. Tout d’abord, la forme du signal a changé en raison

de la modification de la configuration de la puce APV suite au problème d’inefficacités

de reconstruction des hits discuté précédemment. Par conséquent, la forme du signal doit

être mise à jour afin de réduire la charge simulée d’une fraction correcte. Deuxièmement,

il a été montré que la diaphonie dépend du temps. Les paramètres de la diaphonie ont été

dérivés pour les amas “en temps” et ne sont pas corrects pour les amas pas “en temps”.

Idéalement, les paramètres de la diaphonie devraient être estimés en fonction du temps

d’arrivée des particules au module. Les amas pas “en temps” devraient également être

mieux simulés, car ces amas pourraient être utilisés par l’algorithme de trajectographie

pour reconstruire les traces des particules.

Pour aller plus loin avec les données cosmiques enregistrées, je propose ici quelques

d’études intéressantes qui pourraient être réalisées. Dans le passé, on observait une

asymétrie gauche-droite dans le partage des charges. Cet effet pourrait aussi être étudié

avec les données que j’ai utilisées. De plus, il est possible d’étudier les propriétés de la

diaphonie et d’amas en fonction de la position où la trace croise le plan des pistes, à prox-

imité ou à distance de la piste. Dans le passé, il a également été observé qu’il existe une

évolution de la charge portée par la piste de plus grande charge dans l’amas en fonction

du numéro de la piste dans une puce APV, cette étude pourrait être répétée avec ces

données. Toutes ces études pourraient aider à mieux comprendre la formation du signal,

les caractéristiques des capteurs telles que les non-uniformités dans le champ électrique,

ainsi que les modifications des propriétés des capteurs résultant de leur irradiation.

Dans le futur trajectographe pour le HL-LHC, le formation des amas sera complète-

ment différente, seules les informations binaires de la piste/macro-pixel seront envoyées.

Par conséquent, la charge de la piste de charge maximale et la charge totale de l’amas

ne seront plus disponibles, seule la largeur de l’amas sera connue. Comme la largeur de

amas dépend de la diaphonie, il sera également nécessaire de mesurer la diaphonie dans le

nouveau trajectographe. De plus, il sera important de déterminer l’impact de la diaphonie

sur le passage de seuil entre 0 et 1 pour la charge de la piste/macro-pixel, afin de fixer

correctement le seuil et le surveiller au cours du temps.

A.V Recherche du partenaire supersymétrique du quark

top

Le Chapitre 4 introduit le Modèle Standard (MS) et la Supersymétrie (SUSY). Malgré sa

capacité à bien décrire la majorité des phénomènes physiques observés, le modèle standard

de la physique des particules souffre de plusieurs inconvénients tels que le problème de
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la hiérarchie ou l’absence d’un candidat pour la matière noire. En raison de ces lacunes,

des théories au-delà du MS ont été proposées et l’une d’entre elles, la supersymétrie,

est devenue la plus prometteuse en raison de sa capacité à traiter une grande partie des

problèmes du MS.

Dans cette thèse, j’ai présenté au Chapitre 5 une recherche du partenaire super-

symétrique du quark top, le stop, avec les données de CMS du Run 2. Cette recherche vise

la production de paires de stops, avec trois possibilités différentes pour les désintégrations

des stops: 1) les deux stops se désintègrent chacun un quark top et un neutralino (Fig. A.9

en haut à gauche), 2) la désintégration des deux stops en un quark et un chargino (Fig. A.9

en haut à droite), 3) chaque stop se désintègrent différemment comme un mélange des

deux cas précédents (Fig. A.9 en bas). Dans tous les cas, les états finaux du signal ciblé

contiennent un lepton, des jets et de l’énergie transverse manquante.

p

p t̃1

t̃1

t

χ̃
0

1

χ̃
0

1

t

p

p t̃1

t̃1

χ̃
+

1

χ̃
−

1

b

W−

χ̃
0
1

χ̃
0
1

W+

b

p

p t̃1

t̃1

χ̃
+

1

t

χ̃
0
1

χ̃
0
1

W+

b

Figure A.9: Les diagrammes de modèles simplifiés pour la production direct de paires
de stops. Dans le diagramme en haut à gauche, chaque stop se désintègre en tχ̃0

1 (T2tt),
tandis qu’en haut à droite, il se désintègre en bχ̃±

1 (T2bW). Dans le diagramme en bas,
la désintégration mixte de la paire de stops t̄χ̃0

1bχ̃
+
1 est considérée [134].

J’ai été impliquée dans trois versions publiques de cette recherche: une basée sur les

données enregistrées en 2015 correspondant à une luminosité intégrée
∫ L de 2.3 fb−1 [129],

la seconde basée sur les données enregistrées début 2016 (
∫ L = 12.9 fb−1) [130] et la

dernière correspondant à
∫ L = 35.9 fb−1 collecté pendant toute la période de prise de

données proton-proton de 2016 [128]. J’ai été principalement impliquée dans la dernière

analyse, où j’étais responsable de l’estimation de l’un des bruits de fond de l’analyse con-
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stitué des processus ttZ et WZ, dans lesquels un boson Z se désintègre en deux neutrinos.

Je n’ai pas seulement estimé ce bruit de fond, mais j’ai également fourni les incertitudes

systématiques sur ce bruit de fond. Les résultats peuvent être vus dans les Tableaux 5.7

et 5.9 du Chapitre 5. Dans cette thèse, j’ai également exploité une technique de marquage

de jets boostés provenant d’un boson W et j’ai montré que le gain de mise en œuvre d’une

telle technique augmente avec la luminosité intégrée.

Les recherches pour la production de paires de stops dans différents états finaux avec

0, 1 ou 2 leptons avaient déjà été effectuées avec les données Run 1 sous l’hypothèse

de différents modes de désintégration. Ces analyses excluent dans le cadre de scénarios

simplifiés avec des stops se désintégrant en un quark top et un neutralino des masses

de stops jusqu’à environ 755 GeV pour une masse de neutralino inférieure à 200 GeV.

Avec l’augmentation de l’énergie dans le centre de masse puis de la luminosité intégrée

au Run 2, il est possible de sonder davantage les masses de stop. Comme on peut le voir

sur la Figure A.10, aucun excès n’a été observé dans les données enregistrées en 2016

et correspondant à (
∫ L = 35.9 fb −1) quand on les compare aux prédictions de bruits

du fond du MS et, par conséquent, des limites d’exclusion ont été posées. Cette analyse

exclut les masses de stop jusqu’à 1120 GeV pour un neutralino sans masse en termes de

modèles simplifiés où les deux stops se désintègrent en un quark top et un neutralino,

comme le montre la Fig. A.11. Dans le cas où les deux stops se désintègrent en un quark

bottom et un chargino ou dans le cas de désintégration mixte, les masses de stop ont

été exclues jusqu’à 1000 GeV et 980 GeV, respectivement, comme présenté aux Fig. A.12

et A.13.

Malgré de l’exclusion du stop dans la gamme du TeV, il reste de la place pour la super-

symétrie naturelle [116] et, par conséquent, l’effort de recherche des stops ne diminue pas.

Selon les prévisions de la collaboration CMS, avec une luminosité intégrée de 3000 fb−1

devant être collectée au HL-LHC, il sera possible de sonder les masses de stop jusqu’à

2 TeV [164]. Une augmentation supplémentaire de l’énergie dans le centre de masse (projet

HE-LHC) nous permettrait de sonder encore plus loin les masses de stop.

Avant de migrer vers des projets futurs, il existe plusieurs directions pour améliorer

l’analyse de stop présentée dans cette thèse en vue d’une future mise à jour basée sur

des données avec une luminosité intégrée plus grande. Pour l’estimation des bruits du

fond, il est souhaitable d’utiliser des méthodes basées sur les données afin de minimiser la

dépendance à la simulation et, par conséquent, de réduire les incertitudes systématiques.

Les estimations des bruits du fond à partir des données sont basées sur des régions de

contrôle, ces régions de contrôle doivent être définies de manière très similaire aux régions

où nous cherchons le signal pour éviter les incertitudes dues aux extrapolations. Ces

extrapolations reposent sur la forme des variables dans la simulation et, si elles ne sont
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Figure A.10: Nombre d’événements observés dans les données (points noirs), des estima-
tions de bruits du fond ainsi que 3 scénarios possibles de signaux dans les 31 régions de
signal de l’analyse. Le bruit du fond correspondant à un lepton perdu est représenté en
vert, le bruit du fond 1ℓ provenant du processus W + jets → 1ℓ (c’est-à-dire pas du top)
en jaune, le bruit du fond Z → νν̄ en violet et la contribution tt̄ → 1ℓ en rouge. Le modèle
T2tt (t̃1 → tχ̃0

1) avec une masse du stop de 900 GeV et une masse du neutralino de 300 GeV
est représenté par une ligne pointillée bleue. Les scénarios T2tb (t̃1 → tχ̃0

1/t̃1 → bχ̃±
1 ) et

T2bW (t̃1 → bχ̃±
1 ) pour une masse du stop de 600 GeV et une masse de neutralino de

300 GeV sont respectivement représentés par une ligne pointillé rose et une verte. La ligne
pointillée rouge sépare les régions de signal de l’analyse nominale et de l’analyse dédiée à
la région compressée avec ∆m(stop, neutralino) < 225 GeV.

pas bien modélisées, elles augmentent largement les incertitudes systématiques sur les

bruits du fond. Du côté du signal, la simulation simplifiée d’événements n’est pas fiable

dans la région du plan de masses (m(stop), m(neutralino)) lorsque ∆m(stop, neutralino) ∼
m(top) à faible m(neutralino). Cela pourrait être résolu en utilisant la simulation complète

du détecteur dans cette région cinématique particulière. Ensuite, la stratégie d’analyse

peut également être réoptimisée. Il est possible de réoptimiser les régions de signal en

trouvant des coupures optimales spécifique pour une luminosité donnée mais également

en essayant de trouver de meilleures variables discriminantes. Une autre option consiste

à utiliser des reconstructions différentes d’objets. Par exemple de nos jours, il existe une

variété d’objets ciblant l’identification du boson W ou du quark top, non seulement comme

un large jet unique regroupant tous les produits de la désintégration du W ou du top, mais

également comme plusieurs jets complètement résolus ou des jets partiellement fusionnés.

Nous pourrions également envisager de ne pas effectuer d’analyse de comptage, mais de

passer à une analyse de forme d’une variable discriminante, en utilisant des techniques
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Figure A.11: Les limites d’exclusion à 95% CL sur le modèle T2tt correspondant à une
luminosité intégrée de 35.9 fb−1. L’interprétation est fournie dans le plan de la masse du
stop par rapport à la masse du neutralino. Le code de couleur indique la limite supérieure
de 95 % CL sur la section efficace en supposant un rapport de branchement de 100% pour
t̃1 → tχ̃0

1. Les contours rouge et noir représentent respectivement les limites d’exclusion
attendues et observées. La zone sous la courbe épaisse noire indique la région exclue des
points de signal.

d’apprentissage multi-variées permettant d’établir une meilleure distinction entre le signal

et le bruit du fond.

Au sein de la collaboration CMS, une grande variété de recherches SUSY est effectuée.

Les stops sont recherchés dans plusieurs états finaux différents et les autres particules

SUSY prédites sont également ciblées par des recherches dédiées. De nombreuses analy-

ses recherchent SUSY dans le contexte du modèle supersymétrique minimal (MSSM), mais

il existe également plusieurs recherches allant au-delà, par exemple des recherches perme-

ttant de violer la R-parité. En général, les recherches SUSY sont interprétées en termes de

modèles simplifiés. De nombreux efforts sont déployés pour réinterpréter ces recherches

dans des modèles plus réalistes. Une autre partie des activités est la combinaison de

recherches pour atteindre un meilleur potentiel de découverte/exclusion. L’expérience

CMS et en général les expériences de collisionneur ne constituent pas la seule opportu-

nité de rechercher la supersymétrie. Par exemple, la supersymétrie peut également être

étudiée par des expériences de détection directe de matière noire.

En résumé, il existe encore de nombreuses options pour une SUSY naturelle en termes

d’espace de paramètres, ainsi que de nombreuses options pour la rechercher. Les expéri-

ences de collisionneur sont l’une de ces options et, avec l’augmentation de la luminosité,

de l’énergie et de l’optimisation des analyses, elles offrent de grandes possibilités pour
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Figure A.12: Les limites d’exclusion à 95% CL sur le modèle T2bW correspondant à une
luminosité intégrée de 35.9 fb−1. L’interprétation est fournie dans le plan de la masse du
stop vs la masse du neutralino. Le code couleur indique la limite supérieure de 95% CL
sur la section efficace en supposant un rapport de branchement de 100% pour t̃1 → bχ̃±

1 .
Les contours rouge et noir représentent respectivement les limites d’exclusion attendues
et observées. La zone sous la courbe épaisse noire indique la région exclue des points de
signal.

dépasser les limites actuelles et explorer davantage l’espace de phase non couvert.
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Figure A.13: Les limites d’exclusion à 95% CL sur le modèle T2tb correspondant à une
luminosité intégrée de 35.9 fb −1. L’interprétation est fournie dans le plan de la masse du
stop par rapport à la masse du neutralino. Le code de couleur indique la limite supérieure
de 95% CL sur la section efficace en supposant un rapport de branchement de 50% pour
t̃1 → tχ̃0

1 et 50% pour t̃1 → bχ̃±
1 . Les contours rouge et noir représentent respectivement

les limites d’exclusion attendues et observées. La zone sous la courbe épaisse noire indique
la région exclue des points de signal.
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Markéta Jansová
Search for the supersymmetric partner of the top quark and

measurements of cluster properties in the silicon strip tracker
of the CMS experiment at Run 2

Résumé : Cette thèse présente trois études différentes basées sur les données de CMS du Run 2. Les deux
premières sont des mesures des propriétés des amas dans le trajectographe à pistes de silicium de CMS, liées
respectivement aux particules hautement ionisantes (HIP) et au partage de charge entre les pistes voisines
(également appelé diaphonie). Le dernier sujet abordé dans ce document est la recherche du partenaire super-
symétrique du quark top, appelé stop.

Une augmentation de l’inefficacité de reconstruction des hits dans le trajectographe à pistes de silicium de
CMS a été observée au cours des années 2015 et 2016. Les particules hautement ionisantes ont été identifiées
comme une cause possible de ces inefficacités. Cette thèse apporte des résultats qualitatifs et quantitatifs sur
l’effet HIP et sa probabilité. Le HIP n’était pas la source la plus importante d’inefficacité et, une fois la source
identifiée et corrigée, les nouvelles données révèlent qu’après cette correction, le HIP représente à présent la
principale source d’inefficacité.

La seconde étude présentée porte sur les conditions utilisées dans la simulation du trajectographe par
CMS afin de fournir des résultats réalistes. Ces conditions changent avec les conditions de fonctionnement
du trajectographe et évoluent avec le vieillissement du trajectographe résultant des dommages causés par le
rayonnement. Nous avons constaté que les paramètres de diaphonie obsolètes avaient une grande incidence sur
la forme de l’amas. Dans cette thèse, les paramètres ont été réévalués et il a été confirmé que les nouveaux
paramètres améliorent grandement l’accord des amas entre données et simulation.

La dernière partie décrit en profondeur la recherche de stop en utilisant les données collectées en 2016
(correspondant à

∫

L = 35.9 fb−1) avec un lepton dans l’état final. Aucun excès n’a été observé par rapport
aux prédictions attendues par le modèle standard et les résultats ont été interprétés en terme de limites
d’exclusion sur des modèles simplifiés.

Mot-clés : physique des particules, LHC, CMS, supersymétrie, trajectographe à pistes de silicium, sim-
ulation, particules hautement ionisantes, diaphonie

Abstract : This thesis presents three different studies based on the CMS Run 2 data. The first two
are measurements of the cluster properties in the CMS silicon strip tracker related respectively to the highly
ionizing particles (HIP) and the charge sharing among neighboring strips (also known as cross talk). The last
topic discussed in this document is the search for the supersymmetric partner of the top quark, called the stop.

An increase in the hit inefficiency of the CMS silicon strip tracker was observed during the years 2015 and
2016. The highly ionizing particles were identified as a possible cause of these inefficiencies. This thesis brings
qualitative and quantitative results on the HIP effect and its probability. The HIP was found not to be the
largest source of inefficiency at that time and once the source was identified and fixed, the new data revealed
that after this fix the HIP now represents the major source of the hit inefficiency.

The second study presented in this thesis focuses on the conditions plugged in CMS tracker simulation
in order to provide realistic results. These conditions change with the tracker operating conditions and also
evolve with tracker ageing resulting from the radiation damage. We identified that the outdated cross talk
parameters largely impact the cluster width and seed charge. In this thesis the parameters were remeasured
and it was confirmed that the new parameters largely improve the agreement of clusters between data and
simulation.

The last part describes deeply the stop analysis using data recorded in 2016 (corresponding to
∫

L =

35.9 fb−1) with single lepton in the final state. No excess was observed in the full 2016 data (
∫

L = 35.9 fb−1)
with respect to the standard model background predictions and therefore exclusion limits in terms of simplified
model spectra were derived.

Keywords: particle physics, LHC, CMS, supersymmetry, CMS silicon strip tracker, simulation, highly
ionizing particles, cross talk


