Foncteurs de Long-Moody et homologie stable des groupes de difféotopie
Auteur / Autrice : | Arthur Soulié |
Direction : | Christine Vespa |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 27/06/2018 |
Etablissement(s) : | Strasbourg |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de recherche mathématique avancée (Strasbourg) |
Jury : | Président / Présidente : Geoffrey Powell |
Examinateurs / Examinatrices : Frédéric Chapoton, Gwénaël Massuyeau | |
Rapporteurs / Rapporteuses : Antoine Touzé, Nathalie Wahl |
Mots clés
Résumé
Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d’une représentation triviale via une construction introduite par Long en 1994, à l’issue d’une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d’en dégager plus aisément des variantes. De plus, le degré de polynomialité d’un foncteur permet d’en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d’autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d’automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l’homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM(F) obtenu en appliquant un foncteur de Long-Moody. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d’autres familles de groupes. Le dernier chapitre concerne des calculs d’homologie stable pour les groupes de difféotopie.