Thèse soutenue

Identification et caractérisation de Mass Transport Deposits à partir de données sismiques. Application au bassin de l'Amazone (Amazon River Mouth basin)

FR  |  
EN
Auteur / Autrice : Pauline Le Bouteiller
Direction : Christian Gorini
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 05/12/2018
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Géosciences, ressources naturelles et environnement (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut des sciences de la Terre de Paris (2009-....)
Jury : Président / Présidente : Sébastien Migeon
Examinateurs / Examinatrices : Florence Delprat-Jannaud, Jean Charléty, Thierry Coleou, Adriano R. Viana
Rapporteur / Rapporteuse : Ghassan AlRegib, Antonio Cattaneo

Résumé

FR  |  
EN

Comprendre les processus ayant engendré un « Mass Transport Deposit » (MTD) permet une meilleure connaissance des ressources potentielles d’un bassin sédimentaire et de l’aléa glissement de terrain sous-marin. L’interprétation de données sismiques est abordée pour étudier les MTDs. Deux méthodologies sont développées dans cette thèse, pour inférer les processus physiques ayant impacté l’aspect actuel de MTDs dans des images sismiques. La méthodologie d’ « identification » de MTDs dans des images sismiques s’attache à déterminer la position et les contours de ces objets géologiques tout en préservant la variabilité interne de leurs facies sismiques. Cette méthodologie utilise une segmentation d’image texturée (l’image sismique) couplée à un apprentissage faiblement supervisé par des probabilités a priori d’occurrence des objets. La méthodologie d’ « interprétation » fournit des hypothèses de processus physiques ayant impacté les différents caractères d’un MTD. Ces hypothèses sont obtenues uniquement via une base de connaissances objective construite à partir de la littérature, mettant en lumière le processus d’interprétation. Ces deux méthodologies sont appliquées avec succès sur un jeu de données du bassin de l’Amazone (Brésil). Elles promeuvent l’utilisation conjointe d’approches orientées données (data-driven) et basées sur la connaissance (knowledge- / model-driven).