Low-dimensional phase transitions in and outside equilibrium - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Low-dimensional phase transitions in and outside equilibrium

Transitions de phase en basse dimension à l’équilibre et hors d’équilibre

Résumé

Although nature is three-dimensional, lower dimensional systems are often effectively realized offering fascinating new physics. The subject of this thesis is phase transitions in low dimensions, with its primary focus on non-equilibrium phases in two-dimensional active matter. Unlike passive systems, active particles are driven by energy injected at the microscopic scale from internal degrees of freedom resulting in an irreversible dynamics, often giving rise to macroscopic phases in striking contrast to equilibrium. A goal is to give a quantitative characterization of such non-equilibrium phases and to capture these in simplest realizations of active matter. The thesis explores two-dimensional self-propelled particles with isotropic pair-wise interactions. The dynamics (persistent kinetic Monte Carlo) is a variant of passive disks and different from well-known models of active matter. A full quantitative phase diagram is presented including motility induced phase separation (MIPS) as seen in other active systems. Additionally, the famous two-step melting scenario with the hexatic phase extends far from equilibrium. In this non-equilibrium scenario, the activity can melt a 2D solid and the melting lines remain separated from MIPS. The second part explores a frequently debated issue of the existence of phase transitions in classical one-dimensional models with short-range interactions at non-zero temperature. A widely shared misconception is that such transitions are not possible. A clear counterexample to this belief is given where non-analyticity in the free energy emerges from a new mechanism with a geometrical origin, which is then established on a rigorous ground.
Bien que la nature soit tridimensionnelle, il existe de nombreux systèmes dont les dimensions effectives sont inférieures, offrant une nouvelle physique. Cette thèse porte sur les transitions de phase dans les systèmes de faibles dimensions, en particulier sur les phases hors équilibre dans la matière active (MA) bidimensionnelle (2D). À la différence des systèmes passifs, les particules actives sont entraînées par de l'énergie injectée à l'échelle microscopique à partir de degrés de liberté internes, entraînant une dynamique irréversible, et donnant souvent lieu à des phases macroscopiques contrastant avec l'équilibre. Dans une première partie, ce travail propose une caractérisation quantitative des phases hors équilibre en s'appuyant sur un modèle minimal de MA. Ce modèle repose sur des particules 2D autopropulsées avec des interactions de paires. La dynamique (Monte Carlo cinétique persistante) est une variante des disques passifs et diffère des modèles bien connus de MA. Un diagramme de phase quantitatif complet est présenté, incluant la séparation de phase induite par motilité (SPIM). De plus, le scénario de fusion en deux étapes avec la phase hexatique se retrouve aussi hors équilibre. L'activité peut fondre un solide 2D et les lignes de fusion restent séparées de SPIM. La deuxième partie explore l'existence de transitions de phase dans les modèles 1D classiques avec des interactions courtes portées à température non nulle. Une idée largement partagée est que de telles transitions sont impossibles. Un contre-exemple clair est présenté où la non-analyticité de l'énergie libre émerge d'un nouveau mécanisme d'origine géométrique, établi de manière rigoureuse.
Fichier principal
Vignette du fichier
these_KLAMSER_Julia_2018.pdf (103.69 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02865332 , version 1 (11-06-2020)
tel-02865332 , version 2 (11-06-2020)

Identifiants

  • HAL Id : tel-02865332 , version 2

Citer

Juliane Uta Klamser. Low-dimensional phase transitions in and outside equilibrium. Data Analysis, Statistics and Probability [physics.data-an]. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS333⟩. ⟨tel-02865332v2⟩
284 Consultations
13 Téléchargements

Partager

Gmail Facebook X LinkedIn More