Thèse soutenue

Espaces profonds de répresentation

FR  |  
EN
Auteur / Autrice : Micael Carvalho
Direction : Matthieu Cord
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 11/12/2018
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....)
Jury : Président / Présidente : Éric Gaussier
Examinateurs / Examinatrices : Hervé Le Borgne, Nicolas Thome, Laure Soulier
Rapporteurs / Rapporteuses : Sébastien Lefèvre, Frédéric Precioso

Résumé

FR  |  
EN

Ces dernières années, les techniques d’apprentissage profond ont fondamentalement transformé l'état de l'art de nombreuses applications de l'apprentissage automatique, devenant la nouvelle approche standard pour plusieurs d’entre elles. Les architectures provenant de ces techniques ont été utilisées pour l'apprentissage par transfert, ce qui a élargi la puissance des modèles profonds à des tâches qui ne disposaient pas de suffisamment de données pour les entraîner à partir de zéro. Le sujet d'étude de cette thèse couvre les espaces de représentation créés par les architectures profondes. Dans un premier temps, nous étudions les propriétés de leurs espaces, en prêtant un intérêt particulier à la redondance des dimensions et la précision numérique de leurs représentations. Nos résultats démontrent un fort degré de robustesse, pointant vers des schémas de compression simples et puissants. Ensuite, nous nous concentrons sur le l'affinement de ces représentations. Nous choisissons d'adopter un problème multi-tâches intermodal et de concevoir une fonction de coût capable de tirer parti des données de plusieurs modalités, tout en tenant compte des différentes tâches associées au même ensemble de données. Afin d'équilibrer correctement ces coûts, nous développons également un nouveau processus d'échantillonnage qui ne prend en compte que des exemples contribuant à la phase d'apprentissage, c'est-à-dire ceux ayant un coût positif. Enfin, nous testons notre approche sur un ensemble de données à grande échelle de recettes de cuisine et d'images associées. Notre méthode améliore de 5 fois l'état de l'art sur cette tâche, et nous montrons que l'aspect multitâche de notre approche favorise l'organisation sémantique de l'espace de représentation, lui permettant d'effectuer des sous-tâches jamais vues pendant l'entraînement, comme l'exclusion et la sélection d’ingrédients. Les résultats que nous présentons dans cette thèse ouvrent de nombreuses possibilités, y compris la compression de caractéristiques pour les applications distantes, l'apprentissage multi-modal et multitâche robuste et l'affinement de l'espace des caractéristiques. Pour l'application dans le contexte de la cuisine, beaucoup de nos résultats sont directement applicables dans une situation réelle, en particulier pour la détection d'allergènes, la recherche de recettes alternatives en raison de restrictions alimentaires et la planification de menus.