Thèse soutenue

Développement d'une approche ZDES à deux équations de transport et application turbomachines

FR  |  
EN
Auteur / Autrice : Cédric Uribe
Direction : Georges GerolymosJulien Marty
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 24/09/2018
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris
Partenaire(s) de recherche : Laboratoire : Office national d'études et de recherches aérospatiales (France). Centre de Meudon
Jury : Président / Présidente : Éric Goncalves
Examinateurs / Examinatrices : Smaïne Kouidri, Philippe Devinant
Rapporteurs / Rapporteuses : Jérôme Boudet, Rémi Manceau

Résumé

FR  |  
EN

Afin d’améliorer les caractéristiques d’une turbomachine, il est capital de prévoir correctement les écoulements secondaires et/ou transitionnels s’y développant. Ces écoulements peuvent être à l’origine de la réduction de ses performances et de son domaine de fonctionnement. À titre d’exemple la présence de tourbillons de jeu ou de décollements de coin sur les aubages de compresseur H.P. engendre des pertes de pression totale favorisant l’apparition d’instabilités axiales (pompage). Les multiples processus de transition laminaire-turbulent modulent la charge thermique subie par les aubes de turbine et conditionnent donc leur durée de vie. La nature généralement fortement instationnaire, décollée et transitionnelle de ces écoulements rend leur prévision délicate voire imprécise avec les modélisations de la turbulence utilisées en conception (approche RANS). En réponse à ces défis une solution est l’approche hybride RANS/LES dite ZDES (Zonal Detached Eddy Simulation (Deck 2012)) dans ses modes de fonctionnement 0, 1 et 2 : les couches limites sont traitées par une approche RANS dans leur entière épaisseur afin de s’y affranchir du coût excessif d’une approche LES (résolution des grandes échelles de la turbulence) qui est seulement utilisée - si nécessaire - sur le reste du domaine de calcul pour une prévision haute fidélité des écoulements décollés, l’interface entre les deux approches étant continue. Afin que cette approche soit compatible avec la majorité des modèles de transition laminaire-turbulent, en particulier en aérodynamique interne, ces travaux en proposent diverses variantes non plus basées sur le modèle de turbulence de Spalart et Allmaras (approche ZDES SA) mais sur le modèle k − ω SST de Menter (approche ZDES SST). Au regard d’une décomposition en problématiques majeures de leurs performances, ils démontrent la similitude comportementale de ces deux approches sur des cas d’écoulement génériques (couche de mélange, marche descendante, barreau cylindrique) peu exigeants vis-à-vis de leur modèle de turbulence sous-jacent au sein des régions RANS. Ils démontrent également l’avantage de la ZDES SST sur la ZDES SA sur un cas d’intérêt industriel (rotor de compresseur axial H.P.) autrement plus exigeant et évaluent diverses voies d’amélioration pour l’approche ZDES. Enfin ils enrichissent cette démarche d’évaluation d’un nouveau cas générique d’écoulement (bosse axisymétrique) permettant d’isoler la problématique de la prévision des décollements de couche limite turbulente en l’absence de singularité géométrique.