Silicone supramoléculaire : un nouveau concept permettant l'auto-cicatrisation
Auteur / Autrice : | Léo Simonin |
Direction : | Laurent Bouteiller |
Type : | Thèse de doctorat |
Discipline(s) : | Physique et chimie des matériaux |
Date : | Soutenance le 03/12/2018 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Institut parisien de chimie moléculaire (2009-....) |
Jury : | Président / Présidente : Laurence Rozès |
Examinateurs / Examinatrices : Bernard Dalbe, Sandrine Pensec | |
Rapporteur / Rapporteuse : Guillaume Miquelard-Garnier, Charles-André Fustin |
Mots clés
Résumé
Les silicones auto-cicatrisants de façon autonome (sans stimulus externe) présentent de faibles propriétés mécaniques, limitant leur utilisation industrielle. L’objectif de cette étude était de dépasser cette limitation. Nos travaux se sont intéressés aux copolymères segmentés PDMS-urée constitués de blocs souples (SS) et rigides (HS). Tout d’abord, nous avons étudié la relation entre la structure des bis-urées et les propriétés macroscopiques. Nous avons ainsi montré que la symétrie des HS gouverne la rigidité de ces matériaux. Toutefois, la présence de HS symétriques inhibe la cicatrisation du matériau. Puis, nous avons développé un nouveau concept permettant d’accélérer leur cinétique de cicatrisation. Un stoppeur de chaine macromoléculaire a été ajouté à la formulation de ces silicones thermoplastiques, créant un défaut dans l’assemblage supramoléculaire, conduisant à des clusters organiques plus petits et plus dynamiques. Néanmoins, contrairement aux plastifiants, la chute du module de Young observée par rapport à la matrice est limitée. D’ailleurs, nous reportons la synthèse d’un copolymère PDMS-urée avec un module de traction de 1MPa dont 90% de la contrainte à rupture peut être récupérée après cicatrisation pendant 24h à 25°C. Ce concept a aussi été adapté à un thermoplastique commercial (GENIOMER80). Enfin, notre défi a été d’optimiser la balance entre rigidité et autocicatrisation. Dans ce contexte, nous avons synthétisé de nouvelles matrices plus rigides, ainsi que des additifs avec des groupements associatifs de plus grande énergie cohésive. Nous avons alors pu repousser la limite de rigidité accessible aux silicones auto-cicatrisants de façon autonome (3MPa).