Système électromagnétique de détection de nanoparticules magnétiques dans une structure microfluidique pour l'immunodétection
Auteur / Autrice : | Amine Rabehi |
Direction : | Hamid Kokabi, Hans-Joachim Krause |
Type : | Thèse de doctorat |
Discipline(s) : | Électronique |
Date : | Soutenance le 30/01/2018 |
Etablissement(s) : | Sorbonne université en cotutelle avec Rheinisch-westfälische technische Hochschule (Aix-la-Chapelle, Allemagne) |
Ecole(s) doctorale(s) : | École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris (2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'électronique et électromagnétisme (Paris ; 2009-2019) |
Jury : | Président / Présidente : Stéphane Holé |
Examinateurs / Examinatrices : Andreas Offenhäusser | |
Rapporteurs / Rapporteuses : Pierre-Yves Joubert, Jörg Fitter |
Résumé
La détection et quantification d’agent biologique occupe une place prépondérante dans la prévention et la détection des dangers possibles pour la santé publique (épidémie ou pandémie), l’environnement ainsi que d’autres risques contextuelles (bioterrorisme, armes biologique ou chimiques…etc.). Par conséquent, le développement d’un système portable et à moindre coût permettant de détecter ces dangers constitue l’axe de recherche pluridisciplinaire de la collaboration entre différents laboratoires de l’UPMC (Paris 6) et « RWTH university » à Aachen en Allemagne. Dans ce projet, nous avons étudié les aspects pluridisciplinaires d’un microsystème (LoC) électromagnétique de détection immunologique basé sur l’utilisation de nanoparticules magnétiques (MNP). En raison de leur extractabilité et de leur triabilité, les MNP sont adaptées à l'examen d'échantillons biologiques, servant de marqueurs pour des réactions biochimiques. La plupart des techniques classiques de détection existantes sont basées sur des méthodes colorimétrique, fluorescence ou électrochimique qui souffrent en majorité de problème de temps d’analyse et de sensibilité. A cet égard, Les méthodes d’immuno-détection magnétiques constituent une alternative prometteuse. Cette détection est effectuée à l’aide des MNP qui sont spécifiquement bio-fonctionnalisés en surface afin d’être liée à la cible (virus, anticorps…etc). La nouvelle méthode magnétique de mélange de fréquence permet la détection et la quantification de ces MNP avec une grande dynamique. Dans cette thèse, l’effort est dirigé vers la miniaturisation de ce système. Pour ce faire, nous avons développé un ensemble d’outils analytiques et de simulations multiphysiques afin d’optimiser les dimensions des parties électromagnétique (bobines planaires) et microfluidiques. Par la suite, des prototypes de cette structure de détection à partir de bobines en circuits imprimés et de réservoirs microfluidiques en PDMS sont dimensionnés et réalisés. Les performances de ces prototypes ont été évaluées en termes de limite de détection de MNP, linéarité et plage dynamique. En outre, ces prototypes ont permis de valider les outils de dimensionnement réalisés. Une limite de détection de nanoparticules magnétiques de 15ng/mL a été mesurée avec un volume d'échantillon de 14 μL correspondant à une goutte de sang. Finalement, la validation du système quant à l’immuno-détection est abordée avec un état de l’art et le développement d’une procédure de fonctionnalisation biochimique de surface ainsi que des premiers tests pour sa validation.