Mathématiques discrètes appliquées à la cryptographie symétrique
Auteur / Autrice : | Yann Rotella |
Direction : | Anne Canteaut |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 19/09/2018 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Equipe de recherche : Security, Cryptology and Transmissions (France) |
Jury : | Président / Présidente : Pierre-Alain Fouque |
Examinateurs / Examinatrices : Antoine Joux, Sihem Mesnager, Maria Naya-Plasencia, Sondre Ronjom | |
Rapporteur / Rapporteuse : Joan Daemen, Henri Gilbert |
Mots clés
Résumé
Dans cette thèse, nous étudions la sécurité de primitives cryptographiques. Ces systèmes sont fondés sur des transformations utilisant des objets mathématiques représentés de multiples manières. Nous utilisons alors certaines structures inhérentes à leurs composantes, et jusqu'alors non prises en compte, pour mettre en évidence de nouvelles vulnérabilités. Par l'exploitation de diverses représentations, nous avons ainsi cryptanalysé des chiffrements authentifiés de la compétition CAESAR, des chiffrements à flot spécifiques et des constructions génériques. Nous avons donné des critères de conception en vue de la standardisation par le NIST de chiffrements à bas coût. Dans le cas des chiffrements à flot, nous avons défini de nouveaux critères cryptographiques plus pertinents que les critères usuels. Plus précisément, nous analysons la sécurité des chiffrements par bloc légers au regard des récentes attaques par invariant, et nous montrons comment les éviter par un choix approprié de la couche linéaire de diffusion et des constantes de tour. Nous proposons une nouvelle cryptanalyse des registres filtrés, grâce à la décomposition des éléments dans les sous-groupes multiplicatifs du corps fini à 2^n éléments. L'analyse du chiffrement FLIP, mais aussi du générateur pseudo-aléatoire de Goldreich a mis en évidence des faiblesses exploitables dans des attaques de type ``supposer et déterminer'', qui nécessitent la prise en compte de nouveaux critères sur les fonctions booléennes utilisées dans ce contexte. Enfin, nous cryptanalysons une version simplifiée du chiffrement authentifié Ketje en utilisant plusieurs techniques, permettant ainsi d'affiner l'évaluation de sa sécurité.