Evaluation et suivi de solvants innovants pour le captage de CO2 présentant une faible pénalité énergétique (<10 %) : développement de stratégies analytiques permettant la compréhension des phénomènes physico-chimiques mis en jeu en vue de leur modélisation
Auteur / Autrice : | Lorena Cuccia |
Direction : | Jérôme Vial |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie Physique et Chimie Analytique |
Date : | Soutenance le 26/03/2018 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Chimie, Biologie, Innovation (Paris) |
Jury : | Président / Présidente : Franck Launay |
Examinateurs / Examinatrices : Aicha El Khamlichi, Sabine Rode, Domitille Bontemps, Pierre-Louis Carrette | |
Rapporteur / Rapporteuse : Xavier Fernandez, Pierre Giampaoli |
Résumé
Le procédé de captage du CO2 en post-combustion par absorption chimique est aujourd'hui la technologie la plus mature en vue d'une réduction des émissions de CO2 issues de procédés industriels. Les deux principales limitations de la technologie sont la pénalité énergétique engendrée par le procédé, et la formation de produits de dégradation potentiellement toxiques pour l'Homme et l'environnement. Dans le cadre de ce projet de thèse, trois solvants innovants ont été présélectionnés pour leurs bonnes propriétés thermodynamiques de captage : les mélanges 1-méthylpipérazine / pipérazine (1MPZ /PZ), diméthylaminoéthanol / pipérazine (DMEA/PZ) et méthyldiéthanolamine/monoéthanolamine (MDEA/MEA). Ces trois solvants ont été étudiés en termes de stabilité chimique dans des conditions représentatives des conditions industrielles du captage de CO2 en post-combustion sur un dispositif expérimental construit par EDF R&D Chatou. Des méthodes analytiques complémentaires impliquant les chromatographies liquide et gazeuse ont été développées dans l'objectif de suivre les teneurs en amines constituantes du solvant au cours du temps, et d'identifier et quantifier les potentiels produits de dégradation formés aussi bien dans la phase liquide du solvant que dans les fumées traitées émises. Au vu des résultats obtenus au cours de ce projet, le solvant MDEA/MEA semble offrir le meilleur compromis en termes de stabilité chimique et de besoins énergétiques requis pour le procédé. Ce solvant présente des taux de dégradation inférieurs aux mélanges 1MPZ/PZ et DMEA/PZ, et permettrait une réduction de l'énergie au rebouilleur de l'ordre de 10 % par rapport à la MEA 30 %, solvant modèle au procédé.